How vioren machine, or 3. c. Arma

Dear Reader,

Unfortunately, errata do occur—particularly in a book of the scope and magnitude of this one. We have printed these errata on dry-back adhesive paper so that all you need do is trim the correct information, moisten it slightly, and press it into place. We apologize for this inconvenience and if you have any questions whatsoever, please write directly to me.

Clayton A. Umbach, Jr. Director, Book Publishing

Design of Structures and Foundations for Vibrating Machines Errata

Page	Line	Reads	Should read
ii \	Figure under "Design"	Z_2,Z_1	Z_1, Z_2 (reversed)
	Figure 1-3 (both axes)	τ	T
7/	19 left	± sin θ	±i sin θ
71,	22 right	v_{\bullet}/m	ν _e /ω _e
	Figure 1-5 top	0.5	0.05
	Figure 1-7 (vertical axis)		remove second (Mr)
19/	Figure 1-29	D = 0.0	D=0.05
,	21 left	$[2C\frac{\omega}{\omega_n}]^2$	$[2D\frac{\omega}{\omega_n}]^2$
	Figure 1-48	add the following:	E = modulus of elasticity I = moment of inertia A = cross-sectional area $\gamma =$ material density
	12 left	35,200	35,250
	16 right	$m_i e \omega^2$	$m_i e \omega_n^2$
	10 left	$(Z_1)^2 \ldots (Z_2)^2$	$(\dot{Z}_1)^2 \dots (\dot{Z}_2)^2$
39	Figure 2-1 bottom	$I_{\dot{f w}}$	I _m
42 🗸	Figure 2-5 right	$\dot{\mathbf{M_r}}$	M
	Figure 2-7 right	k,	k.
43	Figure 2-8 right		note "These equations"
			applies to (a) on left
	Figure 2-10	Z_2,Z_1	Z_1,Z_2 (reversed)
	Figure 3-6 ordinate	AMPLITUDE×10 ³	AMPLITUDE, MM/1,000
55 √ 3	34	add the following:	For definition of f_{nx} , $f_{n\psi}$ see nomenclature on page 98
82 V 5	left	$\sqrt{G_s g}/\gamma_s$	$\sqrt{G_{\epsilon}g/\gamma_{\epsilon}}$
86 V 2		$=6.2 \times 10^6 + 1.2 \times 10^6 = 7.4 \times 10^6$ lb./in.	$= 6.0 \times 10^6 + 1.2 \times 10^6 = 7.2 \times 10^6$ lb./in.
	Equation (5-22)	$G_s r_o h^2 [\ldots$	$G_{r_0}{}^{2}h$
	Equation (5-23)	c_{c}	c_{w}^{i}
	able 6-2 step 4(b)	1,570.2	1,934.3
96 / T	able 6-2 step 4(b)	1,582.1	1,717.6
			-7

Page	Line	Reads	Should Read
97	√37 right	$(1,570.2) = 1,256.2$ rpm and $1.2 f_m = 1,884.2$ rpm.	$(1,934.3) = 1,547.4$ rpm and $1.2 f_m = 2,321.2$
97 ~	41 & 42 right	0.8 $f_m = 0.8$ (1,582.1) = 1,265.7 rpm and 1.2 $f_m = 1.2$ (1,582.1) = 1,898.5 rpm.	0.8 $f_m = 0.8$ (1,717.6) = 1,374.1 rpm and 1.2 $f_m = 1.2$ (1,717.6) = 3061.1 rpm.
106~	bottom right	posts, wo on	posts, two on
107 ✓	5 right	footing mass only	footing only (delete mass)
107√	10,11 reads:	where $k_{22} m_2$ are the spring constant (Table 6-5)	and mass of the foundation block,
	should read:	where k_{z2} (Table 6-5) and m_2 are the foundation block, respectively.	spring constant and mass of the
107		(258.8 vs. 717.5 rpm, respectively). (258.8 vs. 717.5 rpm, Table 6-5, resp	ectively).
119	next to last bottom left	0.868	0.0868
160 -	bottom left	add after $D_w = 0.20$,	H = 17.0 ft
160~	last Equation (A1-4)	$(k_{23}-m_{23}\omega^2)$	$(k_{12}-m_{12}\omega^2)$
	last Equation (A1-5)	$(k_{23}-m_{23}\omega^2)$	$(k_{12}-m_{12}\omega^2)$
164	4 right	3 Σ	3
		Σ = 1	Σ r=1
166	29 right		
		$\frac{a_{rn}}{r}$	$\frac{a_{rn}}{X_r}$
168	Equations (A1 44)	<i>X_n</i>	"
100	Equations (A1-44)	0.0072	0.0011