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ridge deck modular roads and bridges.” Civ. Engrg.. ASCE, LATERAL BUCKLING IN CURTAIN WALL SYSTEMS
P_J By Charles D. Clift,' Member, ASCE, and Walter J. Austin,’
K. F.. W. pf. T. J.. and Sanders, W. W, J;. (1987). Fellow, ASCE
e T S » RP Report 293.
ining existing highway bridges. — P ABsTRACT: Recent demand for increasingly complex exterior facades of com-
mercial buildings has driven a need for more efficient high-performance curtain
wall designs. Current codes can be improved by formulations that more closely
parallel required criteria. In this paper, formulas for the elastic lateral buckling
strength of slender monosymmetrical beams that represent curtain wall mullions
with practical loading and supporting conditions have been derived by approximate
energy procedures for four different assumptions of possible glazing restraint. The
equations have been constructed in a general manner so that a large variety of
glazing (bracing) positions is accommodated. Analysis of a typical design situation
indicates that the currently used allowable compressive stresses of the Aluminum
Association Specifications for buildings are extremely conservative for this appli-
cation. Also, a method to experimentally verify the assumed glazing restraint is
presented via the Southwell plot method. Use of the more accurate analyses herein
will result in significant design efficiencies on many curtain wall systems.
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Glass curtain walls consist of large glass panes supported by vertical mul-
lions and horizontal members between mullions. Wind forces on the curtain
walls are transmitted to the building frame at the floor levels by the vertical
mullions. The glazing transmits the wind forces to the mullions and also acts
to restrain lateral-torsional motion of the mullions. The horizontal members
between mullions also may restrain lateral-torsional buckling of the mul-
lions. This paper is concerned with the lateral buckling strength of the long
slender aluminum mullions, and the design of such members. Since there is
practically no literature on the design of curtain wall mullions, most de-
signers make very conservative assumptions.

Approximate analyses are given herein for several different supporting
conditions that approximate minimum and maximum bracing and a realistic
approximation to the restraint afforded by the glazing. For a typical appli-
cation, comparisons arc made of the allowable compressive stress given by
current design procedures with corresponding values derived from the dit-
ferent theoretical analyses. These comparisons show the great influence of
the restraint that may be offered by the glazing. Large increases in the al-
lowable compressive stresses are possible. However, further study including
experimental verification is suggested. .

The cross section of a typical curtain wall mullion system is shown in Fig.
|. The mullion is represented in this paper by a prismatic monosymmetrical
cross section, as in Fig. 2. The horizontal principal axis is denoted as x, the
vertical principal axis as y and the longitudinal centroidal axis as z, forming
T;P??iiéjunain Wall Design and Consulting, Inc., 10450 Brockwood Road, Dallas,

*Prof. Emeritus, Civ. Engrg. Dept., Ricc Univ., P.O. Box 1892, Houston, TX
77251,

Note. Discussion open until March 1, 1990. To extend the closing date one month,
a written request must be filed with the ASCE Manager of Journals. The manuseript
for this paper was submitted for review and possible publication on July 11, 1988.
This paper is part of the Journal of Structural Engineering, Vol. 115. No. 10,
October, 1989. ©ASCE, ISSN 0733-9445/89/0010-2481/$1.00 + $.15 per page.
Paper No. 23951.
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FIG. 1. Typical Curtain Wall Mullion
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FIG. 2. Nomenclature of Mullion Cross Section and Axis System
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FIG. 3. Beam Analysis Model for Curtain Wall

considered as simply supported at the ends. Lateral win
to be static, uniformly distributed loads, as in Fig. 3(a).
bending moment about a horizontal axis is denoted as A
ment diagram is shown in Fig. 3(b). Note that the wi
positive or negative on the glazing plane.

The current state of knowledge of lateral buckling of
in Galambos (1988); this extensive presentation contains
of references. Texts by Timoshenko and Gere (1961),
Galambos (1968) give derivations of basic relationship
solutions, mostly of rectangular or I-shaped cross secti
Trahair (1972) give the first extensive presentation of da
elastic lateral buckling strength of simply supported an
symmetrical beams subjected to uniform and concentr
perimental study on cantilcvers verifies the validity of t

Case |. Minimum BRACING RESTRAINT

Assume first that the mullion of Fig. 2 is not restrainec
but is freestanding. Each span of the two span beam w
mode as for a simply supported beam subjected to the
sponding moment diagram of Fig. 3. A Rayleigh-Ritz .
dure is used.

The general potential energy expression for lateral bt
Masur and Milbradt (1957) is as follows:

A
1
V= 3 j [E1(u")* + ECB") + GI(B')

+ 2MBu" — 2K, M(B'Y’ + waR*)dz

in which E = Young’s modulus of elasticity; G = shear
form torsion constant; C,, = warping torsion constant; /, =
about the y axis, each prime denoting one derivative wit
K, = section constant given by the following expression
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FIG. 3. Beam Analysis Model for Curtain Wall Mullion

considered as simply supported at the ends. Lateral wind loads are assumed
to be static, uniformly distributed loads, as in Fig. 3(a). The corresponding
bending moment about a horizontal axis is denoted as M. The bending mo-
ment diagram is shown in Fig. 3(b). Note that the wind pressure may be
positive or negative on the glazing plane.

