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Follow these guidelines to calculate how fast a
pool of spilled liquid will spread across a surface,

evaporate and potentially form a flammable
mixture with the air. |

espite operators’ meticulous efforts to avoid
Dspills during the handling of volatile liquids, ac-

cidents can, and do happen. In such cases, the
ability to predict the rate at which the liquid spreads
and how fast it evaporates prove invaluable. The former
would be instrumental in planning and designing con-
tainment. The latter would be useful in finding the
vapor concentration of the substance in ambient air,
which would help one to determine the electrical area
classification, fraction of lower explosive limit
achieved, and address other similar safety-related is-
sues. In this article, methodologies will be presented
for calculating spill spreading and evaporation rates.
Examples featuring these methods are used to find the
liquid mass remaining at any given moment and the
time required to evaporate the entire spill.

First, one must assume that: the volume of spilled
liquid is known (e.g., derived from batch data as the
largest volume used in a process) or can be derived
(e.g., using the flowrate from a leak point and ap-
proximate duration of the leak); the liquid is well
characterized in terms of density (p), surface tension
(6), viscosity (u1) and vapor pressure (Pvp); the liquid
is at ambient temperature and barometric pressure,
which are known; and the spill progresses as a liquid
spreading across a smooth, level surface.
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How far will a spill spread?

A liquid that is spilled on a flat surface will
progress in three regimes (1):

* the gravity-inertia regime, in which gravity
tends to spread the fluid and is opposed by the iner-
tia of the fluid _

» the gravity-viscous regime, in which gravity
tends to spread the fluid and is opposed by the vis-
cosity of the fluid

* the viscous-surface tension regime, in which the
liquid viscosity is opposed by the surface tension of
the fluid. :

Most volatile liquids have viscosities less than or
close to that of water (~1 cP), and will enter the vis-
cous-surface tension regime in a few seconds. Eq. 1
yields the time required to enter the viscous-surface

_tension regime:

1;, = 0.023462(gVp/o) - )]

where g is the gravitational constant (ft/s?), V is the
spill volume (ft3), and p (Ib/ft3), u (cP) and ©
(dyne/cm)' are evaluated at the ambient temperature
(T,) or the temperature of the air above the liquid
pool. With ¢, one can calculate the radius of the spill
at zero time (q,) (i.e., at the onset of evaporation):



ay = 1.413142(c Ve, /)14 2)

What is the shape of the spill?

The shape of the volume of spilled liquid should be
modeled in such a way as to enable the calculation of
the area exposed to the atmosphere. In the real world,
the spill assumes the shape of a spherical cap. If one de-
termines the proportions of the spherical cap (and those
of the corresponding hypothetical sphere), one can find
the exposed surface area of the spill. The volume of a
spherical cap is calculated as (2):

Vo = (ThI6)(3a2 + h2) 3)
Vo = (WR3)3r,, — h) (4)

where 4 is the depth of liquid at the center of the spill, a is the
radius of the spill, and r,,, is the radius of the hypothetical
sphere of which the cap is part. The initial radius of the spill
(i.e., the radius measured immediately following the brief in-
terval ¢, after the liquid is first spilled) is noted as a. It is cal-
culated with Eq. 2, where the volume of the spherical cap is
V,, and the time with respect to the evaporation process is
zero. Note that during the spreading phase, no evaporation
takes place.

Correspondingly, the height of the spherical cap at the
center, h,, the maximum depth of the spill, is calculated as:

hg? + 3a2hy — (6V,/m) = 0 ‘ (5)

This cubic equation can be solved analytically, or, more

Ve

® Figure 1. The geometry of the
spifled pool of liquid is that of
spherical cap. The central half angle,
B, is complemented by a, fis the
depth ai the center of the liquid pool,
18 the radius of the hypothetical
sphere, and a s the radius of the
liquid pool. i
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conveniently, by the use of a spreadsheet solver func-
tion. If one assumes that the central half angle (B) of the
cap (Figure 1) remains constant during the course of the
spill, then:

sinf = ay/r, (6)
where r,, is the initial radius of the spherical cap, and:

tanf = hy/a, @)
Then, substituting Eq. 7 into Eq. 5:

a,3tan3p + 3aitanf - (6Vy/m) = 0 ®)
A collection of terms leads to the expression:

tan3f + 3tanP - (1/a2)(6Vy/m) =0 )
Eq. 9 is a cubic equation and may be solved for tanf} using
a spreadsheet. Readers seeking a rigorous solution should
consult Ref. 3 and use the key words, “cubic equation.”

