BEARING LOAD CALCULATIONS

BEARING LOADS DUE TO BEVEL GEARS

The use of straight bevel gears produces thrust, as well as radial loads on bearings. The thrust loads applied at a distance from the shaft axis impose overturn loads on the bearings which also must be considered. The tangential force is obtained from the input horsepower as derived on page 247.

In Fig. I, below, the separating force is derived in terms of the tangential force. The pinion (Gear I) is mounted on the driving shaft A. The vertical component (S_v) of the separating force imposes a radial load on Shaft A. The reaction to S_v imposes a thrust load on the shaft of the mating (driven) gear.

Symbols and Abbreviations

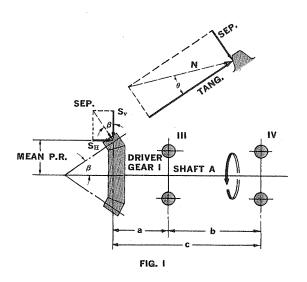
Tang = Tangential Force

N = Normal Force

Sep = Separating Force

S_H = Horizontal Component

of Sep


S_v = Vertical Component

of Sep

 θ = Tooth Pressure

Angle

 β = Bevel Angle

Derivation

(1) Tang = $N \cos \theta$

(2) Sep = $N \sin \theta$

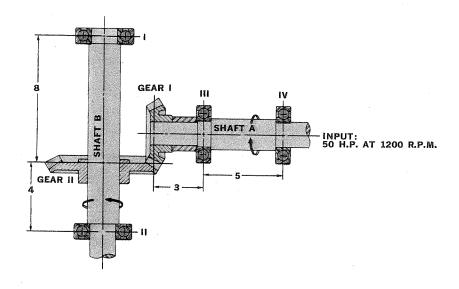
Dividing (2) by (1)

 $\frac{\text{Sep}}{\text{Tang}} = \frac{\text{N sin } \theta}{\text{N cos } \theta} = \tan \theta$

Sep = Tang $\tan \theta$

 $S_v = Sep \cos \beta$

(3) $S_v = \text{Tang tan } \theta \cos \beta$


 $S_H = Sep \sin \beta$

(4) $S_H = Tang \tan \theta \sin \beta$

The table below shows the bearing loads based on Fig. I. These computations assume a right angle drive with the shaft of the driven gear vertical and in the plane of the paper.

		DISTRIBUTION OF FORCES		
FORCES	CALCULATIONS	BEARING III	BEARING IV	
Tangential	Tang. = Torque on Shaft A Mean P.R. Gear I	Tang. × ½ ⊙	Tang. $\times \frac{b}{c} \otimes$	
Separating	$S_{\mathrm{H}} = Tang. \times tan \ \theta \times sin \ \beta$		Thrust →	
	$S_v = Tang$, $ imes$ tan $ heta imes cos\ eta$	$S_v imes rac{b}{c} \uparrow$	$S_y \times \frac{a}{b} \downarrow$	
Overturn Force	$O.T. = \frac{Thrust \times Mean P.R.}{b}$	Overturn ↓	Overturn †	
Total Radial Force	Add According to Arrows	↑ or ↓ And ⊙ or ⊗	↑ or ↓ And ⊙ or ⊗	
Radial Load	√Sum of Squares	$\sqrt{(\uparrow \text{ or } \downarrow)^2 + (\odot \text{ or } \otimes)^2}$	$\sqrt{(\uparrow \text{ or } \downarrow)^2 + (\odot \text{ or } \otimes)^2}$	
Thrust Load	Add Thrust According to Arrows			

TYPICAL BEVEL GEAR CALCULATION

Gear	No. of Teeth	P.D.	Tooth Angle	Bevel Angle	Width of Face
ı	28	4"	20°	33° 41′	11/8"
. 11	42	6"	20°	56° 19′	1 1/8"

 $tan (20^{\circ} + 3^{\circ}) = .424$

sin 33° 41′ = .555

cos 33° 41′ = .832

sin 56° 19' = .832

GEAR I MEAN P.R. = $\frac{1}{2}$ (4 - 1.125 × .555) = 1.688" GEAR II MEAN P.R. = $\frac{1}{2}$ (6 - 1.125 × .832) = 2.532" SHAFT SPEED: SHAFT A = 1200 R.P.M. (GIVEN) SHAFT B = 1200 × $\frac{28}{42}$ = 800 R.P.M.

FORCES	CALCULATIONS	DISTRIBUTION OF FORCES				
		BEARING I	BEARING II	BEARING III	BEARING IV	
Tangential	$\frac{63025 \times 50}{1200 \times 1.688} = 1556$	$\frac{1556 \times 4}{12} = 519 \ \odot$	$\frac{1556 \times 8}{12} = 1037 \odot$	$\frac{1556 \times 8}{5} = 2490 \otimes$	$\frac{1556 \times 3}{5} = 934 \odot$	
Separating -	$1556 \times .424 \times .555 = 366$	$\frac{366 \times 4}{12} = 122 \leftarrow$	$\frac{366 \times 8}{12} = 244 \leftarrow$	1	366 Thrust →	
	1556 × .424 × .832 = 549	Anna 118 from 118 fro	549 Thrust	$\frac{549\times8}{5} = 878^{\circ}\uparrow$	$\frac{549 \times 3}{5} = 329 \downarrow$	
Overturn Force	Thrust × Mean P.R. Brg. Spacing	$\frac{549 \times 2.532}{12} = 116 \rightarrow$	$\frac{549 \times 2.532}{12} = 116 \leftarrow$	$\frac{366 \times 1.688}{5} = 124 \downarrow$	$\frac{366 \times 1.688}{5} = 124 \uparrow$	
Total Radial Force	Summation	519 ⊙ 6←	1037 ⊙ 360←	2490 ⊗ 754↑	934 ⊙ 205↓	
Radial Load	\sqrt{Sum} of Squares	519 lbs.	1098 lbs.	2602 lbs.	956 lbs.	
Thrust Load			549 lbs.	2	366 lbs.	