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Helicoidal staircases are becoming popular among architects because of their grand appearances. While design charts for
simple helicoidal stair slabs are available in design handbooks, no such design aid is available for fixed ended helicoidal
slabs with intermediate landings. This paper attempts to propose such design charts. The theoretical background arises
from Solanki�s (1986) work, which is based on the strain energy method. Because of the symmetric nature of the slab,
four of the six stress resultants at mid-span become zero. Thus, if the two redundants at mid-span can be suggested by a
design chart, rest of the analysis becomes a statically determinate problem. Based on the analytical work, charts have
been proposed to determine these mid-span redundants. Different geometric parameters have been considered and non-
dimensional parameters have been used to derive the charts. It is expected that use of the design charts will ease the design
engineers� workload.
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NOTATIONS
b : width of the stair slab

EI : flexural rigidity about horizontal axis through mid-
point

F : radial horizontal shear force

GJ : torsional rigidity

H : radial horizontal shear force at mid-span
(redundant)

Ht : height of the helicoid

h : waist thickness of stair slab

Ih : moment of inertia about a vertical axis through
mid-point

K : ratio of flexural to torsional rigidity

M : vertical moment at mid-span (redundant)

Mh : lateral moment

Msup : vertical moment at support

Mv : vertical moment

N : thrust

R, R2 : centreline radius on horizontal projection

Ri : inner radius on horizontal projection

Ro : outer radius on horizontal projection

R1 : radius of centreline of load

T : torsion

V : lateral shear force

w : dead load and live load per unit length of span,
measured along the longitudinal centreline of the
plan projection

α : slope of the helix contained within the helicoid at
radius R

2β : total central angle subtended on horizontal
projection

θ : angular distance from mid-span on a horizontal
plane

′θ : angle measured from bottom support towards top
on a horizontal plane

φ : angle subtended at the centre by half landing

INTRODUCTION
One of the most important functional elements of a building,
be it residential or commercial, high or low rise, is the stair.
Depending on the architectural forms, there may be different
types of stairs, such as: simple straight stair, dog-legged stair,
saw-tooth/slabless stair, free standing stair, and helicoidal
stair. Among these, the helicoidal stair has a grand appearance
and is increasingly getting popular among architects.

However, due to the complex geometrical configuration, the
analysis and design of helicoidal stair slabs are more difficult
than simple type of stairs. The degree of difficulty is further
enhanced for helicoidal stairs with an intermediate landing.
While design charts for helicoidal stairs are available in
literature1,2 no such aids are found for helicoidal stairs with
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intermediate landing. This necessitates the development of a
simple design chart and design procedure for this type of
elements.

GEOMETRY OF THE HELICOIDAL SLAB WITH
INTERMEDIATE LANDING
The geometry of a circular helicoidal stair slab with an
intermediate landing at mid-span can be defined as (Figure 1).

′ = −α
β

tan 1

2
Ht

R
(1)

The coordinates at the mid-surface can be expressed as:

x R= ′cos θ (2)

y R= ′sin θ (3)

z R= ′ ′ ≤ ′ ≤θ α θ βtan 0 (4)

z R= ′ ≤ ′ ≤ +β α β θ β φtan 2 (5)

z R= ′ − ′ + ≤ ′ ≤ +θ φ α β φ θ β φ2 2 2b g b gtan (6)

LOADING AND BOUNDARY CONDITION
The helicoidal stair slab has its self weight. This dead load (self
weight) is assumed to be uniformly distributed. In addition,
the slab is subjected to live load. The live load could be
uniformly distributed over the surface, point loads, line loads
or symmetrical loads about the central axis of the slab.
However, in this work the live load is considered uniformly
distributed over the entire surface on the horizontal projection
of the stair.

The ends of the slab may be fixed, partially fixed or hinged.
The slab fixed at both ends is six degree indeterminate; there
are six equilibrium equations and twelve unknown reactions.
Helical slab with one end fixed and one end hinged is
indeterminate to third degree. The stair slab here is considered
fixed at its ends in all directions.

STRESS RESULTANTS
Six stress resultants are available at any section of a space
structure. Helicoidal slab, being a space structure, also has six
stress resultants at any cross section, which are (a) vertical
moment (Mv ), (b) lateral moment (Mh ), (c) torsion (T ), (d)
thrust (N ), (e) lateral shear force (V ), and (f) radial horizontal
shear force (F ).

The positive directions of these stress resultants have been
illustrated in Figure 2.