With tanf} (and therefore B), 2 and a in hand, one can
calculate the surface area of the cap using (3):

Ay = 271r,,h (10)

Weisstein defines r,,, as (2):

TppSINOL=7r—h 11
where o is the complement of [B:

oa=172-p (12)

Other important relationships include:

ronSind = a (13)
acsef =r,, (14)
h = atanf , (15)
a = hcotf (16)

These equations will come in handy when seeking a solv-
ing equation for A. It is now possible to write the unsteady-
state mass balance on the spill, assuming that the evaporative
mass flux (E) — or the evaporation rate, normalized over the
area exposed to the environment — remains constant:

~dWldt = -pdV.,,, Jdt (17)
~dWldt = EA,,, (18)
—aW/dt = EQ2mir,,,h) (19)
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«ap are the surface area (ft?) and volume
(ft3) of the spherical cap at any time ¢ (min); W is liquid
mass (Ib); p is liquid density (Ib/ft*); E is mass flux
(Ib/ft*-min); and r,,, and A are measured in ft. It is as-
sumed that B is constant throughout the course of the
spill. Eq. 4 may be rearranged to solve for r,,,:

Here, A, and V,

Toon = (13)(3V,,/mh? + h) (20)
Since V,,, = Wip @D
by substitution': ‘

ron= (1/3)3W/mph? + h) 22)
Substitution oif Eq. 16 in Eq. 5 to define A yield;:

h3 + 3(h2cot?P)h — 6VIR =0 (23)

h3 + 3h3cot?f — (6V/m) =0 ’ 24)
Eq. 24 may be rewritten as:

(14 3cotP) = 6Vim 25)

Taking the cubic root of both sides yields the following:

h = (6V/(r(1 + 3cot2B)))1/3 ' (26)

h = (6Wi(rp(1 + 3cot23)))1/3 @7 |

h=bwn e
where: |

b= (6W/(mp(1 + 3co2P)))13 (29)

Combining Egs. 22 and 27, and performing extensive
rearrangement and substitution leads to:

Fn = (WIB)3(L + 3cotB)HAmp)s + (6lp(1 + 3colB)™?] (30)

Tpn = W13 3D

where: '
¢ = 3(1 + 3coP)2/4mp) + (6/mp(l + 3cot2P))13 (32)

The constants b and ¢ are expressed in units of
ft/Ib? when English units are used. Subsequently, an
expression for A, in terms of the mass of the liquid
may be derived: : :

Agp=21r k- ‘ (33)
A p=2mbc W2 : (34)



Eq. 34 is substituted into Eq. 18 to yield:

—dw/dt = EQrbcW?/3) (35)
Rearranging Eq. 35 yields:

W-23dW/dt = —(2nbc)E (36)
Integration results in:

3W, 1B - 3W, 13 = 2nbecE(t, — 1)) (37)

where W, and W, are the mass in the spill at times ¢, and
t,, respectively:

W, = (W,13 - 2rbcE(t, — 1,)/3)? (38)

If one assumes that B and E are constant, the cubic
root of the mass in the spherical cap decreases linearly
with time.

Determining the evaporative flux

There are three methods for estimating E. Two apply
to a spill exposed to a moving air stream. The third
method, Stiver-MacKay, can be extended to cover the
case of a spill exposed to still air.

1. U.S. Air Force method. This empirical method is
based on the evaporation of hydrazine at ambient temper-
atures (4). The evaporative flux for other liquids is esti-
mated using the following equation, which is normalized
for the effects of temperature and the properties of a lig-
uid other than hydrazine:

E = 4.66 X 10-5u075T M(P,, /P, ) (39

In the equation above, M is molecular weight
(Ib/lbmol), P,, s and P,, , are vapor pressures of the
spilled substance and hydrazine respectively (torr) and
T, is a temperature correction factor defined condition-
ally as follows:

When T, < 32°F, T = 1 (40)
When T, > 32°F, T, = 1 + 0.00133(T, - 32)2  (41)

In the original work, P,, s and P,, , are expressed in
torr, but when using Eqgs. 41 and 42, any consistent set
of units is applicable, since the vapor pressure contribu-
tion is dimensionless. The original work also evaluates
the vapor pressures at T,. Although T, is not equal to
T,, it is reasonable to assume they are equivalent, bar-
ring special situations (e.g., a cold liquid spilled in a
warm environment).

