Part One Introduction to Welded Construction 1.1 INTRODUCTION 2.1 Properties of Materials 22 Properties of Sections **Built-Up Tension Members** 2.3 24 Analysis of Bending 2.5 Part Two Deflection by Bending 2.6 Shear Deflection in Beams LOAD & STRESS 27 Deflection of Curved Beams **ANALYSIS** Designing for Impact Loads 2.8 Designing for Fatigue Loads 2.9 2.10 Designing for Torsional Loading Analysis of Combined Stresses 2.11 2.12 **Buckling of Plates** Analysis of Compression 3.1 3.2 Design of Compression Members Part Three 3.3 Column Bases COLUMN-RELATED 3.4 Column Splices DESIGN 3.5 **Bearing-Pin Connections** Designing Built-Up Columns 3.6 Welded Plate Girders for Buildings 4.1 Efficient Plate Girders 4.2 4.3 Welded Plate Girders for Bridges Bridge Plate Girders with Variable Depth 4.4 Girders on a Horizontal Curve 4.5 **Tapered Girders** 4.6 Open-Web Expanded Beams and Girders 4.7 Part Four Shear Attachments for Composite Construction—Buildings 4.8 GIRDER-RELATED Shear Attachments for Composite DESIGN Construction—Bridges 4.9 Floor Systems for Bridges 4.10 4.11 Orthotropic Bridge Decks Fabrication of Plate Girders and Cover-Plated Beams 4.12 Field Welding of Buildings 4.13 Field Welding of Bridges 4.14

CONTENTS

Part Five WELDED-CONNECTION DESIGN

Beam-to-Column Connections	5.1
Flexible Seat Angles	5.2
Stiffened Seat Brackets	5.3
Web Framing Angles	5.4
Top Connecting Plates for	
Simple Beams and Wind Bracing	5.5
Top Connecting Plates for	
Semi-Rigid Connections	5.6
Beam-to-Column Continuous Connections	5.7
Beam-to-Girder Continuous Connections	5.8
Design of Trusses	5.9
Connections for Tubular Connections	5.10
Rigid-Frame Knees (Elastic Design)	5.11
Welded Connections for Plastic Design	5.12
Welded Connections for Vierendeel Trusses	5.13

Part Six MISCELLANEOUS STRUCTURE DESIGN

Design of Rigid	Frames (Elastic De:	sign) 6	.1
Open Web Bar	Joists	6	.2
Reinforcing Bars		. 6	.3
How to Stiffen o	r Panel	- 6	.4
Tanks, Bins and	Hoppers	6	.5
Design of Hange	ers and Supports	6	.6

Part Seven JOINT DESIGN AND PRODUCTION

Welded Construction	7.1
Weldability and Welding Procedure	7.2
Joint Design	7.3
Determining Weld Size	7.4
Estimating Welding Cost	7.5
Welding on Existing Structures	7.6
Control of Shrinkage and Distortion	7.7
Painting & Corrosion of Welded Structures	7.8

Part Eight REFERENCE DESIGN FORMULAS

			1.67														
ú.			1			4	1		ulc						8.	1	
				SUF													
Ş,	F		AA.		L.,						Fo				8.		
		ш.	100				igi:		Mar.	W -	10	1111			ο.	-	
			4														