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SUMMARY

This paper presents an application of multiple tuned mass dampers (MTMDs) with non-linear damping
devices to suppress man-induced vibrations of a 34m long pedestrian bridge. The damping force gener-
ated by each of these damping devices is simply a drag force from liquid acting on an immersed section.
The quadratic non-linear property of these devices was directly determined from free vibration tests of
a simple laboratory set-up. Dynamic models of the bridge and pedestrian loads were constructed for
numerical investigation based on �eld measurement data. The control e�ectiveness of non-linear MT-
MDs was examined along with its sensitivity against estimation errors in the bridge’s natural frequency
and magnitude of pedestrian load. The numerical results indicated that the optimum non-linear MTMD
system was as e�ective and robust as its linear counterpart. Then, a six-unit non-linear MTMD system
was designed, constructed, and installed on the bridge. Field measurements after the installation con-
�rmed the e�ectiveness of non-linear MTMDs, and the measurement results were in good agreement
with numerical predictions. After the installation, the average damping ratio of the bridge was raised
from 0.005 to 0.036 and the maximum bridge accelerations measured during walking tests were reduced
from about 0.80–1:30 ms−2 to 0.27–0:40 ms−2, which were within an acceptable range. Copyright ?
2003 John Wiley & Sons, Ltd.

KEY WORDS: multiple tuned mass dampers; non-linear damping; pedestrian bridge; man-induced
vibration

INTRODUCTION

After the pioneering work on the optimal design of tuned mass dampers (TMDs) by Den
Hartog in 1956 [1], there has been a considerable amount of subsequent research studies
conducted on both the theory and practice of vibration control using TMDs. A recent extension
of this original concept to the use of multiple tuned mass dampers (MTMDs), where the
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natural frequencies of TMDs are distributed over a frequency range, has shown a possibility
to achieve superior control e�ectiveness and robustness compared to those of a single TMD of
equal total mass [2; 3]. Several studies have been made to identify the optimal parameters for
MTMDs [4; 5], and there have already been a few cases where TMDs were used to suppress
vibrations in civil engineering structures [6].
So far, MTMDs have been generally considered to have linear dynamic properties, where

each TMD unit can be modelled as a linear single-degree-of-freedom system consisting of a
mass unit, a linear spring element, and a linear damper unit. Accordingly, the damping force
generated by the damper unit must be in linear proportion to the relative velocity between the
TMD’s mass and the main structure. In practice, this linear damping force can be developed
by the viscous force acting on the shear surface of a device immersed in high viscosity �uid.
In this way, the viscosity of the �uid must be kept constant (or nearly constant) over the
expected service life of the damper. This is sometimes di�cult to achieve because viscosity
is a �uid property that is quite sensitive to changes in temperature and, in many cases, can
be a�ected by some chemical reactions of the �uid to the surrounding environment.
It has been shown that the vibration control e�ectiveness of MTMDs is quite stable over

a wide range of their damping ratios, and the optimal damping ratios are much lower than
that of a single TMD of equal total mass [3]. This indicates a possibility of using damping
devices that are not necessarily linear, as long as their ‘equivalent damping ratios’ lie within
such an e�ective range. Therefore, instead of using viscous shear force, it may be easier to
use pressure-induced drag force, which is produced by dynamic �uid pressure acting on the
surface of a moving immersed section. This type of drag force is not linear; its magnitude is
in proportion to the square of the motion velocity, i.e. a quadratic non-linearity. The propor-
tional constant depends on the �uid mass density and the geometry of the immersed section.
Su�cient drag force can be easily obtained even with the use of low viscosity �uid such as
water. Moreover, the non-linear characteristic of the drag force is quite stable because the
�uid mass density, unlike the viscosity, is not sensitive to changes in temperature and other
physical and chemical factors. Therefore, damping devices based on pressure-induced drag
force can be constructed at relatively low cost, its characteristic can be maintained over a
longer period of time, and its �uid can be easily replaced.
For this reason, this paper presents a new concept of a simple damping device with such

non-linear damping characteristic for a MTMD system. The introduced damping device is
aimed to be more practical in terms of fabrication and maintenance than the conventional
one. In this study, experiments were done in a simple laboratory set-up to investigate non-
linear damping characteristics of the damping device �rst, then the model set-up was applied
for constructing a non-linear MTMD system. Numerical analyses were carried out to identify
optimal parameters and compare the control performances of the proposed non-linear MT-
MDs with those of linear MTMDs and a single TMD of equal total mass. Finally, the real
application of the designed non-linear MTMDs was made on a pedestrian bridge in order to
suppress the vertical vibration due to human walking.