2. U.S. EPA method. Below is a slightly modified form of
the empirical equation developed by the U.S. Environmental

Protection Agency (EPA) to define evaporative flux (5, 6):
E = 0.28u08MOS6'P, JRT, A 42)

where u is the air velocity (ft/min) and P,, g is ex-
pressed in units of torr, since the vapor-pressure con-
tribution term is not dimensionless.

3. Method of Stiver-MacKay. This method employs a
mass transfer coefficient explicitly. As such, it lends it-.
self to situations other than that of a liquid pool ex-
posed to a moving air stream (7, 8, 9, 10):

E=kP, MIRTy, (43)

In this case, k is the mass transfer coefficient measured
in ft/min or ft/s, and R’ is the ideal gas constant measured
in ft3torr/lbmol°R. One can define % using the following
empirical relationships:

k = 0.00293u (ft/s) (44)
k = 0.1758u (ft/min) . (45)

Beyond constant flux - forced convection

The derivations presented thus far are predicated on'the
assumption that the evaporative flux is independent of the
geometry (and thus the characteristic dimension) of the
spill. However, the mass-transfer coefficient — and there-
fore flux — is usually a function of some characteristic
length of the geometry in question. E will vary with the
changing geometry of the spill because, in the real world,
there is usually movement of air above the spilled liquid.
This creates a pressure differential, causing evaporative
mass transfer to occur by forced convection. To account
for the effects of forced convection, a mass-transfer coef-
ficient that depends upon a characteristic dimension of
the spill is introduced into the evaporative flux equation.

It is assumed here that the term “flow,” except for the
transient case of the spreading of the spilled liquid, refers
to the air above the spill.. Typically, the radius of curvature .
of the spill is sufficiently large such that the flow of air be-
haves like air flowing past a flat plate. This flow can be
turbulent or laminar. _

Bennett and Myers state that for flow past a flat plate,
the laminar-to-turbulent transition occurs at about Re = 3 X
10° (11), where Re is the Reynolds number calculated for
a plate of length L as:

Re; = upL/p ' (46)

L is a characteristic length of the geometry in question,
and u, p and p aré the velocity, density and viscosity of
the moving fluid, respectively. L takes-the form of 2a,
where a is the radius of the spherical cap. The velocity
is assumed to have been measired (e.g., by a local
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anemometer) or determined otherwise (e.g., by a local
weather report). The p and p of air are obtained from
tables of physical properties in a standard reference
(e.g., Perry’s Chemical Engineers’ Handbook).

Bennett and Myers show a dimensionless expression
for the mass transfer coefficient for laminar flow using
the Sherwood (Sh), Schmidt (Sc) numbers:

Sh = 0.66Re,V2Sc!/3 (47)
Sc =v/D,p (48)
Sc = WpD,, 49
Sh = kL/D (50)

where p is liquid viscosity (Ib/ft-min) and D, is the diffusivi-
ty of substance A diffusing through substance B (ft%min) and
may be found by the methods described by Reid, et al. (12).
Equating Eqs. 47 and 50, and solving for k:

k = 0.66(D,5/L)Re, 2Sc\3 1)
k = 0.66(D, 5/ L)(Lup/u)2(u/pD, ;)73 (52)
k = 0.66(D 5/ LV (up/ ) "2(W/pD 4p)'» = (53)
k = (2a)12(0.66D , 2 2(p/p)6) (54)

The characteristic dimension a can be expressed in
terms of the mass of the spherical cap using a combina-
tion of Eqgs. 16 and 28:

a = bcotBwi3 (55)
Thus,

k = W-16(2bcotB)-12D,, ,2B3ul2(plu) e (56)

k = vW-1/6 (57)

Solving for v yields:
v = D, g2 (ul2bcotP)12(p/u)Le (58)

The result of substituting Eq. 57 in the Stiver—MacKay
relationship for flux yields:

E = vP,, MIR'T,W-16 (59)

Use of Eq. 59 in the unsteady-state mass balance, followed
by integration, results in this empirical equation for forced-
convection evaporative mass flux in the laminar flow regime:

W12 — W12 = j(t, — 1), (60)
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where:
j = 2mbevP,, MIR Ty, 6D

Thus, for laminar flow, when accounting for a change
in the mass transfer coefficient (and therefore E) as a
function of the changing dimensions of the liquid pool,
the square root of W decreases linearly with time.

