```
STUDENT > restart;
 STUDENT > Eq1:=Vab=Va-Vb;
                                    Eq1 := Vab = Va - Vb
 STUDENT > Eq2:=Vbc=Vb-Vc;
                                    Eq2 := Vbc = Vb - Vc
 STUDENT > Eq3:=Vca=Vc-Va;
                                    Eq3 := Vca = Vc - Va
 STUDENT > solve({Eq1,Eq2,Eq3},{Va,Vb,Vc});
 STUDENT > # above was meaningless result. System is underdefined.
              Need one more equation.
 STUDENT >
 STUDENT > # Add capacitive balance ungrounded system,
 STUDENT > Eq4:=Va+Vb+Vc=0;
                                   Eq4 := Va + Vb + Vc = 0
 STUDENT > soln:=solve({Eq1,Eq2,Eq4},{Va,Vb,Vc});
              soln := \{ Va = \frac{1}{3} Vbc + \frac{2}{3} Vab, Vb = \frac{1}{3} Vbc - \frac{1}{3} Vab, Vc = -\frac{1}{3} Vab - \frac{2}{3} Vbc \}
 STUDENT > soln[1];
                                     Va = \frac{1}{2}Vbc + \frac{2}{2}Vab
 STUDENT > soln[2];
                                     Vb = \frac{1}{2}Vbc - \frac{1}{2}Vab
 STUDENT > soln[3];
                                    Vc = -\frac{1}{3}Vab - \frac{2}{3}Vbc
 STUDENT > # Rearrange above solutions using Vab+Vbc+Vca=0 which
              (when combined with Eq1, Eq2) is equivalent to Eq3)
 STUDENT >
 STUDENT > soln[1];
                                     Va = \frac{1}{3}Vbc + \frac{2}{3}Vab
 STUDENT > subs(Vab = -Vbc-Vca, soln[2]);
 STUDENT >
                                     Vb = \frac{2}{3}Vbc + \frac{1}{3}Vca
 STUDENT > subs(Vbc = -Vca-Vab, soln[3]);
                                     Vc = \frac{1}{2}Vab + \frac{2}{2}Vca
 STUDENT > # The above 3 equations match the op and arise from
                                           Page 1
                                                                Maple V Release 4 - Student Edition
```

```
equations 1 through 4
[STUDENT >
```