NON-LINEAR DAMPER

As mentioned earlier, there are generally two types of forces acting on a moving section in
�uid: viscous shear force and pressure-induced force. The viscous shear force results from
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Figure 1. Schematic assembly of TMD unit.

integrating the �uid shear stresses throughout the entire surface, while the pressure-induced
force results from integrating the �uid normal stresses over the same surface area. The mag-
nitude of viscous shear force is in linear proportion to the velocity of the moving section,
while the pressure-induced force is in linear proportion to the square of the velocity.
The moving section chosen in this study is a thin �at plate with its plane placed perpendic-

ular to the direction of the motion as shown in Figure 1. With this con�guration, the viscous
shear force is minimized and can be neglected when compared with the pressure-induced
force. Hence, the damping force generated by this device, denoted by fD, is approximately
equal to the pressure-induced force:

fD =�|u̇|u̇ (1)

where u̇ is the velocity of the moving plate and � is a non-linear damping constant:

�= 1
2 �ACd (2)

where � is the �uid mass density, A is the area of the plate, and Cd is a sectional constant
known as drag coe�cient.
If the plate moves at a constant velocity in �uid, Cd can be set equal to the drag coe�cient

of the plate section in steady �ow, the value of which can be obtained from a large number
of published experimental results in �uid dynamics. But in this case, the plate oscillates in
the �uid, and the �uid �ow around the oscillatory section is unsteady. It was considered
that it would be more reliable to determine �, instead of Cd, directly from simple physical
experiments.
A simple experimental model as shown in Figure 1 was set up for this purpose. The model

was later used as a non-linear TMD unit. The model consists of a set of mass-springs with
a speci�c frequency and a thin plate immersed in water. To evaluate �, free vibration tests
were conducted, and the measured responses were compared with the response from numerical
simulations of a single-degree-of-freedom system with the non-linear damping force model in
Equation (1). The ratio of measured amplitudes of two adjacent cycles in terms of damping
ratio, (1=2�) ln(Ar=Ar+1), was plotted against the amplitude of the rth cycle, Ar , as shown in
Figure 2. The result from the numerically simulated response with an assumed value of � is
also presented in the �gure as a solid line. The value of � that gave the smallest discrepancy
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Figure 2. Amplitude-dependent characteristics of the quadratic non-linear damper.

between the results from the test and the simulation was taken as the non-linear damping
constant to be used in the following analysis.
In the small amplitude range, the test result deviates from simulation by some degrees

because of the e�ects of the Reynold’s number [7] and some sources of experimental errors.
However, in the large amplitude range, which is the working condition of TMDs at the desired
performance, the discrepancies are so small that the reliable value of � can be determined.
Apart from water, other types of �uid with di�erent mass density and viscosity such as
glycerin and silicone oil were also tested by following the same procedure. Their results
were similar to the case of water, and the obtained non-linear damping constant � varied in
linear proportion to the mass density as described by Equation (2). Water was �nally selected
because it is easy to procure and its cost is negligibly low.

MODEL FORMULATION FOR STRUCTURE-MTMD SYSTEMS

A model of a single degree-of-freedom structure attached by n TMD units as shown in
Figure 3 is considered. This model can be used for examining the e�ectiveness of MTMDs
in suppressing a speci�c vibration mode of the main structure. The equations of motion of
the system can be formulated in a matrix form as:

M �u+Cu̇+Ku= p (3)

where

u=[uS; u1; u2; : : : ; un]T (4)

and

p=[p(t); 0; 0; : : : ; 0]T (5)
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Figure 3. Structure with MTMDs.

( )̇ and (�) signify the �rst- and second-order partial derivatives with respect to time t, u is
the displacement, and p(t) is the external force. The subscript ‘S’ indicates that the quantity
belongs to the main structure, while the subscript ‘i’ is for the ith TMD, where i = 1; 2; : : : ; n.
The mass matrix, M, and the sti�ness matrix, K, can be derived as

M=




mS 0 0 : : : 0

0 m1 0 : : : 0

0 0 m2 : : : 0

: : : : : : : : : : : : : : :

0 0 0 : : : mn




(6)

K=




kS +
n∑
i=1
ki −k1 −k2 : : : −kn

−k1 k1 0 : : : 0

−k2 0 k2 : : : 0

: : : : : : : : : : : : : : :

−kn 0 0 : : : kn




(7)

For MTMDs with linear damping properties, the damping matrix, C, is given by

C=




cS +
n∑
i=1
ci −c1 −c2 : : : −cn

−c1 c1 0 : : : 0

−c2 0 c2 : : : 0

: : : : : : : : : : : : : : :

−cn 0 0 : : : cn




(8)
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Figure 4. The distribution of TMDs’ frequency.

