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To determine the critical value of the load P, it is necessary to find a
relation between the coefficients Gy G, - - - whmh will make expression
(2-36) a minimum. This result is accomplished by making all the
coefficients except one equal to zero, as explained in the preceding article.
This means that the deflection curve of the bar is a simple sine curve, and
if we let a,, be the coefficient different from zero, we obtain

: Y = Gn 8in mTrz Lo » «g)
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where m is an integer. Equatlon (2-37_) gives the critical load P as a
function of m, which represents the number of half sine waves in which the
bar subdivides at buckling and the properties of the beam and of the
foundation. Thus the lowest critical load may occur with m = 1, 2,
3, . . . , depending on the values of the other constants.

In order to determine the value of m which makes Eq. (2-37) a mini-
mum, we begin by considering the special case when 8 equals zero... Then
there is no resisting foundation, and from Eq. (2-37), we see that m must

be taken equal to 1. This is the familiar case of buckling of a bar with’

hinged ends. If 8 is very small, but greater than zero, we must again
take m = 1 in Eq. (2-37). Thus, for a very flexible elastic medium, the
bar buckles without an intermediate. inflection point. By gradually
increasing 8, we finally arrive at a condition where P in Eq. (2-37) is
smaller for m = 2 than for m = 1. At this value of the modulus of the
elastic foundation the buckled bar will have an inflection point at the
middle. The limiting value of the modulus 8 at which the transition
from m = 1 to m = 2 occurs is found from the condition that at this
limiting value of 8 expression (2-37) :should give the same value for P
independently of whether m = 1orm = 2. Thus we obtain
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1 Note that in tlns case the energy method gives exact results.
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For values of § smaller than that given by Eq. (h), the deflection curve
of the buckled bar has no inflection point and m = 1. For 8 somewhat
larger than that given by Eq. (h), there will be an inflection point at the
mlddle and the bar, will be subdivided into two half-waves (m = 2).

By i mcreasmg B, weé obtain conditions in which the number of half-
wavesism = 3, 4, . . To find the value of B at which the number of
half-waves cha,nges from m to m + 1, we proceed as above for m = 1
and m = 2 In this way we obtain the equatlon :
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For given dimensions of the bar and for a glven value of B8, this equation
can be used for determining m, the number of half-waves. Substituting
m in Eq. (2-37), the value of the critical load is obtained. It is seen that
in all cases formula (2-37) can be represented in the form
©El
P, = T ; (2-39)
where a reduced length L is substituted for the actual length [ of the bar.

A series of values of L/!, calculated from Eqgs. (2-37) and (2-38), are given
m Table 2-5 for various values of §I¢/16E1.

TaABLE ,2-5. REDUCED LENG'_I‘H L ror A Bar oN aN Erastic FounpaTiON?

BIY/(16ED) 0 1 3 5 10 15 20 30 40 50 75 100

LN 1 ]0.927|0.819/0.741 | 0.615 04’)37 0.483 | 0.437 | 0.421 | 0.406 | 0.376 | 0.351

BI4/(16ED) | 200 | 300 | 500 | 700 1,060 1,500 (2,000 13,000 4,000 5,000 8,000 |10,000

N 0.2860.263 { 0.2350.214 { 0.195 { 0.179 [ 0.165 { 0.149 | 0.140 | 0.13210.117{ 0.110

1 Note that the table is calculated for »valuea of 814/16EI rather than for Bl4/x*EI.

.As B increases, the number of half-waves also increases. Then, when
1 is neglected in comparison with m, Eq. (2-38) becomes

gt , l ‘ET
m ='m* or E =7 —ﬂ— (2-40)
By substltutmg this value of t,he wave length l/ m in Eq. (2-37), we obtain
- _ 2m™?EIl
p, = 2l (2-41)




