Mechanical equivalents of electricity

$$\begin{array}{ll} \mbox{mass} := kg \\ \mbox{velocity} := \frac{m}{sec} \\ E := mass-velocity^2 & Einstein's definition of energy (E=mc^{A}2) \\ E = 1J & kg \left(\frac{m}{sec}\right)^2 = 1J \\ \hline E = 1J & kg \left(\frac{m}{sec}\right)^2 = 1J \\ \hline \frac{E}{sec} = 1W & Time rate of change of energy is power \\ & \frac{kg}{sec} \left(\frac{m}{sec}\right)^2 = 1W & Equivalent power calculations, thus ohm amp^2 = 1W & \frac{kg m^2}{sec^3} = 1W & Mechanical to Electrical Conversion factors \\ R := \frac{kg}{sec} & mechanical equivalent of resistance & K_R := ohm \frac{sec}{kg} \\ I = \frac{m}{sec} & velocity is the mechanical equivalent of current & K_I := amp \frac{sec}{m} \\ I^2 \cdot R = 1W & V := \sqrt{I^2 \cdot R \cdot R} & the power equation can be manipulated to get voltage \\ V = 1N & V := \frac{kg m}{sec^2} & thus force is equivalent to voltage & K_V := volt \frac{sec^2}{kg m} \\ C := \frac{I}{\left(\frac{V}{sec}\right)} & C = 1 \frac{s^2}{kg} & Use i=Cdv/dt to calculate the capacitance \\ L := \frac{V}{\left(\frac{1}{sec}\right)} & L = 1 kg & Use V = Ldi/dt to calculate the mechanical equivalent of inductance. \\ \sqrt{L \cdot C} = 1 s & sanity check. Good! \\ \sqrt{\frac{L}{C}} \cdot K_R = 1 \Omega & Characteristic impedance sanity check. Good! \\ \end{array}$$

"Interesting" conversions

Magnetic flux	Magnetic field (B)	Current (I)
weber = 1 Wb	tesla = 1 T	amp = 1 A
$volt \cdot sec = 1 Wb$	$\frac{\text{newton}}{\text{amp} \cdot \text{m}} = 1 \text{ T}$	$\frac{\text{coul}}{\text{sec}} = 1 \text{ A}$
tesla $\cdot m^2 = 1 \text{ Wb}$	$\frac{\text{newton} \cdot \text{sec}}{\text{coul} \cdot \text{m}} = 1 \text{ T}$	
$\frac{\text{volt} \cdot \text{sec}}{\text{m}^2} = 1 \text{ T}$	tesla = 1×10^4 gauss	
$coul \cdot ohm = 1 Wb$		

Inductance (H)	Capacitance (F)	Voltage (V)
Sec	Sec	volt = 1 V
$\operatorname{volt} \cdot \frac{\operatorname{see}}{\operatorname{amp}} = 1 \mathrm{H}$	$\operatorname{amp} \cdot \frac{\operatorname{see}}{\operatorname{volt}} = 1 \mathrm{F}$	$\frac{\text{joule}}{\text{coul}} = 1 \text{ V}$
$\frac{Wb}{amp} = 1 H$		$\frac{\text{joule}}{\text{amp·sec}} = 1 \text{ V}$
		$\frac{\text{newton} \cdot \mathbf{m}}{\text{amp} \cdot \text{sec}} = 1 \text{ V}$
		tesla $\cdot \frac{1}{\sec} \cdot m^2 = 1 V$
		tesla·Hz·m ² = 1 V

V

Coulomb

coul = 1 C

 $\operatorname{amp}\operatorname{sec} = 1 \mathrm{C}$