1
Handling, Erection and
Bracing of Wood Trusses
Follow these guidelines for safe installation of Wood Trusses.
These guidelines should not be considered to be the only method for erecting and bracing of a roof
system. TPIC disclaims any responsibility fo
r damages arising from the use, application or reliance on
these guidelines.
1.
Check Trusses
, while they are on the ground.
a)
Count trusses to ensure that you have the correct number for the job.
b)
Measure trusses for the correct pitch, span and any special det
ails.
c)
Check for damage, broken members, loose plates, etc.
2.
Erection Procedure,
a)
Mark the bearing plates on both walls to the required spacing of trusses,
(Normally 24” O/C).
b)
Hoist the trusses to the roof level, taking care not to bend or twist the trusses.
c)
If interior walls are available, trusses may be laid flat.
d)
If no partitions exist, trusses shorter than 32’ may be inverted and hung from the bearing
plates.
e)
Erect Gable or End trusses and install braces to prevent lateral movement,
(See Figure below).
f)
Ru
n a string from heel to heel of the end trusses to be used as a guide line.
g)
Erect trusses using string to locate heels. Brace each truss as it is erected.
h)
Trusses may be marked at one end. Place trusses so that all marked ends are on the same
side of the b
uilding.
i)
When flat trusses are used, ensure that they are installed with the proper side up.
j)
Install temporary bracing with sufficient X
-
bracing to prevent trusses from buckling
or toppling over. Install permanent bracing.
k)
Complete roof by installing roof
decking, gable end ladders, etc.
Always provide horizontal restraint for the Top Chords
2
3.
Handling Recommendations
Trusses must be in the vertical plane to take advantage of their superior ability to support loads.
The truss erector or the builde
r shall take the necessary precautions to ensure that erection
procedures and handling methods do not damage the trusses and thus reduce their load
carrying capacity.
4.
Mechanical Handling
Ideally when mechanical means are used, the trusses should be lift
ed in banded sets and lowered
onto supports.
When this method is used, extreme caution must be exercised when breaking the metal
straps. Trusses may domino, lose lateral stability, or totally collapse, if temporary braces
and supports are not in place befo
re releasing the banding.
Lifting trusses singly should be avoided, but if necessary an appropriate spreader bar should be
used with slings of sufficient strength and placed in a “toed
-
in” position. The “toed
-
in” position
will prevent the truss from foldi
ng.
If erectors have any doubt, contact the truss supplier immediately.
For spans of 20 feet or less, a single pick up point may be used to lift the truss. A tag line should be used
whenever a truss is lifted to avoid having it swing and do damage.
3
Trusses up to 30 feet in length should be lifted using two pick up points located so that the distance
between them is approximately one
-
half the length of the truss. The angle between the two cables should
be 60 degrees or less to reduce the tende
ncy for the truss to buckle laterally during the lift. A tag line
should be fastened to one end to prevent the truss from swinging and causing damage to other parts of the
work or to the truss itself.
A spreader bar and short cable slings should be
used to lift trusses in the 30 to 60 foot range. The cable
slings may be vertical but it is recommended that they be “toed
-
in” to prevent the truss from folding
during the lift. Two tag lines should be used to control the raining of trusses of this size.
Trusses above 60 feet in length should be lifted with a strongback 2/3 to 3/4 the length of the truss. The
truss should be securely tied to it at 10 foot intervals or less. For flat trusses, the strongback should be tied
to the top chord. Pitched trus
ses should be positioned high enough on the strongback to prevent
overturning of the truss. Two tag lines should be used to control the truss during lifting.
4
5.
Vertical and Lateral Alignment
ALL TRUSSES ARE LATERALLY UNSTABLE
until properly braced. The lo
nger the span the more
care required. Adequate restraint is necessary at all stages of construction.
COMPLETE STABILITY
is not achieved until the bracing and decking is completely installed and
properly fastened.
ERECTION, BRACING AND PROCEDURES
as well
as the safety of the workers are the
responsibility of the erector.
