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main stages of hardening observed in polycrystals, referred to as stage Il and stage IV hard-
ening, and which emerge from the evolution of the dislocation substructure. The aim of this
study is to couple a physics based strain hardening law including these two stages to a
micromechanics based ductile damage model. One of the main motivations is that, the

gﬁzﬁg&' stage IV constant hardening rate stage, occurring only at large strain, will be attained in
Voids and inclusions most ductile failure problems if not at the overall level of deformation, at least locally
Strengthening mechanisms around the growing voids. Furthermore, proper modelling of the stage IIl involving dislo-
Constitutive behaviour cation storage and recovery terms and the transition to stage IV provides a link with the
Void coalescence underlying physical mechanisms of deformation and with the microstructure. First, in

order to evaluate the effects of the stage Il and stage IV hardening on void growth and coa-
lescence, an extensive parametric study is performed on two-dimensional (2D) axisym-
metric finite element (FE) unit cell calculations, using a Kocks-Mecking type hardening
law. The cell calculations demonstrate that accounting for the stage IV hardening can have
a profound effect on delaying void coalescence and increasing the ductility. The magnitude
of the recovery term during stage III has also a significant effect on the void growth rate.
Then, the Kocks-Mecking law is incorporated into the Gologanu-Leblond-Devaux (GLD)
porous plasticity model supplemented by two different versions of the Thomason void coa-
lescence criterion. The predictions of the damage model are in good agreement with the
results of the FE calculations in terms of the stress-strain curves, the evolution of void
shape and porosity, as well as the strain value at the onset of void coalescence.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Micromechanics based studies of void growth in ductile materials date back to the late 1960’s, with the pioneering works
of McClintock (1968), and Rice and Tracey (1969), respectively focusing on the growth of a cylindrical and of a spherical void
in an infinite plastically deforming material with no strain hardening. In the same vein, Gurson (1977a) developed a microm-
echanics based porous plasticity model, which is the most widely known model of this type. In its original form, the Gurson
model deals with an initially spherical void growing in a rigid-perfectly plastic matrix, and assumes that the void remains
spherical throughout the entire loading history.

Since then, several extensions have been proposed in order to build more predictive ductile fracture models, along differ-
ent lines (see also the recent review by Benzerga and Leblond (2010)):
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e Tvergaard (1981, 1982) introduced tuning parameters, named ¢4, g, and g3, into the description of the Gurson yield sur-
face in order to make the model more accurate when compared to FE cell calculations. These fits have been generalized by
several authors later, see e.g. Gao et al. (1998). The Gurson model has also been heuristically generalized by Nahshon and
Hutchinson (2008) to better account for shear distortion.

¢ Void nucleation and void coalescence criteria have been added to the Gurson formalism in order to produce a complete model
up to final failure, see early works by Chu and Needleman (1980), and Tvergaard and Needleman (1984). Recently, many
efforts have been made to improve the description of the void coalescence stage (Benzerga et al., 2004; Fabrégue and Pardoen,
2008; Leblond and Mottet, 2008; Pardoen and Hutchinson, 2000, Scheyvaerts et al., 2010b; Zhang and Niemi, 1995).

e The description of the void geometry has been refined essentially by accounting for the void aspect ratio, assuming sphe-
roidal void shape (Gologanu et al., 1993, 1994, 1997) followed by Benzerga and Besson (2001), Benzerga et al. (2004), Ker-
alavarma and Benzerga (2008), Monchiet et al. (2006, 2008), and Pardoen and Hutchinson (2000). Void rotation has been
first treated by Gologanu et al. (1997), and later refined by Scheyvaerts et al. (2011).

e The response of the matrix surrounding the void, starting from perfect J, plasticity in the original Gurson, has been
improved. First, Gurson (1977b) heuristically introduced strain hardening by replacing the initial yield stress by the cur-
rent yield stress of the matrix material. This approach was later improved by Leblond et al. (1995) who derived a more
accurate formulation for large strain hardening exponents. Kinematic hardening (Besson and Guillemer-Neel, 2003; Mear
and Hutchinson, 1985), plastic anisotropy (Keralavarma and Benzerga, 2010; Monchiet et al., 2008), and rate sensitivity
(Besson, 2009; Klocker and Tvergaard, 2003; Lassance et al., 2007) have also been introduced into the Gurson or the Golo-
ganu extension. Void size effect related to strain gradient plasticity has been addressed by Wen et al. (2005). Recently, an
attempt has been made to describe the response of composite materials involving void growth by a homogenization
model which directly relies on the volume fraction and shape of the second phase particles (Tekoglu and Pardoen, 2010).