The current state of knowledge of lateral buckling of beams is described
in Galambos (1988); this extensive presentation contains a very complete list
of references. Texts by Timoshenko and Gere (1961}, Bleich (1952), and
Galambos (1968) give derivations of basic relationships and many clastic
solutions, mostly of rectangular or I-shaped cross sections. Anderson and
Trahair (1972) give the first extensive presentation of data on the theoretical
elastic lateral buckling strength of simply supported and cantilever mono-
symmetrical beams subjected to uniform and concentrated loads. An ex-
perimental study on cantilevers verifies the validity of the theory.

Case I. Minimum BRACING RESTRAINT

Assume first that the mullion of Fig. 2 is not restrained at all by the glass,
but is freestanding. Each span of the two span beam will have a buckling
mode as for a simply supported beam subjected to the loading and corre-
sponding moment diagram of Fig. 3. A Rayleigh-Ritz approximate proce-
dure is used.

The general potential energy expression for lateral buckling, derived by
Masur and Milbradt (1957) is as follows:

A
1
¥=g J (ELW"Y + EC(B") + GJ(B')

T 2MBY — 2K,M(B')* + wap?ldz

in which E = Young’s modulus of elasticity; G = shear modulus; / = uni-
form torsion constant; C,, = warping torsion constant; /, = moment of inertia
about the y axis, each prime denoting one derivative with respect to z; and
K, = section constant given by the following expression:
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1 3
K,= Y, — ; J PO YA L oo e s s e (1b)
A

x

in which A = area of the cross section. )
For this case of a beam subjected to no lateral forces and with both cnds

“simply supported,” the lateral curvature in Eq. 1a can be eliminated by the

following relation, ¥’ = —BM/EI,, to give the following potential energy
expression

T M
V= 2 J [EC.B") + GJ(B'Y — EL B — 2K, M(B) + waB'ldz ... @

Assume a one-term approximation to the buckling shape

in which B = magnitude coordinate. Minimizing the potential energy with
respect to a variation in B, av/aB = 0, gives Eq. 4.

166 ? EC,,
o\, = == VELGI [:\/53 % 0.1191( L ) + a,} ......... )

1‘__..-
\ GJ

in which

a K\ |EIL
8, = |2 4 0.08877 =2 ) A o2+ ceeener s (5)
A WAREY

The plus sign in front of the second radical in Eq. 4 indicates that the
direction of loading coincides with the positive direction of the y axis; the
minus sign indicates the opposite direction of loading. Note that both K, and
@ may be negative; hence 8, may be negative.

Eq. 4 gives an upper bound. To check the accuracy of Eg. 4, the solution
for a symmetric section, K, = 0, with loading applied at the shear center,
a = 0, and with a wide range of properties was found by finite differcnces
with a large number of divisions so that the answers are accurate. For this
case Eq. 4 reduces to the following:

g . ™ w* EC,
(WA") = 18.2 VEIGJ \/1 e
It was found that the numerical coefficient 18.2 is not constant but varies
slightly with the parameter GJN?/EC,,. The error varies from about 0.5 per-
cent for very small values of the parameter to 2.5 percent for (GJN*/EC.)
= 1,000, a large value. Hence, it appears that Eq. 4 is sufficiently accurate
for design purposes. In general, as noted by Galambos (1968) on p. 106,
the Rayleigh-Ritz procedure applied to lateral buckling problems gives good
results with relatively simple calculations, provided the assumed trial mode
is well chosen.

Caske Il. MipsToRry BRACING

One may wish to consider the restraint afforded by intermediate wall ele-
ments in addition to the supports at the floor levels. Thus, assume the mul-
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hon'is supported at midstory so that it cannot deflec
glazing rqsttaints, it will then buckle into two half-w
may obtain an approximate value for this problem by
the mullion from outer support to midspan as “simply
torsional bu‘ckling. This would be conservative. Thu:
expression is given by Eq. 2, except the limits of int
A/2. Assume a trial buckled shape

2
B =B sin——
A
and minimize the potential energy. One obtains

561 . —— 2 goem

Y

in which

a K
8 = (— - 0.903 —") il
A A

Case lll. ELastic RESTRAINT

cht_ consider that the mullion is elastically restrair
deflection and rotation at the glazing plane that is a .
shear. center. Although a is usually equal to 4, there a
load in which a is not equal to a. Also, it may be note
where the load is applied outside the flanges of the m
plan’c. two restraining forces act: (1) The restraining t
= KB;: and (2) the restraining lateral force resisting lat
point of attachment of the glazing = K., in which i =
of the point of attachment to the glazing. Hence, 7 =

The potential energy expression is given by Eq 8

A
1
Y73 ,( ELGWY + ECARY + GIB'Y + KyB* + K,

- 2K, M(B') + waP’dz

Eq. 8 is the general potential energy expression of Mas)
la, supplemhented by the strain energy of the rotational a
springs = [} (K,B* + K.i')dz/2.

Assume

and

2.
u”=c[sin“_2(§£_lz)
et G ] ST

and minimize with respect to B and C. The approxima
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ihe cross section. )
beam subjected to no lateral forces and .w1'th both ends
the lateral curvature in Eq. la can be eliminated by the
4" = —PM/EI,, to give the following potential energy

4 2
W GJ(B')Z - g— Bz — ZKDM(B')z + WdBZ]dZ ........ (2)

Ln approximation to the buckling shape

tude coordinate. Minimizing the potential energy with
rrlxin B, aV/aB = 0, gives Eq. 4.