In many standard texts (1), the analogy between heat
and mass transfer developed originally by Chilton and
Colburn is used to derive mass-transfer relationships for
known geometries and flow conditions based on dimen-
sionless-numbers for heat transfer.

As a corollary, if one has a relation for heat transfer
for a given geometry (e.g., flow past a flat plate), then by
analogy, one has a relation for mass transfer for that ’
same geometry. For turbulent flow, this analogy between
heat and mass transfer is used to find E. For heat transfer
involving turbulent flow past a flat plate, Bennett and
Myers give this correlation for the Nusselt number (73):

Nu = 0.0365Re*>Pr!2 - (62)

The exponent on the Prandtl number (Pr) is open to
some debate. Based on other work (/4), an exponent of
1/2 is useéd here. Thus, the mass-transfer analog is as-
sumed to be:

Sh = 0.0365Re5S5c12 ' : (63)

Eq. 63 is equated with Eq. 50 to solve for k. As for
laminar flow, subsequent expressions for k are derived
and substituted into the solving equation for E in the
Stiver-MacKay relationship. The integration of the un-
steady-state mass balance ylelds the followmg equation
for turbulent convection:

W, = (W25 — 2q(t, — 1,)/5)52 ‘ (64)

where ¢ and x are constants, defined as:
q = 2mbcxP,, MIR'T, _ (65)
x = 0.0365D,, 1V 2u3(p/u)19(2bcotf)-13 , -(66) _

In the equations defining ¢ and x, constants b and c are
calculated as per Egs. 29 and 32, respectively.

Extending the method to free convection

Next, the evaporative flux is examined under the con- -
ditions of free convection. The air above the pool is as-
sumed to be completely still, and the driving force for
mass transfer is the difference in concentration of the
volatile compound between the llquld pool and the air
above the pool



To adapt the method explained for forced convection to
the case of free convection, one needs a free-convection
mass-transfer coefficient, which is again derived using the
Chilton and Colburn analogy between heat and mass trans-
fer, as applied to free convection past a flat plate of liquid.

For free convection in the laminar flow regime (i.e.,
when 105 < Gr Pr <2 x 107, where Gr is the dimen-
sionless Grashof number for laminar flow), the heat
transfer coefficient may be expressed as:

Nu = 0.54(Gr Pryv+ (67)

and, for free convection in the turbulent flow reglme
(i.e., when 2 x 107 < Gr Pr < 3 x 1010):

Nu = 0.14(Gr, Pr)'s (68)

Using the Chilton and Colburn 'analogy, the mass
transfer coefficient for free convection in the laminar flow
regime: (i.e., when 105 < Gr,zSc <2 x 107) is:

Sh = 0.54(Gr,gSc)1 (69)

and, for free convection in the turbulent flow regime (i.e.,
when 2 X 107 < Gr,zSc < 3 x 1019) is:

Sh = 0.14(Gr,gSc)'3 (70)
In the equations above, Gr and Sc are defined as (15):

Gryp = L’pgAp /2 (7D

Sc = NpDAB (72)

For the purposes of this article, L = 2a. In addition, Ad
refers to the difference in concentration of the evaporating
species between the boundary layer of liquid and the bulk
fluid above it. Usually, the concentration of the evaporating
species in the bulk fluid is zero or effectively zero.

Following a procedure similar to that used previously,
one obtains for laminar flow:

W, = (W52 — (122/5)(¢, — 1)))1?> (73)
where:

z =2nbcyP,, MIR'T, (74)

y = 0.54((D 45)°gAS/bcotPy) 4 (75)

Follow the procedure used for laminar flow to assess tur-

bulent free convection:
Wol3 = (W13 — (n/3)(8, — 1,)) (76)

where:

n = (2nbemP,, MIR'T,) a7
and:
m = 0.14(D ,5)¥3(gAd/p) 13 (78)

Rarely is the outdoor atmosphere completely still
for any appreciable period of time. Therefore, for
spills that occur under the condition of light winds to
calm air, it is suggested that the estimated time for
evaporation is calculated based on the average of the
forced convection and free convection cases, since the
actual situation lies somewhere between these two ex-
tremes. Furthermore, the upper limit on the product of
the Gr and Sc numbers may limit the applicability of
this analysis to small spills.