Alternatively, for MTMDs with quadratic non-linear damping devices, the damping matrix
becomes

C(u̇)=




cS +
n∑
i=1
�i|u̇i − u̇S| −�1|u̇1 − u̇S| −�2|u̇2 − u̇S| : : : −�n|u̇n − u̇S|

−�1|u̇1 − u̇S| �1|u̇1 − u̇S| 0 : : : 0
−�2|u̇2 − u̇S| 0 �2|u̇2 − u̇S| : : : 0

: : : : : : : : : : : : : : :

−�n|u̇n − u̇S| 0 0 : : : �n|u̇n − u̇S|




(9)

where m, k and c are mass, sti�ness and linear damping coe�cients of each degree-of-freedom,
respectively.
The matrix equation of Equation (3) can be solved numerically to obtain the response of

the system. The numerical integration in this study employs the linear acceleration assumption
with Wilson-� modi�cation [8]. The time step for the integration was set to 2% of the natural
period of the main structure in order to reduce the arti�cial damping and period elongation
e�ects from the numerical scheme.
To facilitate the following investigation on the performance of MTMDs, non-dimension

parameters of the ith TMD are de�ned as mass ratio, �i, tuning ratio, �i, and damping ratio
(for linear TMD), �i.

�i=
mi
mS
; �i=

!i
!S
; �i=

ci
2mi!i

(10)

where !=
√
k=m is the circular natural frequency. In the case of non-linear MTMDs, the

parameter �i is used directly in the analysis.
Owing to some practical constraints, the scope of investigation is limited to cases where

1. The number of TMD units is six.
2. All non-linear damping constants, �i for i=1; 2; : : : ; n, are identical.
3. All linear damping ratios, �i for i=1; 2; : : : ; n, are identical.
4. All TMD units have identical spring sti�ness.
5. The masses of TMD units are di�erent from each other, but the total mass ratio,

∑6
i=1 �i,

is 0.01.
6. The masses are set such that the natural frequencies of TMD units are distributed with
equal spacing in the neighbourhood of the structural natural frequency. The distribution
band of frequency ratios of MTMDs is ��. The central frequency ratio, �0 de�ned as
(�1 + �6)=2, expresses the o�set of the centre of �� from 1.0 as shown in Figure 4.
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Figure 5. Steel frame alignment of the Jatujak pedestrian bridge.

NUMERICAL INVESTIGATION FOR A PEDESTRIAN BRIDGE PROBLEM

An application of MTMDs to suppress man-induced vibrations of a pedestrian bridge
was numerically investigated. The investigation employed the structure-MTMD model
formulated in the previous section. To ensure that the model will truly represent the
vibration problem, important physical and dynamic properties of the bridge, as well as
key characteristics of human walking loads, were directly identi�ed from �eld
measurements.
The pedestrian bridge selected in this study is located at Jatujak weekend market in

Bangkok, Thailand. The bridge was found to vibrate strongly in the vertical direction, and the
vibration caused alarm to pedestrians. The bridge structure is a steel truss simply supported
on rigid concrete piers as shown in Figure 5. The span length is 33:6 m and the width is
2:4m. Its mass and e�ective �exural rigidity are approximately uniform over the entire span.
The mass per unit length is about 1100kgm−1. The bridge can be modelled as a uniform sim-
ple span beam, and its dynamic response can be su�ciently represented by the fundamental
vibration mode with a half-cycle sine shape. Therefore, the corresponding �rst modal mass,
mS, is about 18 500 kg.
During the time when there were no pedestrians, free vibration tests were carried out, and

the vertical acceleration response at the mid-span of the bridge was measured and recorded
by three piezoresistive accelerometers and a 12-bits portable data acquisition system. The
fundamental frequency computed from the records was found to be 2:00Hz and the damping
ratio was about 0.005.
Characteristics of the pedestrian loads were identi�ed from direct observation conducted

during peak time on a weekend. From this study, the average pacing rate and forward ve-
locity of pedestrians were estimated to be 1:83 Hz and 1:11 ms−1, respectively. The arrival
time of pedestrians was found to be random. The number of pedestrians arriving on the
bridge during each 15 s time interval was counted and the statistical distribution appeared to
resemble a Poisson distribution with an occurrence rate of about 5 pedestrians per 15 s−1 in-
terval as shown in Figure 6. From the average number of pedestrians arriving, walking speed
and bridge span length, the total number of pedestrians simultaneously on the bridge, np, is
about 10.
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Figure 6. Distribution of arrival probability of pedestrians.