= m? ECW) :l
] 2 1 l + —_—— + 8 ,,,,,,,,, (4)
J[i\/8,+0.119 ( X2 GJ 1

_) i im s a9 s A5 WO 45 S )
N GJ

front of the second radical in Eq. 4 indicates that the
icoincides with the positive direction of the y axis; the
Ithe opposite direction of loading. Note that both K, and
nence &, may be negative. _
ver bound. To check the accuracy of Eq. 4, the solution
ion, K, = 0, with loading applied at tpe. shcgr center,
‘vide range of properties was found by finite differences
" divisions so that the answers are accurate. For this
he following:
w EC,,
1+ —
A GJ
le numerical coefficient 18.2 is not constant but varies
mmeter GJA?/EC,. The error varies from about 02.5 per-
walues of the parameter to 2.5 percent ‘fqr (GJN*/EC,)
ne. Hence, it appears that Eq. 4 is sufficiently accurate
| In general, as noted by Galambos (1968) on p. 106,
beedure applied to lateral buckling problems gives good
'y simple calculations, provided the assumed trial mode

|
|
* BRACING
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consider the restraint afforded by intermediate wall ele-
ithe supports at the floor levels. Thus, assume the mul-
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lion is supported at midstory so that it cannot deflect laterally. Neglecting
glazing restraints, it will then buckle into two half-waves in the story. One
may obtain an approximate value for this problem by considering in Fig. 3
the mullion from outer support to midspan as “simply supported™ for lateral-
torsional buckling. This would be conservative. Thus, the potential energy

expression is given by Eq. 2, except the limits of integration are from 0 to
A/2. Assume a trial buckled shape

8=Bsi 2nz
= B sin —
A

and minimize the potential energy. One obtains

561 . 41’ EC,,
WA = — VELGI [ £ /8 + 0.0352( 1 + ===} +5,] ... ... 6)
A A GJ

in which

a k)\ [EL
52 s (_ - 0.903 _‘") =
X VAT,

Case lll. ELastic RESTRAINT

Next consider that the mullion is elastically restrained from both lateral
deflection and rotation at the glazing plane that is a distance a below the
shear center. Although a is usually equal to G, there are ways to apply the
load in which a is not equal to 4. Also, it may be noted that there are cases
where the load is applied outside the flanges of the mullion. At the glazing
plane, two restraining forces act: (1) The restraining torque per unit length
= KyB; and (2) the restraining lateral force resisting lateral deflection of the
point of attachment of the glazing = K, &, in which @ = lateral displacement
of the point of attachment to the glazing. Hence, & = u — ap.

The potential energy expression is given by Eq. 8

A
]
V= 5[ [EL") + EC(B") + GJ(B')* + KyB? + K,i* + 2MBu’

= 2KMBY A waBldz (8)

Eq. 8 is the general potential energy expression of Masur and Milbradt, Eq.
la, supplemented by the strain energy of the rotational and lateral restraining
springs = [} (Kop® + K.i")dz/2.

Assume

., [s' mz (3 z l(z)z)] %
W= ST =RlEd s o o v s w o s
" AABA 2\ 58)

and minimize with respect to B and C. The approximations of Eq. 9 were
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i tion will agrec with that of

that when K, and K, vanish, the solu . ¢ o

g:::e[l‘ qu. 4. Tt isn’t possible to arrange the answer u;\ a simple explicit
form. bne obtains the following quadratic equation in w!

i 1 K\ a
wh?)? | /a Ko\ . _ 2 __]
0 = 0.003016 ¢ £l = wh‘[(F + 0.08877 z C, _-_106.9 ——EI), 13
’ 24,4 2
a3 2 3 LAY ... AN (10)
- CI(EC,‘ ;\; + GJ ; + Ky + K_,a) + 378 E[)
in which
R rvas vn s s st s s o v e (11)
C, Tﬂ B e 8 P

For the case where the glazing is attached at the shear center, al Tio?x (often
about correct in practical cases), Eq. 10 gives the following solu

166 R wTEC,, . th"')
WA = —= VELGJ [: (€8 + 0.119C| | + ===+ =
................ (12)
+ CIB,] ......................................

3, is given by Eq. 3. ) . -

chItfl;c: tvcl:rygs.impleytrial deflection functions assymed in Eq.h9 ell.:le :;r\lfzs; ;é)d
ropriate for relatively weak springs, K,. for which Eq. 10 sf ould g g0

Eesults. However, the critical load may be off considerably for strong

ini rings. ' . .
res’:‘l:;:']emi% aslr;o tﬁe possibility that the mulhqn will buck!e into severa]d“;zvs:
at a lower load. To investigate this possibility the mullion is assume
subjected to a uniform moment given by Eq. 13

- B e i s e B e Sh eie st v s S 85 (13
EEWX .........................

The following mode shape is assumed with n half-waves in each span

e s e e st v s v Sovrmnes sy i s e i R (14a)
f = B sin T ............................
and

] v s s s et e T w8 st et o nenll 8 B8 (14b)
u = C sin T 4 e o s s s

The following critical load is obtained:

3.3 Ko A?
128 nm = 1282+C |+£§& 282
WA = === VELGI ) =| n'mds + G z GJ  nnGJ
0.50
K,a*\? K\ K’az)\l)] - n‘ﬂ‘83} .................... (15a)
+ nzqrrzGJ - nA‘IT“EI\- nz-rflGJ'
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in which

Co=1+ - S
- n*nEl,

and

. K, K.\ \a El,
& =[— C‘_, - I == Tarts WU s s se s i s
by n*m'ElL/ N GJ

This simplifies considerably for the case where the gl
center, a = 0.