Example problems

Physical and transport properties, where required, are cal-
culated from empirical correlations given by Yaws (16).

Example 1. Assume 50 gal of methanol spills onto a level
surface outdoors. A local thermometer reads 7, = 59°F and a
local anemormeter gives an average wind speed of u =5 mi/h.
Estimate the greatest depth of the spill (k) and the time it will
take the spill to evaporate (z, — 1;).

Summarize the known conditions and the physical :
properties of methanol: P,, = 69.058 mmHg, M = 32.044
Ib/lbmol, W = 332.24 1b, R = 555 mmHg-ft3/lbmol°R, p
= O 619 cP, 6 = 24.869 dyne/cm, p = 49.707 Ib/At3, and

= Ib/ft.

As a first pass, assume that the evaporative flux is inde-
pendent of the dimensions of the spill (i.e., F remains con-
stant during the evaporation process). A preview of the cal-
culations reveals that the EPA method yields the shortest
evaporation time, while the Stiver-MacKay method yields
the longest evaporation time. Therefore, for a conservative
estimate, the Stiver-MacKay method will be used.

Calculate the initial spreading time, ¢, using Eq. 1:

t,, = 0.023462[(32.174 ft/s2)(50 gal x 7.48 gal/ft3)
(49.707 1b/3)(0.619 Ib/ft-s)/24.869 dyne/cm] = 6.24 s.

Calculate the pool radius at ¢, using Eq. 23:

a,=1.413142 [(24.869 dyne/cm)(6 684 ft3)(6 243 s)/
(0.619 cP)]¥4=9.04 ft.

In this calculation, the unit conversion factors for p and
o have been worked into the coefficient. The liquid pool is
assumed to take the form of a spherical cap, due to the ef-
fects of surface tension. Given the volume and the radius
at time zero, solve Eq. 5 for the maximum depth of the
pool at its center: - :

3+ 3(9.04 ft)2h = 6Vy/r = 6(50 gal/(7.48 gal/ft3))/r =
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12.77 ft3; therefore, h = 0.052 ft

B is found by rearranging Eq. 9 and using a spread-

Table. Spm mass and volume vS. tlme under

cormions oﬂud)ulenl'f,me conveEEon }

sheet solver function: | Tim’é o | W ; Vo'ume of Splll
tan’ + 3tanp = (1/a,>)(6Vy/m). Thus, tanP = ] ’
0.005755 rad, and B = 0.00576.
Per Eqgs. 43 and 45:
E = 0.1758(5 mi/h)(69.058 mmHg)(32.044
Ib/lbmol) / ((555 mmHg-ft3/Ibmol°R)(59 + 453.49°R)) ,
= 6.76 x 10-3 Ib/ft?min. 44
Use this result in Eq. 37 to find the evaporation time, 45 k 35 5 : ~ . 104
t, — t,. Solve for t, with ¢, = 0 and W, = 0. This leads to: ’ — — 950 —
14 | 315 | 6.340E-02 1.00
1, = 3W,321tbcE Bl 2z __5.604E-02 0.96
18 2.45 4.927E-02 0.92
where: 20 2.14 4.306E-02 0.88
b = (6W/(mp(1 + 3cot2P)))13 = 7.51 x 10-3 ft/Ib1/3 e -1.86 3.740E-02 . 0.84
24 1.60 3.226E-02 0.80
and 26 1.7 _27626E02 | . 076
28 117 2.344E-02 0.72
c=(3(1 + 3cot?B)4mp)t/3 + (6/(mp(1 + 3cot2P)))1/3 ; T RS ¥ L SRR T
_ 35 0.60 1.215E-02 0.57
Thus: 40 0.34 6.837E-03 0.47
45 0.17 3.342E-03 0.37
1, =3(332.24 Ib)3 / (2 x 3.14 X (7.51 x 10-3 ft/Ib13) x B¥T 556 3
(113.42 ft/Ib13)(6.76 x 10-? Ib/fmin)) = 574.17 min. - L il i s
- 0.02  B300E-04 |
Example 2. Repeat Example 1, but this time, assume 60 | 000 44155-05
that the evaporative flux is a function of the pool radius . ‘. :
(a,) under conditions of forced convection. Since
the flux varies throughout the evaporation pro- 20 14
cess., one needs an integrated mass balance that 6.5 13
accounts for the effect of the pool’s shrinkage on 6.04 12
the flux. The Stiver-MacKay method is the only 5.5 _\-\L —¢— Poolmass i, |,
one that includes an explicit term for k, and will L 50 e " —': Pool radius [ | 4 o
be used to perform the calculations. All of the 2 s\ " e 09 =
physical properties and constants (e.g., b and c¢) g 40 R 0.8 %
are consistent with those cited in Example 1. @ 35 AN : 07 2
First, determine whether convection is tur- E 30 N - 06 ¢
: : . o 25 05 9
bulent or laminar using Eq. 46: € 5o N l\m\ oa &
. . 1.5 0.3
Re = (5 mi/h)(5,280 ft/mi)(0.076 1b/ft3)(2 x 9.04 10 T o2
ft)/ ((0.018 cP)2.419 Ib/ft-h)/cP) = 8.33 x 10°. 05 L : Nloq
0.0 + 0.0
Since Re is greater than 3 x 105, flow is tur- 0 5 10 15 20 25 30 35 40 45 50 55 60
bulent and Eq. 64 should be used. This equation Time (£), min .
requires the determination of several constants.