REVIEW OF PAST WORKS
The complex geometry of a regular helicoidal stair slab has
made its analysis quite difficult. The introduction of an
intermediate landing further complicates the situation. For
the helicoidal stair slabs without landings3-6, considered the
helicoid as a three dimensional (3-d) helical girder. Here, the
helicoid is reduced to its elastic line having the same stiffness
as that of the original structure. But this simplification
neglects the slab action of helicoid and also assumes that the
bending stiffness and torsional stiffness of a warped girder are
the same as those of a straight beam.

Santathadaporn and Cusens1 presented 36 design charts for
helical stairs with a wide range of geometric parameters. Based
on this work, four design charts were compiled in a modified
form in the design handbook by Reynolds and Steedman2.
These design charts now stand as �helical girder solution� for
helicoidal stairs. Evidently, the helical girder solution fail to
take into account the 3-d characteristics of helicoid and its
inherent structural efficiency.

Arya and Prakash7 attempted to analyse the case of the
helicoidal stairs with intermediate landing. They used
flexibility approach to analyse internal forces due to dead and
live loads in fixed ended circular stairs having an intermediate
landing. Like Scordeilis, they treated the structure as a linearly
elastic member in space defined by its longitudinal centroidal
axis. Influence lines were drawn at various cross sections for
all the six stress resultants found at such sections for unit
vertical load and unit moment about the axis of the structure.
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Figure 1 Plan of a helicoidal stair slab with intermediate landinc
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Figure 2 Stress resultants in a helicoidal stair slab
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Critical positions of loads were determined to obtain the
maximum values of the internal forces. From this analysis
they suggested some generalized behavior of helicoidal star
slabs with intermediate landings.

Solanki8 analysed the problem of intermediate landing using
energy method to find the two unknown redundants at the
mid-span section. Other redundants at mid-span have zero
values because of symmetry of geometry and loads. He
proposed two equations, the simultaneous solution of which
gives the values of the redundants. Solanki�s findings were
similar to those observed by Arya and Prakash. Simply
supported or pin jointed helicoids could also be analysed using
this method. However, both Arya and Prakash, as well as
Solanki did not attempt to develop any simple design methods
for helicoidal stair slabs with intermediate landings.

ANALYSIS

Assumptions
To facilitate the analysis procedure, the assumptions made
during the analysis were:

(i) Deformation due to shear and direct forces, being
small in comparison to the deformations caused by
twisting and bending moments, are neglected.

(ii) The cross section is symmetric about the two
principal axes of the section.

(iii) The angle subtended at centre by the landing is small
compared to the total angle subtended by the stair at
the centre.

(iv) The moment of inertia of the helicoidal slab section
with respect to a horizontal radial axis is negligible as
compared to the moment of inertia with respect to the
axis perpendicular to it.

Stress Resultants in the Helicoidal Stair with
Intermediate Landings

The analysis method followed here begins from Solanki�s
Approach. Because of symmetry in geometry and loading,
four of the six redundants at the mid-span of a helicoidal stair
slab with intermediate landing become zero. Only two,
vertical moment M and radial horizontal shear H remain to be
calculated (Figures 1 and 3).

Solanki assumed that at the landing level the bending and
torsional moments along the upper half of the stair slab to be:

l Vertical Moment:

M M wRv = − −cos cosθ θ1
2 1b g (7)

l Lateral Moment:

M HRh = − 2 sinθ (8)

l Torsion:

T = M wR wR Rsin sinθ θ θ+ −1
2

1 2 (9)

For the flight the moments and other forces were assumed to
follow Morgan�s5 derivations for slabs without landing.

l Vertical moment:

M M HR wRv = + − −cos tan sin cosθ θ α θ θ2 1
2 1b g (10)

l Lateral moment:

M M HRh = −sin sin tan cos sinθ α θ α θ α2

        − + −HR wR wR R2 1
2

1sin cos sin sinθ α θ θ αe j (11)

l Torsion:

T = ( sin tan cos sinM HR wRθ θ α θ θ− +2 1
2

      + − +HR wR R HR2 1 2 2sin sin )cos sin sinθ α θ α θ α (12)

l Thrust:

N H wR= − −sin cos sinθ α θ α1 (13)

l Lateral Shear:

V = w Hθ α θ αcos sin sin− (14)

l Radial horizontal shear:

F H= cos θ (15)

where the radius of centreline of load is

R
R R

R R
o i

o i
1

3 3

2 2
2
3

=
−
−

F
HG

I
KJ (16)

These equations are valid when the angle subtended by the
landing at the centre (φ) is small as compared to angle
subtended at the centre by the whole stair plus the landing. It
should also be noted that the equations for the landing are
nothing but the expressions for the flight, with the slope of the
helix (α ) put to zero.