Case IV. Maximum BRacING RESTRAINT

Finally, consider that the mullion is completely restrz
flection at the glazing plane and is elastically restrainec
— = in Eq. 10, the following equation for the critical

wA(1.289a — 0.08877K, — a)
EC, Ky\*
NGJ

s , 137.8 El,a*

=mwGJH 1+ 7 el et |, e
7w GJ ™ ANGJ

However, this cannot be expected to be very accurate b

previously, the trail deflection function for # is not appr

Therefore, a separate solution was obtained as describe

The potential energy expression for this case is given
0. Obviously

Using a one-term approximation, § = B sin mz/\,
before, one obtains Eq. 18

wA%(0.9112a — @ — 0.08877K,)
w’El,a*

GIN?

wEC,
G\

R ( K,,:G)
=G/ 1 + Ao L e w6 5% g5 g 8
TGS
Note that this is of the same form as Eq. 16.

If Ky were of significant magnitude there is the possibil
would buckle into several waves at the lowest critical
will be shown, the buckling strength for practical mullio
for Ky = 0), there is no need to consider this possibility

Roeder and Assadi (1982) give the exact solution for a
wide flange beam (K, = 0) with the lower flange prev

displacement (a = d/2) by a thin membrane (Ky = 0) an
form moment. They give

n (d? GJ
Mcr = I El. F ECW T o= s 55 vr e ensesmnnions
d\"\4 d

Eq. 18 gives for this beam with 4 = 0
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. and K, vanish, the solution will agree with that of
—nossible to arrange the answer in a simple explicit
lowing quadratic equation in wA®

| /a K, 1 K\ a
wh| (= + 0.08877 = |C, - —— =3
A A 106.9 EI, N
Wkt K 2) St A L 10
H- sa — e e s S
‘ 137.8 . El, G
.......................................... (1)

glazing is attached at the shear center, a = 0 (often
:al cases), Eq. 10 gives the following solution

[ . mEC, K\
4 [(C8) +0.119C, |1 + —— +
L NGI wGT

. 5.

| deflection functions assumed in Eq. 9 are most ap-
[Weak springs, K,, for which Eq. 10 should give good
iritical load may be off considerably for strong lateral

kibility that the mullion will buckle into several waves
restigate this possibility the mullion is assumed to be
moment given by Eq. 13

....................................... (13)
pape is assumed with n half-waves in each span
|
! ......................................... (14a)
evmmmmasncsandi 6 i 35 KRS 15 SRS i sowa (14b)
i
load is obtained:
! 2_2 2
5 EC, A

EI [:l:nzﬂ25§ + Cz(l + n1: + Ke
; N GJ o nPmGl
b/ KaN\ 1"

(m)] — nﬂag} .................... (15a)
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in which
c HK (15b)
b nd‘n-"E[y ..............................................
and
K. KA \a EI
a;‘ = = C3 + s 4 e S e s TR v Wi meeaomon moa A8 B0 (lSC)
A n'w El/\ GJ

This simplifies considerably for the case where the glazing is at the shear
center, a = 0.

Case IV. Maximum BRACING RESTRAINT

Finally, consider that the mullion is completely restrained from lateral de-
flection at the glazing plane and is elastically restrained from rotation. If K,
- » in Eq. 10, the following equation for the critical load is obtained

o\(1.289a — 0.08877K, — a)

EC, i Ko\ 137.8 EI_‘.az)
NG TG w* NGJ

5 w’GJ(l +

However, this cannot be expected to be very accurate because, as explained
previously, the trail deflection function for u is not appropriate for this case.
Therefore, a separate solution was obtained as described below.

The potential energy expression for this case is given by Eq. 8 with & =
0. Obviously

Using a one-term approximation, § = B sin @tz/\, and minimizing, as
before, one obtains Eq. 18

wh0.9112a — @ — 0.08877K,)
w'El,d’ i wEC, m’)
GI\? GJN' w6

= TrzGJ’(l +

Note that this is of the same form as Eq. 16.

If K, were of significant magnitude there is the possibility that the mullion
would buckle into several waves at the lowest critical load. However, as
will be shown, the buckling strength for practical mullions is so high (even
for K, = 0), there is no need to consider this possibility further.

Roeder and Assadi (1982) give the exact solution for a doubly symmetric
wide flange beam (K, = 0) with the lower flange prevented from lateral
displacement (a = d/2) by a thin membrane (K, = 0) and subjected to uni-
form moment. They give

w [(d* GJ
Mo= [T (S B+ EC) + =] oioenieiieiaes 19)
d\c \ 4 d

Eq. 18 gives for this beam with @ = 0
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2 2 d2 G.’
I e [Lz(, El, + EC,‘) + —d—] ...................... (20)
09112 LaN\ 4
The corresponding maximum positive moment is
t fd GJ
9 W), = T +Fc.) +—] ............. @n
M) = 1o (Wh),, = 1.52[&2( 3 El, w :

Thus. the form of this solution is the same as Fh}a exact solutim:n of Fiocdcr
and Aqsadi for uniform moment and the coefficient is substantially larger,
as would be expected.