D, is determined using physical property esti-
mation methods described in Ref. 12, 11-4.4
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# Figure 2. Pool radius and liquid mass remaining ds a functlon of time for the case of
free convection in the turbulent flow regime. - ’
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and Table 11-1 to-be 0.160 cm?/s = 0.010 ft%nin The
central half-angle is calculated as B = 0.00576 rad Also,
per Eq. 66:

x = 0.0365((0.010 {t2/min)!2)((5 mi/h x 88
ft/min/(mi/h))#3(0.619 cP(0.04032 1b/ft
min/cP))V10(2(7.51 x 1073 ft/1b13)cot(0.00576 rad))-13 =
11.62 ft-1b15/min.

And, per Eq. 65:

q = 2mbexP,, MIR'T, = 21(7.51 x 10°3 fi/Ib13) x
(11342 ft/1b13)(11.62 fi-Ib115/min)(69.058 mmHg) x
(32.0422 Ib/Ibmol)/((555 mmHg-f/Ibmol R)(59 +
453.49°R)) = 0.484 1b25/min.

Assume W, = 0 and ¢, = 0, and solve for ¢,
using Eq. 64, which is rearranged as:

t,=5W,25/2g = 5 x (332.24 1b)?5/(2 X 0.484) =
52.68 min.

As may be expected, the predicted time reqmred to evapo-
rate the entire spill decreases 81gmﬁcantly when one ac-
counts for a change in the evaporative flux w1th the decreas-
ing size of the pool.

Example 3. Consider a smaller spill (V, =5 gal) of
methanol. Once again, assume that the evaporative flux
varies during the evaporation process. Assume that u = 0
ft/s and thus, only free convection takes place. Also, as-
sume that the air above the spill contains a negligible con-
centration of vapor. Calculate the amount of time it will
take to evaporate the entire spill.

The Stiver-MacKay method will be used because it in-
cludes an explicit term for k. This case exhibits turbulent
flow free convection, since ScGr =~3.9 x 10°. Thus, Eq.
76 is used with W, = 0 and ¢, = 0 to calculate #,:

t,=3W,¥3/n

whefe:
n = 2nbemP,, MIR'T, = 0.0887 (Ib/min)!3
m = 0.14(D )3 (gAd/w)1? = 7.93 ft/min.

Thus, ¢, = 63.6 min.

Example 4. Building on Example 3, in which the evap-
orative flux varies, calculate the mass of liquid remaining,
along with the volume and radius of the spill, as evapora-
tion progresses, until all of the liquid is evaporated:

Use Eq. 76 to solve for W, with ¢, = 0 and ¢, varying
from 1 min-to 60 min. To solve for a, find V using W,/p. .
Then, using Eq. 2, solve for a. The results are shown in
the Table and Figure 2. ceP] ‘
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