The model of the vertical dynamic force, p(t), in Equation (5) of one walking pedestrian
can be mathematically described by a Fourier series [9]:

p(t)=
N∑
j=1

W�j sin(2�jfp t − 	j) (11)

where W is the weight of a pedestrian which is assumed to be 700 N in this study, �j is
the Fourier coe�cient of the jth harmonic, fp is the pacing rate in footfalls s−1 or Hz, 	j is
the phase lag of the jth harmonic relative to the �rst harmonic and N is the total number of
contributing harmonics.
Since the Fourier coe�cient of the �rst harmonic, �1, is much higher than those of other

harmonics (�1 is about 0.4 while �j for j¿1 is about 0.1 or less [9]) and the �rst harmonic
frequency is in the neighbourhood of the fundamental frequency of structure, the loading
series in Equation (11) can be simpli�ed to be only the �rst harmonic.
The loading model of a pedestrian moving across the bridge must include the in�uence of

position of load that changes with time. This in�uence modi�es the steady state harmonic
form of Equation (11). However, in this case, the bridge is quite long so that the estimated
number of cycles of the harmonic pacing force that is required to approximately attain the
steady state response is reached when a pedestrian approaches the mid-span of the bridge. For
the purpose of estimating the maximum bridge response, the moving load from one pedestrian
could be approximately represented by a stationary harmonic load applying at the mid-span
of the bridge.
The aggregate e�ect of more than one pedestrian with the assumed Poisson arrival can be

determined by superimposing stochastically the vibration induced by a single pedestrian [10].
The enhancement factor for multiplying the vibration e�ect caused by a single pedestrian is
approximately equal to the square root of the number of pedestrians simultaneously present
on the bridge, which is 10 pedestrians in this study. Since the system considered is linear,
an equivalent e�ect could be obtained by multiplying the enhancement factor to the load
instead of the response. The �nal model of load can be written for the study of the MTMDs’
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Table I. The optimal TMDs parameter and steady state response (�=0:01).

Case Frequency Damping Max. Max.
DMF ui (cm)

I. Optimal linear TMD �=0:99 �=0:060 12.71 3.02
II. Optimal linear MTMDs �0 = 0:994, ��=0:12 �i=0:021 10.61 7.60
III. Optimal non-linear MTMDs �0 = 0:995, ��=0:12 c=20 N=(ms−2) 11.81 8.12
IV. Selected non-linear MTMDs �0 = 0:990, ��=0:13 c=50 N=(ms−2) 13.14 5.44

Table II. Selected non-linear MTMDs parameters for real application (Case IV).

TMD number Mass Sti�ness Natural frequency Plate section c
(kg) (N=m) (Hz) (cm× cm) (N=(ms−2))

1 35.6 4810 1.85 (10× 10) 50
2 33.6 4810 1.90 (10× 10) 50
3 31.9 4810 1.95 (10× 10) 50
4 30.3 4810 2.01 (10× 10) 50
5 28.7 4810 2.06 (10× 10) 50
6 27.3 4810 2.11 (10× 10) 50

performance as

p(t)=W�1
√
np sin(2�fp t) (12)

The governing equation of the system as in Equation (3), under the loading condition as
in Equation (12), can be numerically integrated to investigate the performance of a single
linear TMD, linear MTMDs and non-linear MTMDs in the range of normal pacing frequency,
1:6 Hz6fp62:4 Hz. For each of these cases, the frequency tuning and damping quantity
that yield the most e�ective control performance (i.e. optimal condition), were identi�ed
numerically. The optimal condition in this case is de�ned as the condition where the maximum
value of the dynamic magni�cation factor (DMF) (the ratio of dynamic response over its static
response) of the main structure is minimum.
The optimal parameters, the maximum DMF and the maximum displacement of TMDs and