DesigN COMPARISONS

The monosymmetric beam of Fig. 4 represents a sir;xg)liﬁe;i ?ﬁlhzr azt:;:;
i i i = in. (381 cm). The
s two stories with a story height, X 150 in. o
?5 z:"c]::g:ly at the position of the shear center and hence it 15 assumed th‘:;
the wind load is applied at the shear center. The mullion is assumed to
an extrusion composed of 6063-T6 aluminum.

i ssociation Specifications (1986) )
Alg‘lt?;nt;::r: ?ss;ﬁfcully sup;l))orted against lateral buckling over the center s‘;;:-_
port. Therefore, by Table 3.3.29 the allowable stress at this lf)cau%xl 1snm_
sumed to be 15 ksi (103.4 MPa) in either tension or (:ompres.swné1 ; ca >
itations on compressive stress due to la_itcral buckl_mg are assume ; 2 rﬁ}; nyt
only to the interior portions of the mullion, for which the rpammum o
is 0.0703wA’. For this example only downward forces will be const stres.s
Table 3.3.29 gives the following formula for allowable compressive

in beams, in ksi, for L,/rf = 94

0.20-

FIG. 4. Deslign Example of Mulllon Cross Section Dimensions
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in which L, = unsupported length of compression flang
of gyration about the y axis calculated as though both flan
as the compressive flange. For the given mullion L, =

cm); rf = 0.360 in. (0.914 cm); and (L,/r) = 416. Fo
beam, Eq. 22a gives

F,=0502ksi(346MPa) .................0oiniainn

The Specifications for Aluminum Structures also giw
formula for allowable compression stress in Section 4.9,
22 is replaced by an effective r)f, as follows for load apf
(tension) flange

k nd
effective ¥ = r¥ = 1—"; - [0.50 - \/1.25 +0.15:

in which k, = coefficient = 1 for uniform transverse load
I* = moment of inertia about axis parallel to web; §* =
d = depth of section; and J* = uniform torsion constan
though both flanges were the same as the compression
0.226 in.* (9.41 cm®; §* = 3.07 in.* (50.3 cm’); d = 5..
and J* = 0.0666 in.* (2.77 cm"). Then, by Eq. 23, r
c¢m); and by Eq. 22, F, = 3.45 ksi (23.8 MPa).

Thus, the allowable compressive stress by this provision
than that given by the provision of Section 3.4.11.

Case I. No Bracing Restraint

The critical value of wA” is given by Eq. 4, in which fc
of Fig. 4, I, = 0.563 in.” (23.4 cm*); G = 0.385E; E = |
MPa); J = 0.0429 in.* (1.79 cm*); C, = 2.250 in.® (60
1.450 in. (3.68 cm). One obtains (w\%),, = 384 in.-kip |
the corresponding maximum positive moment = (M+) 1
= 27.0 in.-kip (3.05 kN - m). The corresponding compress
buckling is f. = M/S = 8.58 ksi (59.2 MPa) in which §
cm’). If one applics a factor of safety of 1.65 as is used |
Association formulas for buildings, one obtains the fo
compressive stress for the interior region

Fy = 5.20 ksi (35.8 MPa)

This allowable compressive stress is 10 times larger than
Eq. 22 and 1.5 times larger than the value given using 1
Eq. 23. The Case I analysis neglects all restraint offered |
additional strength results partly from an accurate evaluation
moment variation in Eq. 4 and partly from the approxir
Aluminum Association specification procedure when app
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bf this solution is the same as lh_e exact solutim} of l}oedcr
bniform moment and the coefficient is substantially larger,

sected.

ISONS

i ig. 4 represents a simplified mullion that
n;n fvt::!i :c:tr:r; fhtl:"llgght. A g 150 in. (381 'crr_\). The glazing
. position of the shear center and hence it is assum:i:d thl:
Eapp]ied at the shear center. The mullion is assumed to
mposed of 6063-T6 aluminum.

iati ecifications (1986)

ftsﬁ?o;sgoncd against lateral buckling over the cgn::ari:?;
by Table 3.3.29 the allowable stress at this loca 1%1 ) Ly
ksi (103.4 MPa) in either tension or c:ompres.:;lon(.1 b
pressive stress due to lateral buck!mg are assume 00 ;!1312 n);
jor portions of the mullion, for which the maximum “cll e
tor this example only downward forces will be consi e5 [re_c;s
igives the following formula for allowable compressive

ti, for Ly/r¥ = 94

0a'y 151

] —L =1

2 7,6.-~ —ttte—012"

Design Example of Mullion Cross Sectlon Dimensions
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in which L, = unsupported length of compression flange and »} = radius
of gyration about the y axis calculated as though both flanges were the same
as the compressive flange. For the given mullion Z, = A = 150 in, (381

cm); r¥ = 0.360 in. (0.914 cm); and (Ly/rF) = 416. For this very slender
beam, Eq. 22a gives

F, = 0.502 ksi (3.46 MPa)

The Specifications for Aluminum Structures also give a more accurate
formula for allowable compression stress in Section 4.9, in which ri in Eqg.

22 is replaced by an effective r¥, as follows for load applied to the bottom
(tension) flange

k, I*d ¥ ENE
effective rf = rt = ﬁ F 0.50 + 1.25 + 0.152 F -E (23)

n which &, = coefficient = 1 for uniform transverse load as in this cxample;
I} = moment of inertia about axis parallel to web; §* = section modulus;
d = depth of section; and J* = uniform torsion constant, all computed as
though both flanges were the same as the compression flange. Thus, [} =
0.226 in.* (9.41 cm®); §* = 3.07 in.? (50.3 em’); d = 5.30 in. (13.46 cm);
and /¥ = 0.0666 in.® (2.77 cm®). Then, by Eq. 23, rX = 0.944 in. (2.40
cm); and by Eq. 22, F, = 3.45 ksi (23.8 MPa).