Figure 3 Stress resultants and mid-span redundants

M M

C C

H H

Bottom

T

R2

β φ+
+ θ

oMh

Mv

BA

TopPlan



272 IE (I) Journal�CV

The Strain Energy Method
The widely used Castigliano�s Second theorem states that in
any structure, the material of which is elastic and follows
Hooke�s law and in which the temperature is constant and the
supports are unyielding, the first partial derivative of the strain
energy with respect to any particular force is equal to the
displacement of the point of application of that force in the
direction of its line of action. Mathematically expressing,

∂
∂

δU
P

= (17)

where U is the strain energy; P the force; and δ  the deflection
in the direction of force.

The strain energy due to shear stress and axial force is
neglected, because they are small. The strain energy stored by
the bending moment is given by:

U
M

EI
L= ∑ z

2

2
d (18)

And that by the twisting moment is:

U
T
GJ

L= ∑ z
2

2
d (19)

The Strain Energy Method Applied to the
Helicoidal Stair Slabs
The strain energy method has previously been successfully
employed by Morgan and Holmes to analyse helicodial stair
slabs. Because of symmetry in loading and geometry, in a
helicodial stair slab with a landing at the middle, the slope at
the mid-span is zero and so is the horizontal deflection. This is
why, according to the Castigliano�s second theorem, the
partial derivatives of the strain energy function with respect to
the vertical moment (M ) and radial horizontal force (H ) is
equal to zero. That is,

∂
∂

U
M

= 0 (20)

and

∂
∂

U
H

= 0 (21)

Solution of these equations yield the values of M and H, which
can be expressed in the form of:

M k wR= 1 2
2 (22)

and

H k wR= 2 2
2 (23)

Details of the analysis is given in Appendix A.

SUGGESTION FOR A CHART
Once M and H are determined from equations (22) and (23),
equations (7) to (15) can be used to determine the six stress

resultants at any section of the helicoidal stair slab. However,
the derivation of equations (22) and (23) requires tedious
mathematical computations. To facilitate the design
procedure a series of 21 design charts have been proposed.
Figures 4 to 6 present a few of the charts. These charts provide
the values of k1 and k2 for a wide range of parameters and are
available in Wadud9.

l Total central angle subtended by the stair (range 135°

to 360°).

l Slope of the tangent helix centre line with respect to

the horizontal plane, α  ( 20°  to 40° ).

l Ratio of radius of the centre line  of load to the mean
radius of the stair, R1 / R2 (1.01, 1.05 and 1.10).

l Total angle subtended by the landing (10°  to 70° ).

The vertical moment at the support often becomes the most
critical design force. Another factor k3 has been introduced in
order to expedite the design process,

Figure 4 Coefficients k1, k2, k3 for R1 / R2 = 1.01, landing angle = 20°

Figure 5 Coefficients k1, k2, k3 for R1 / R2 = 1.05, landing angle = 60°
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where

M k wRsup .= 3 2
2 (35)

The values of k3 are also presented in the proposed design
charts. It has been found that k1 and k3 do not vary much on
the stair inclination, but k2 does.

CONCLUSION

A simple design chart has been proposed for use in design of
helicoidal stair slabs with intermediate landings. The chart
also covers the helicoidal slabs without landing as a central
landing angle of 0°  is equivalent to no landing. Figures 7 and
8 depict the variation of the stress resultants for a prototype
stair (Appendix). A step-by-step procedure for analysis using
the charts is given in Appendix. It is expected that the use of
the charts would expedite the design process.
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APPENDIX A: THE ANALYSIS

As explained before, the basic framework of the analysis is derived from
Solanki�s work. However, there was some discrepancy in his results and
therefore the analysis has been carried out independently beginning from the
strain energy principle. For a helicoidal stair slab with intermediate landing, the
strain energy function U, is given by,

U
M

EI
s

M

EI
s

T
GJ

s
M
EI

sv h

h

v

h
= z + z + z + z

0

2

0

2

0

2

0

2

2 2 2 2

φ φ φ β
d d d d

                                            + z + z
0

2

0

2

2 2

β βM

EI
s

T
GJ

sh d d (24)