MTMDs are shown in Table I. TMDs and MTMDs categories are referred herein as Case I for
optimal linear single TMD, Case II for optimal linear MTMDs and Case III for optimal non-
linear MTMDs. In practice, apart from the control e�ectiveness, the robustness of MTMDs
against estimation error in natural frequency and some other important practical considerations,
such as the allowable stroke length, will have to be taken into account during the design.
Therefore, an additional case (Case IV) of non-linear MTMDs with a slightly wider frequency
ratio band and relatively higher damping was selected where MTMDs’ performances are also
included in Table I and details of their parameters are shown in Table II.
DMF curves for all cases, including the system without TMDs, are plotted against the pacing

frequency normalized by the structural natural frequency as shown in Figure 7. In Case I,
the optimal linear TMD is e�ective, however, because a single unit is required, the system
requires large mass and damper unit, but the TMD’s response is small. The optimal linear
MTMDs in Case II are more e�ective and the units are more compact but their responses are
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Figure 7. The dynamic magni�cation factor of system for varying excitation frequency.

relatively large. It is noticed that the values of the optimal frequency band conform to those
from the previous study [3] and the robustness should be further investigated. The optimal
non-linear MTMDs in Case III are slightly less e�ective than for Case II but they are still
better than in Case I. However, the problem is that the TMDs’ responses are even higher
than those in Case II which may cause di�culty in real practice. The selected non-linear
MTMDs in Case IV are slightly less e�ective than in the other cases. However, the TMDs’
responses are small and, therefore, desirable because higher damping than the optimal value
was selected.
In real situations, the performance of MTMDs can be signi�cantly deteriorated if structural

parameters used in the optimal designs contain some errors. Especially, due to the tuning
requirements, the error in natural frequency of the main structure would be a critical factor.
Therefore, in the following discussion, the robustness of TMDs’ control e�ectiveness against
estimation error in structural natural frequency was studied and the results are shown in
Figure 8. The abscissa is the error from the estimated !S while the ordinate is the maximum
DMF. By widening the total frequency ratio band from the optimal one, the selected non-
linear MTMDs show some extent of improvement on robustness of the system when there is
error in !S estimation.
Another investigation on the change of the e�ectiveness of the non-linear MTMDs when

there is variation in the intensity of pedestrian loads was also studied. From Equation (9), it
is clear that the system damping is generally dependent on the level of response amplitude.
Therefore, under the condition where the excitation level di�ers from that which was used in
the design stage, the corresponding performance of non-linear MTMDs may deteriorate from
the optimal one. To investigate this e�ect, the variation of force magnitude is considered by
multiplying the force p(t) in Equation (12) by a scale factor ranging from 0.5 to 2.0. The
equations of motion in Equation (3) with this modi�ed excitation level were then numerically

Copyright ? 2003 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2003; 32:1117–1131



SUPPRESSION OF MAN-INDUCED VIBRATIONS OF A PEDESTRIAN BRIDGE 1127

 

 

 

0

10

20

30

40

50

60

-10 -5 0 5 10

Error in Bridge's Natural Frequency (%)

M
ax

. D
M

F

Opt. Linear TMD

Opt. Linear MTMD

Opt. Nonl. MTMD

Select Nonl. MTMD

Figure 8. Robustness of TMDs against estimation error in structural natural frequency.

10

100

1000

0.5 1 1.5 2
Scale Factor of Force Magnitude

Pe
ak

 A
cc

el
er

at
io

n 
(g

al
)

No TMD
Opt. Linear TMD
Opt. Linear MTMD
Opt. Nonl. MTMD
Select Nonl. MTMD

BS5400 Acceptance Criteria

Figure 9. Acceleration amplitude of structure under various force intensity.

integrated again. In the case of no error in !S estimation, the abscissa in Figure 9 is the
scale factor where the ordinate is the peak acceleration of the bridge. The results show that
there is no signi�cant deterioration of the non-linear MTMDs’ performance. It is noted here
that from British Standard BS5400, the upper bound acceleration amplitude for the pedestrian
bridge with 2 Hz natural frequency is about 0:7 ms−2 [11]. Although this limit is stated for
a bridge excited by one pedestrian and no allowance is made for multiple random arrivals
of pedestrians, the condition is included in Figure 9 for only approximate comparison. The
vibration amplitudes of the structure with MTMDs under service conditions can be successfully
reduced in comparison with the human acceptance criteria and better MTMDs performance
can be achieved further by increasing mass ratio.
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Figure 10. Non-linear MTMDs on a pedestrian bridge.