Thus, the allowable compressive stress by this provision is 6.9 times larger
than that given by the provision of Section 3.4.11.

Case I. No Bracing Restraint

The critical value of wA® is given by Eq. 4. in which for the cross section
of Fig. 4, I, = 0.563 in.* (23.4 cm®); G = 0.385E; E = 10,000 ksi (68,950
MPa): J = 0.0429 in.* (1.79 cm®); C, = 2.250 in.® (604 cm®): and K, ==
1.450 in. (3.68 cm). One obtains (wA?),, = 384 in.-kip (43.4 kN -m), and
the corresponding maximum positive moment = (M+) max = 0.0703w\>
=27.0in.-kip (3.05 kN - m). The corresponding compressive stress at elastic
buckling is f. = M/S = 8.58 ksi (59.2 MPa) in which § = 3.15 in.} (51.6
cm'). If one applies a factor of safety of 1.65 as is used for the Alluminum

Association formulas for buildings, one obtains the following allowable
compressive stress for the interior region

F, = 5.20 ksi (35.8 MPa)

This allowable compressive stress is 10 times larger than the value given by
Eq. 22 and 1.5 times larger than the value given using the effective ¥ of
Eq. 23. The Case I analysis neglects all restraint offered by the glazing; the
additional strength results partly from an accurate evaluation of the true bending
moment variation in Eq. 4 and partly from the approximate nature of the
Aluminum Association specification procedure when applied to this case.
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shearing stress = 7 = E

NEQPRENE RUBBER
b

GASKETS

in which & is the width o
ing strain is of the seal, as in Fig. 5(a). The con

=

* (A) ATTACHMENT OF GLAZING TO MULLION

shearing strain = y = L. éﬂ
G " b R v R R

as it is assumed for the seal i =
51§ sheuie al material that G = E/3. The «

m:hich ¢ = height of the seal, Fig. 5(a)

s a conservative assumption assume s.im l

: e fl
cantilever beam. Then the beam displacementp is e

(B) SHEAR DEFORMATION (C) FLEXURAL DEFORMATION

FIG. 5. Glazing Pocket Detail for Modeling Elastic Restraint

Case 1. Midspan Bracing
If an intermediate element prevents lateral displacement at midstory of the

given mullion, the critical load is approximated by Eq. 6, giving (W\),, =
591 in.-kip (66.8 kN m). This gives a maximum positive moment = 416
in.-kip (4.70 kN - m), which corresponds to a critical compressive Stress of
13.2 ksi (91.0 MPa). Again, assuming a factor of safety of 1.65, one obtains

the following allowable stress P/3 3
. A=A +4, == C+2(
F, = 8.00 ksi (55.2 MIPQ) « o v st o 200 iminin a ain i ST ey e n

Thus the intermediate supporting element increased the strength over the
freestanding mullion, Case 1, by a factor of 1.54.

in which /, = moment of inerti
s = ia of seal it wi
The total displacement A is SR S EEEEE

Assuming that a glas ; .
; : $ pane 1s restrainin mulli
total spring stiffness K, is ing the mullion o

Case IIl. Elastic Restraint »_ 2
Small restraints can greatly increase the lateral-torsional buckling strength A
of the aluminum mullions. A reliable estimate of the restraint constants Ky
and K, provided by the glazing is not available. As a very rough estimate
of the minimum elastic restraint, assume that K, = 0 and that K, is provided
by the elasticity of the soft Neoprene seals only as it seems reasonable o
assume that the glass does not move horizontally in its plane.
The attachment of the glass to one side of the mullion is shown in Fig.
5(a). Although the glass is assumed fixed and the mullion moves, it is easier
to visualize the mullion as fixed and the glass as moving, as in Figs. S(h)
and 5(c). The very complex stress-displacement state in the seals is roughly
approximated herein as composed of pure shear and pure flexure. The total =ad=0. . b !
displacement of the glass A is the sum of the displacements due to shex, wave solutio: (:)rf a(l'itszr%]?el'gm N = 130 in., (3B1 cm); 2s |
A,, and flexure, A,. The force per unit length of seal of each glass pancisf = 965 in.-kip (109 kN - m)g“ﬁ‘? the lowest critical load as
denoted as P. Each seal resists one-half of this force. of Case 1. The elastic critic 1 i 2'.51 times larger than
First consider the displacement due to shear. Assume the load P /2 causss compressive yield stren [ha ocfogl(!))g;sswe sttt

uniform shearing stress in the seal. Then Therefore, this case sho%l d fail inel;l;ia?ll;ﬂ;:nubrr; 151%5
about 17.7

Assume as typical dimensions b =
= ¢ = 0.250 in.

gco_prin&r;l;ll:(;{ ur/lder short time loading, £ = ZISO(g%gB(SI'

L= 1, in./in. (788 N/cm/cm). Obvi sly, this is
mate but it should be low since consi : s

stently co i

been made. In the following calculation K| y= lnggtr)v Ia;w_e p
cm) has been assumed. ' ' il

Assume that the central plane of the glazing is at the she:
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Glazing Pocket Detall for Modeling Elastic Restraint

n Bracing ) .
te element prevents lateral displacement at midstory of the

e critical load is appmxima_ted by Eq_. '6, giving ([w: )il .
kN -m). This gives a maximum positive momen 3
- m), which corresponds to a critical compressive striss‘

Pa).’Again, assuming a factor of safety of 1.65, one obtains

pwable stress

......... 25
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:diate supporting element increased the strength over the
ion, Case I, by a factor of 1.54.