Figure 6 Coefficients k1, k2, k3 for R1 / R2 = 1.10, landing angle = 40°
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Figure 7 Variation of forces along the span for the design example

Figure 8 Variation of moments along the span for the design example
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where for the landing

d ds R= 2 θ (25)

and, for the flight

d ds R= 2 secα θ (26)

The partial derivative of the strain energy function with respect to H is,

∂
∂

∂
∂

∂
∂

∂
∂

φ φ φU
H

M
EI

M
H

s
M
EI

M
H

s
T
GJ

T
H

sv v h

h

h= z + z + z
0 0 0

2
2

2
2

2
2

d d d

         + z + z + z
0 0 0

2
2

2
2

2
2

β β β∂
∂

∂
∂

∂
∂

M
EI

M
H

s
M
EI

M
H

s
T
GJ

T
H

sv v h

h

hd d d (27)

Because the stair width is large as compared to its thickness, the moment of
inertia with respect to a vertical axis Ih is much greater than the moment of
inertia about the horizontal axis I. The ratio I/Ih can therefore be neglected, ie,

I
Ih

≈ 0 (28)

As per Solanki, the torsional rigidity can be taken as:

GJ
EII

I I
h

h
=

+
2

(29)

Then

EI
GJ

I
Ih

= +
L
N
M
M

O
Q
P
P

≈1
2

1
1
2 (30)

Equation (21) can be rewritten with the help of equations (25), (26) and (28) as:

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

φ φ β βU
H

M
M
H

s T
T
H

s M
M
H

s T
T
H

sv
v

v
v= z + z + z + z =

0 0 0 0

1
2

1
2

0d d d d

(31)

Similarly equation (20) stands as:

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

φ φ β βU
H

M
M
M

s T
T
M

s M
M
M

s T
T
M

sv
v

v
v= z + z + z + z =

0 0 0 0

1
2

1
2

0d d d d

(32)

Equations (29) and (30) expands to:

MR A HR B wR R C A2
2

2
3 2

1
2

2
2tan sec tan sec tan sec ( )α α α α α+ − −

+ − + − +1
2

22
2

2
3 2[ sin ( ) sin sec ( )MR D A HR D A Eα α α

                         + − − − =wR R D A wR R C F1
2

2
2

1 2
3 0sin ( ) sin ( )]α α

⇒ + − +M A D A HR B[tan sec sin ( )] [tan secα α α α α1
2 2

2

+ − + − −
1
2

22
1
2sin sec ( )] [tan sec ( )α α α αD A E wR C A

                    − − + − =1
2

1
2

02 1sin ( ) sin ( )/ ]α αD A R C F R

⇒ + =A M A HR A wR1 2 2 3 1
2

⇒ + =A M A HR A wR1 2 2 4 2
2 (33)

and

MR G HR A wR R H G2 1 2
2

1
2

2 1 1sec tan sec sec ( )α α α α+ − −

+ + − + −1
2 2 2

2
1
2

2 1 2
2[ cos sin ( ) cos cos ]MR D HR D A wR R D wR R Cα α α α

+ ′ − ′ − ′ + ′ + ′ − ′ =[ ( )] [ ]MR G wR R H G MR D wR R D wR R C2 1
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⇒ + + ′ + ′ + + −M G D G D HR A D A[sec cos ] [tan sec sin ( )]α α α α α1 2
1
2

1
2

1
2

− − − + + ′ − ′wR H G D R C R H G1
2

1 1 2 1
1
2
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2

[sec ( ) cos cos /α α α

            − ′ + ′ =1
2

1
2

02 1D R C R/ ]

⇒ + =B M B HR B wR1 2 2 3 1
2

⇒ + =B M B HR B wR1 2 2 4 2
2 (34)

where

A = −( / ) sin ( / ) cos1 8 2 1 4 2β β β

B = − − −β β β β β3 26 4 1 8 2 1 4 2/ ( / / ) sin ( / ) cos

C = −sin cosβ β β

′ = −C sin cosφ φ φ

D = −( / ) ( / )sin1 2 1 4 2β β

′ = −D ( / ) ( / )sin1 2 1 4 2φ φ

E = + − +β β β β β3 26 4 1 8 2 1 4 2/ ( / / ) sin ( / ) cos

F = + −2 22β β β βcos ( )sin

G1 1 2 1 4 2= +( / ) ( / )sinβ β

′ = +G ( / ) ( / )sin1 2 1 4 2φ φ

H1 = sinβ

′ =H sinφ

A1 , A2 , A3 , A4 , B1 , B2 , B3 , B4 are constants, their values being evident from
equations (33) and (34).