FIELD EXPERIMENTS

The non-linear MTMDs with the selected parameters in Table II were assembled and tested
for its dynamic properties, then they were installed at the mid-span of the bridge, 3 units
at each side, as shown in Figure 10. Free vibration and forced vibration tests by a sin-
gle pedestrian were carried out in order to evaluate the performance of the non-linear
MTMDs.

Free vibration tests

A number of free vibration tests of the bridge with and without non-linear MTMDs were
conducted to determine the average damping ratio. The statistical average results within the
expected vibration amplitude range show that, with non-linear MTMDs, the structural damping
ratio was 0.036 compared with 0.005 obtained without MTMDs at the same amplitude range.
Figure 11 shows the free vibration response at mid-span of the bridge. The results from the
�eld tests, Figure 11(a), are in accordance with the results from numerical simulation as
shown in Figure 11(b).

Forced vibration tests

Forced vibration tests were carried out by a 780 N weight pedestrian walking across the
bridge with pacing frequency of about 2Hz. In order to clearly investigate the vibrations, the
testing pedestrian walked with exaggerated motion in the vertical direction in order to induce
higher dynamic vertical force than a normal walking characteristic. After several practices,
this testing pedestrian was able to produce almost the same walking pattern. The acceleration
at the mid-span was measured and compared with the response from the assumed model of
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Figure 11. Free vibration record at mid-span of the bridge with MTMDs; (a) �eld
measurement, (b) numerical simulation.
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Figure 12. Response at mid-span of the bridge without MTMDs caused by a single
pedestrian; (a) �eld measurement, (b) numerical simulation.

modal force for one pedestrian, p∗(t) as

p∗(t)= �∗1W sin(2�f∗
p t) sin

(
�vst
L

)
(13)

The sine function in the second term results from the pedestrian position moving along
the bridge. L is the bridge span length and vs is the velocity of the pedestrian which was
kept identical for all tests. Since the walking test was not natural, �∗1 and f

∗
1 , which are

the coe�cients for the �rst harmonic and the pacing frequency of this walking test condi-
tion, respectively, were estimated by �tting the results from numerical simulation to �eld
measurement. The obtained values were �∗1 = 0:75 and f

∗
p = 1:95 Hz. The time history re-

sponses at the mid-span of the bridge without MTMDs are shown in Figure 12(a) for �eld
measurement and Figure 12(b) for numerical simulation. For the bridge with non-linear MT-
MDs, the �eld measurement acceleration at mid-span of the bridge and the corresponding
acceleration of the third TMD are shown in Figure 13(a) and (b), respectively, while those
for numerical simulation are shown in Figure 14(a) and (b), respectively. The results from
�eld measurement clearly indicate the e�ectiveness of non-linear MTMDs and these are in
good agreement with the numerical simulation of the system model. After repeating a number
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Figure 13. Field measurement acceleration caused by a single pedestrian; (a) at mid-span
of the bridge with MTMDs, (b) at the third TMD.
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Figure 14. Numerical simulation of acceleration caused by a single pedestrian; (a) at
mid-span of the bridge with MTMDs, (b) at the third TMD.

of walking tests, the results show that the maximum accelerations at mid-span of the bridge
without MTMDs were in the range of 0.80–1:30ms−2. After the installation of non-linear MT-
MDs, the accelerations were reduced to 0.27–0:40 ms−2, which were within the acceptance
criteria [11].

CONCLUSIONS

From the outstanding features of MTMDs such as the control performance being quite stable
over a wide range of their damping ratios, and the optimal damping ratios are small, a
new concept of a practical damping device for MTMDs system is presented in this paper.
The damping force is quadratic non-linear generated from drag force acting on a thin plate
immersed in water. The mechanism of this damper is simple so that it can be constructed at a
relatively low cost. Its characteristic can be maintained over a longer period of time, and water
can be easily replaced. The results from the numerical study revealed that their e�ectiveness
and robustness were similar to those of the linear MTMDs. The validity was checked by
the real installation of the non-linear MTMDs on a pedestrian bridge to control man-induced
vibration. The tested results were in good agreement with the results from the numerical study
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and they show satisfactory performance in vibration reduction. From a practical point of view
and its e�ective performance, the proposed damper may give an alternative solution for a
simple MTMDs’ application to suppress vibration problems.
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