Kestraint . _
:can greatly increase the Jateral-torsional buckling strength

i mullions. A reliable estimate of the restraint constaqts l:’,

by the glazing is not available. As a :jrexi*ly tr(;{ugzl ::;Lr:?cs

Elasti i K, = 0 and that K, i

Elastic restraint, assume that K :

iof the soft Neoprene scals only as it se;ems reasonable to

i in its plane.
ss does not move horizontally in its plai o

'gélif the glass to one side of the mullion 1s shown in Fig.

;16 glass is assumed fixed and the mullion moves, |t'|s‘ea551;;

imullion as fixed and the glass as moym{,;;l, a;se all':; E%(s).ugl(ﬂ )
s-displacement state in the s \

Rl e d pure flexure. The total

rein as composed of pure shear and p

Ll;(l:'le glass Apis the sum of the displacements due to shear.

‘A,, The force per unit length of seal of each glass pane is

ach i - his force.

ach seal resists one-half of t

tthe displacement due to shear. Assume the load P /2 causes

g stress in the seal. Then
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P
shearing Stress = T = — ... ... 26)
g Y (

in which & is the width of the seal, as in Fig. 5(a). The corrcsponding shear-
ing strain is

heari train = WMo B e 27}
shearing stramn VB T mmnn I 55 i e e s i e SRR S 5

as it is assumed for the seal material that G = E /3. The displacement due
to shear is then

in which ¢ = height of the seal, Fig. 5(a).

As a conservative assumption assume simple flexure of each seal as a
cantilever beam. Then the beam displacement is

B G
_ 2 2 2pe’

3 " = EbT ................................... (29)
s5(1)

12

in which /, = moment of inertia of seal per unit width.
The total displacement A is

Pf3c !
.\:A.‘.*Abz— *—'1‘2—3
E\2b b

Assuming that a glass pane is restraining the mullion on cach side, the
total spring stiffness K, is

2P 2E

T (3(_ C}) ........................................ (31)
-——+2—_
26 B

Assume as typical dimensions b = ¢ = 0,250 in. (0.635 cm) and for soft
Neoprene rubber under short time loading, E = 2,000 psi (13.8 MPa). Then,
K, = 1,143 Ib/in. /in. (788 N/cm/cm). Obviously, this is a ballpark esti-
mate but it should be low since consistently conservative assumptions have
been made. In the following calculation K, = 1,000 Ib/in. /in. (690 N/cm/
cm) has been assumed.

Assume that the central plane of the glazing is at the shear center; hence,
a=a=0. For a story height A = 150 in. (381 cm); as before, the two-
wave solution of Case III gives the lowest critical load as follows: (wA?),,
=965 in.-kip (109 kN - m). This is 2.51 times larger than the critical load
of Case I. The elastic critical compressive stress is 21.6 ksi (149 MPa). The
compressive yield strength of 6063-T6 aluminum is 25 ksi (172 MPa).
Therefore, this case should fail inelastically at about 17.7 ksi (122 MPa).
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Or using a factor of safety of 1.65 gives the following allowable stress The theory is unquestionably correct for the simpl
i ple s

and a_pplicatipn of the Southwell-type procedures f
lems is described by Trahair (1969) and Attard (198
uct wind pressure times measured displacement ve
ment should be a straight line with the slope equal to
The plot may not be a straight line with the corr
pressure reaches a significant percent of the critic
the strcs.'svstrain behavior must be linear. The meaé
_bc the s‘ldeways displacement of the compression f
imum displacement. Assuming the mullions have s
if in a test one does not measure any progressivel
placement as one increases the load up to the maxin
would be that the maximum is simply nowhere ne
the several tests witnessed by the senior writer, su
the measured displacements have been negligibl}:h T
curtain walls in these tests depended on the ielﬂ ¢
with no lateral buckling tendencies obscrvcdy h

Fy = 107 Kei (T4 MPR). .ocsvevmensmecsssssmsr s ss e (3

This is about three times the value allowed by the Specifications for Al
minum Structures and over twice as much as the suggested allowable stress
for the freestanding beam, Case L

Note that in this example a minimum glazing restraint is assumed as well
as a uniform moment. The true critical load is probably much higher.

Case 1V. Maximum Bracing Restraint

This case assumes that the mullion is completely restrained from lateral
deflection at the glazing plane and elastically restrained from rotation. For
this example assume the glazing is at the shear center and neglect entirely
the rotational restraint. Then @« = a = 0 and Ky = 0. Eq. 18 gives the
following result: (W), = —13,420 in.-kip (= 1,516 kN - m). Thus, the ab-
solute value of wh® is 35 times larger than the value of Case 1. The negative
sign means that the wind force would have to be reversed (suction). This
result shows that if the given mullion is prevented from lateral displacements
by the glazing located at the shear center therc is really no lateral buckling
problem and the allowable stresses do not have to be reduced.