The simultaneous solution of equations (33) and (34) yields the values of M and
H, mid-span redundant moment and radial horizontal force:

M
A B A B
A B A B

wR k wR=
−
−

=4 2 2 4

1 2 2 1
2
2

1 2
2

(22)

H
A B A B
A B A B

wR k wR=
−
−

=4 1 1 4

2 1 1 2
2 2 2 (23)

APPENDIX B: THE DESIGN PROCESS

B-1 Analysis

The height of the stair, inner radius, outer radius (or alternatively mean radius

and width of stair), the total angle (θ f ) through which the stair is to rotate to

reach its height, the length of landing (L) etc. are generally suggested by the
architect. Having fixed the geometric parameters, a designer then has to



Vol 85, February 2005 275

determine the stress resultants. The introduction of the chart will substantially
reduce the tedious computations required to find the design forces and
moments. The analysis procedure using the charts consists of the following
steps:

1. Determine mean radius R2 from given inner radius Ri and outer
radius Ro

R R Ro i2 2= +( ) /

2. Determine the angle ( )2φ  subtended by the landing of length L at a

distance R at the centre

L R= 2φ

3. Find the total angle subtended at the centre by the flights ( )2β  from

θ f  and 2φ

2 2β θ φ= −f

4. From the height of stair (Ht), mean radius (R2 ), and total angle

subtended by flight at the centre ( )2β  calculate the slope of the

tangent to the helix centreline ( )α  as

α
β

= −tan 1

2 2
Ht

R

5. Determine the radius of centre line of loading (R1) from

R
R R

R R
i

i
1

3 3

2
2
3

=
−
−

o

o
2

6. Find w, total dead and live load per unit length along the centreline

7. With the values of R1/R2 and central angle subtended by the landing

( )2φ  go to the appropriate chart, find k1 , k2 , and k3 for the given

value of total angle subtended at the centre ( )θ f . Determine mid-

span moment, M, mid-span radial horizontal shear, H, and support
moment, Msup , from

M k wR= 1 2
2

H k wR= 2 2

M k wRsup = 3 2
2

8. Determine other stress resultants at various distance, θ , from the
mid-span toward the top support using equations (10)-(16). Keep in

mind that α = 0  at the landing.

B-2 Example

It is required to analyse a reinforced concrete helicodial stair slab with a height

of 3.81 m (12.5 ft), inner radius of 1.524 m (5 ft), and outer radius of 3.43 m

(11.25 ft). The stair is to reach its full height within a 270°  turn. The length of

landing at the inner edge is 1.6 m (5.25 ft). Live load = 4.788 kN/m2 (100 psf).

Concrete unit weight = 23.563 kN/m3 (150 pcf). The stair slab is 0.152 m (6

inches) thick and the risers are 0.152 m (6 inches) high.

Step 1: R2 1524 3 43 2 2 477= + =( . . ) / . m

Step 2: φ = × = = °1 6 1524 2 0 525 30. / ( . ) . radian

Step 3: 2 270 2 30 210 3 665β = − × = =° . radian

Step 4: α =
×

=− °tan
.

. .
.1 3 81

2 477 3 665
22 8

Step 5: R1

3 3

2 2
2
3

3 43 1524

3 43 1524
2 6=

−
−

=
. .

. .
. m

R R1 2 2 6 2 477 1 05/ . / . .= =

Step 6: Total thickness in the vertical direction is approximately 0.241 m.

Surface UDL = 0.241 × 23.563 + 4.788 = 10.467 kN/m2

w = 10.467 × (3.43 � 1.524) = 19.95 kN/m

Step 7: With the calculated values of R1/R2 , α  and β , refering to Figure 5,

for a 270°  stair,

k1 = 0.036 ⇒  M = 0.036 × 19.95 × 2.4772 = 4.406 kN-m (3 250 lb-ft)

k2 = 1.657 ⇒  H = 1.657 × 19.95 × 2.477 = 81.88 kN (18400 lb)

k3 = � 0.73 ⇒  Msup = � 0.73 × 19.95 × 2.4772 = � 89.35 kN-m
( � 65 880 lb-ft)

Step 8: The variation of stress resultants along the span, found using the
previously stated equations, is depicted through Figures 7 and 8.