PROBLEMS MAY OCCUR
in attempts to realign trusses. Align each truss and place it permanently in
position before it is connected to the bracing system. Once there is a load, even from the
weight of the
truss itself, large lateral forces are developed by attempts to realign the trusses. This may break the
bracing system.
When properly aligned,
each top chord should
not vary more than 1/2 inch f
rom a straight line.
Out
-
of
-
plumb installation tolerances
5
THE BRACING SYSTEM
should provide
COLLAPSE CAN EASILY OCCUR
without
support at spacings at no farther apart than
a bracing system that will
prevent both horizontal
the drawings show for the bridging. Without
sway (pictured to the left) or roll over (pictured
proper bracing trusses may not support even
above). By rolling on their sides, where they
their own weight.
have no strength, the trusses will break or pull the
ends off the bearings.
DO NOT
permit cutting, drilling or any procedure that may damage the chords or webs.
DO NOT
remove webs (even temorarily).
DO NOT
make field repairs to damaged
trusses without the approval of the manufacturer.
DO NOT
overload single or groups of trusses with plywood, roofing or other construction materials or
tools.
DO NOT
erect damaged trusses. Should a truss or group of trusses fall to the ground or be damage
d what
so ever, do not proceed! Thesite engineer of note must certify that the trusses are satisfactory to erect.
Notify the truss supplier immediately.
6.
Temporary Gable End and Top Chord Bracing
Flat Roof Temporary Bracing
Pi
tched Roof Temporary Bracing
6
7.
Laminating Girders
All girder trusses that require laminating; two plys or more, must be laminated according to the
instructions on the truss design drawings or as per Appendix B, Tables B.1.1, B.1.2, B.1.3, B.1.4 and
B.1.5
of TPIC Truss Design Procedures manual.
8.
Permanent Bracing Specified by the Building Designer
Permanent bracing is designed and specified for the structural safety of the building. It is the
responsibility of the building designer or an authority othe
r than the truss designer to indicate size,
location and attachments for all permanent bracing. Typical applications of permanent bracing to be
specified by the building designer are as follows:
a)
Top chord bracing:
If purlins are used, it is recommended th
at diagonal bracing be applied to the underside of
the top chord as shown below.
7
b)
Bottom chord bracing:
This lateral and diagonal bracing is required to maintain the proper truss spacing and to
transfer force due to lateral forces into the side walls, s
hear walls or other resisting
structural elements.
8
c)
Diagonal web bracing:
The diagonal web bracing specified by the building designer is used to hold the trusses in a
vertical position, to maintain the proper spacing, to distribute unequal loading
to adjacent
trusses and to transfer lateral forces to the diaphragms and shear walls.
d)
Anchoring of permanent lateral web bracing:
Permanent lateral bracing similar to that described in Section 9 must be anchored. It is the
responsibility of the buil
ding designer to specify the type of anchor. A typical method of
anchoring the permanent lateral web bracing is illustrated below.
9
9.
Permanent Lateral Bracing Specified by the Truss Designer
a)
All permanent lateral bracing shown on the truss desig
n drawing must be of the size and
grade as specified and must be fastened at the locations shown using the number and size
of nails as specified on the truss design drawing.
b)
Lateral movement of the lateral bracing shall be restrained by permanently instal
ling cross
bracing (as shown in Section 8d) at the ends of each truss run and at intervals not
exceeding 20 feet or as shown on the structural drawings.
c)
If it is not possible to install permanent lateral web bracing as specified on the truss design
drawi
ng or if the truss run is less than three trusses of the same kind, a “T” brace shall be
installed as per the truss design drawing or Appendix C, Table C.1.1, of the TPIC Truss
Design Procedures manual.
10.
Top Chord Sheathing Plane
a)
If plywood sheathing i
s used
, it must be applied with staggered joints and adequate
nailing.
b)
If purlins are used
, spacing should not exceed the design buckling length of the top chord
and should be adequately attached to the top chord.
c)
If Valley Sets, Conventional Framing, Pigg
yback Trusses, etc.,
are installed on top of
the main trusses, the full length of the top chords of these trusses must be restrained by
sheathing or purlins spaced as specified on the structural or truss design drawings. Top
chords of trusses must always b
e restrained from lateral movement.