SuMmMARY AND CONCLUSIONS

Formulas for the elastic lateral buckli
metrical bea.ms that represent curtain wl;llrlllg;:.lrﬁ?ogr:
and supporting conditions have been derived by &
cedures for four different assumptions of possibleyelcz
(1) No lz?teral bracing; (2) bracing at midstory only; (
lateral displacement and twisting displacement at th
maximum bracing that completely prevents lateral d
ing Icvc_]. The beams span two stories and are subj
A typical design situation is evaluated. The aliow!
obtained by applying the two Aluminum Asmciat"
fomulas for unbraced beams are shown to t;e ver
lution based upon no lateral bracing leads to an alloy
51% higher than given by AAS. The others are hi
atssqmpnon, the third, with very conservative ass
‘s" ;lali:f leads to an allowable compressive stress abc
Experimental studies performed to verif;
senior author show no progressive displacyerlrjlintlesfg

EXPERIMENTAL STUDIES :,,;ummm bracing restraint by the glazing to prev

Comment

The dramatic difference in results between the regular Aluminum Ass
ciation allowable compressive stress equation, its more precise effective
equation, and an allowable compressive stress based on the minimum pes
sible critical load, Case I, is readily discerned. Case 1 gives an increased
capacity of 51% compared to the effective radius cquation and an increas
of over 900% compared to the regular equation. The contrasts are cven grealz
when comparisons to Cases 11, 111, and IV are made. In Case I1I an attemp
is made to conservatively estimate the clastic restraint offered by the glazing.
This solution gives an increase in the allowable stress over that of Case [
of over 100%.

If the elastic restraint afforded by the glazing can be estimated reliabiyg
and conservatively, it is certain that higher allowable stresses could be us
with great savings of materials. It seems desirable to experimentally evalug
the behavior of curtain wall construction. :

With additional study it should be possible to ¢

The critical buckling strength of the very slender mullions used in curts :
codes that will allow far more economical designs

wall construction is very sensitive to the restraint offered by the glazing. A
discussed, this restraint is difficult to estimate accurately. However, il
presently the industry standard to carry out full-scale structural mock-up d§
ing on new or major curtain wall designs. This provides an excellent i
portunity to collect data that can be used to establish the strength and
havior of the slender mullions. 1
The Southwell plot was originally proposed as a nondestructive procedsg
for extrapolating the elastic critical load of concentrically loaded struts frof
tests in which the load is increased to a fairly high value but not to failu
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The theory is unquestionably correct for the simple strut problem. The theory
and application of the Southwell-type procedures for lateral buckling prob-
lems is described by Trahair (1969) and Attard (1983). The plot of the prod-
uct wind pressure times measured displacement versus measured displace-
ment should be a straight line with the slope equal to the critical wind pressure.
The plot may not be a straight line with the correct slope until the wind
pressure reaches a significant percent of the critical value and, of course,
the stress-strain behavior must be linear. The measured displacement could
be the sideways displacement of the compression flange at a point of max-
imum displacement. Assuming the mullions have some initial crookedness,
if in a test one does not measure any progressively increasing lateral dis-
placement as one increases the load up to the maximum, then the conclusion
would be that the maximum is simply nowhere near the critical value. In
the several tests witnessed by the senior writer, such has been the case, as
the measured displacements have been negligible. The useful strength of the
curtain walls in these tests depended on the yield strength of the mullions,
with no lateral buckling tendencies observed.

SumMARY AND CONCLUSIONS

Formulas for the elastic latcral buckling strength of slender monosym-
metrical beams that represent curtain wall mullions with practical loading
and supporting conditions have been derived by approximate energy pro-
cedures for four different assumptions of possible elastic restraint. These are:
(1) No lateral bracing; (2) bracing at midstory only; (3) elastic restraint against
lateral displacement and twisting displacement at the glazing level; and (4)
maximum bracing that completely prevents lateral displacements at the glaz-
g level. The beams span two stories and are subjected to uniform load.

A typical design situation is evaluated. The allowable compressive stresses
obtzined by applying the two Aluminum Association Specification (AAS)
formulas for unbraced beams are shown to be very conservative. The so-
lution based upon no lateral bracing leads to an allowable compressive stress
51% higher than given by AAS. The others are higher. The most realistic
assumption, the third, with very conservative assumptions of glazing re-
srainit leads to an allowable compressive stress about three times the AAS
value.

Experimental studies performed to verify by test practical designs by the
senior author show no progressive displacement failures and suggest there
is sufficient bracing restraint by the glazing to prevent lateral buckling fail-
vre.

With additional study it should be possible to establish realistic design
codes that will allow far more economical designs than are now possible.
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Appenpix Il. NOTATION

The following symbols are used in this paper:

A = area of cross section of mullion;
a = distance of elastic restraint below shear center;
@ = distance of point of load application below shear center;
B,C = constants in series expressions;
b,c = dimensions of seal;
C, = warping-resistance constant;
d = depth of wide-flange or I section;
E = Young's modulus of elasticity;
F, = allowable design compressive Stress,
f. = maximum compressive stress at elastic buckling;
G = shearing modulus;
I.,I, = moments of inertia about x and y axes, respectively;
J = uniform torsion cross-section constant;
K, = cross-section constant;
Ko, K, = stiffncss constants for rotational and transverse spring sup
ports, respectively;
k, = load coefficient;
L, = unsupported length of compression flange,
M = bending moment about x axis;
n = number of half-waves of buckling displacement;
P = force per unit length of seal;
r, = radius of gyration about y axis of wide flange beam;
r, = effectiver,;
= section modulus for maximum compressive stress for bending
about x axis;
« = horizontal displacement of shear center, a function of z;
Vv = potential energy of slightly displaced system;
w = uniform load;
x,y = principal axes of inertia and Cartesian coordinates;
y, = y coordinate of shear center,
z = longitudinal coordinate;
B = rotation of cross section about shear center, a function of 5
v = shearing strain (t/G);
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