These extensions are most often used together with power law type hardening rules to describe the isotropic strain hard-
ening response without connection to the underlying physical mechanisms. In this paper, the four aspects listed above will
be addressed, but with an emphasis on the fourth one.

Physics based models for strain hardening relate to the dislocation mechanisms through the strain hardening rate, 0 = 97,/
9y, where 7, is the yield stress in shear, and y is the corresponding shear strain (for an extensive review on strain hardening
in metals, see Kocks and Mecking (2003) and references therein). Here, the counterpart of 0 is used, i.e. © = 90, /0€h, with
gy the flow stress and &} the accumulated plastic strain, which can be directly obtained from uniaxial tension or compres-
sion experiments. In the course of plastic deformation of a metal, dislocations interact with each other and with obstacles via
different mechanisms. Although these interaction mechanisms operate simultaneously at all times during deformation,
some of them become more dominant during specific range of deformation. Polycrystals present mainly two different hard-
ening stages, referred to as stage Il and stage IV in the literature, see Fig. 1.

During stage Il in single phase metals, a competition takes place between forest hardening due to dislocation interactions
and accumulation, and dynamic recovery of dislocations, leading to a linear decrease of the hardening rate @ with increasing
stress. The stage Il hardening is the basis of the empirical strain hardening law of Voce (1955), which was later provided
with a physical foundation based on dislocation arguments by Kocks and Mecking (2003), and Mecking and Kocks (1981).
If the linear decrease of the hardening rate in stage Il would continue till ® goes to zero, the flow stress would tend to a
steady-state limit, g, (see the dashed line in Fig. 1), corresponding to a non-strain-hardening regime where mobile
dislocations are generated, stored, then immediately recovered. However, in reality, stage III is interrupted before reaching
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Fig. 1. Evolution of the strain hardening rate @ with the flow stress ¢, in metallic single phase polycrystals. @, corresponds to the athermal hardening
level, g to the initial yield stress, and ¢, is the temperature and strain rate dependent Voce stress. The grey rectangle shows the parameter range at which
fracture is expected.
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the steady-state regime by the so-called stage IV (see e.g. Argon, 2008; Zehetbauer and Seumer, 1993), where 6@/day, =~ 0,
see Fig. 1. The value ® = 0 may be eventually reached at extremely large strains, due to the occurrence of the so-called stage
V, see e.g. Ravi et al. (1980).

In the literature, the process through which @ goes to zero is either described by a continuously decreasing hardening
rate in stage IV, or by a separate stage V, as also shown in Fig. 1. The description of the transition from stage III to stage
IV, and from stage IV to stage V, as well as the existence of an independent stage V still lead to open debates in the literature.
The transition to stage IV is usually observed at strains on the order of 1 in single crystals (Argon, 2008) but can take place
earlier in polycrystals. For instance, Byun et al. (2004) have shown that for a variety of metallic alloys, linear strain hardening
is a very good approximation for the evolution of the strength after the onset of necking, which, in their study, was varying
widely depending on the material. The occurrence of stage IV hardening at moderate strains (much lower than 1) has also
been confirmed recently by Nielsen et al. (2010), and Simar et al. (2010) for Al alloys of the 6xxx series. In this study, it has
also been shown that accounting for stage IV was absolutely necessary, not only to predict reliable load displacement re-
sponses, but also to allow capturing the evolution of the ductility as a function of the ageing heat treatment. One of the
key aspects in these studies was that, in the case of heat treatment leading to low or moderate strengths, void nucleation
was taking place late in the deformation process, within stage IV. Hence, the predictions were found to be quite sensitive
to the choice of accounting or not for a stage IV and on its magnitude. Stage IV was thus taken into account when modelling
the experiments using the Gurson formalism, but without performing any theoretical analysis about the validity of the mod-
el coupled to a Kocks-Mecking hardening law. These studies on the fracture of 6xxxx Al alloys have set part of the motivation
for the present investigation.

The fracture strain of metals grvaries with stress triaxiality T typically in a range from g~ 0.1 at large stress triaxiality, i.e.
T>3, to g > 1 at low stress triaxiality, i.e. T< 0.6 (e.g. during uniaxial tension with necking). Conditions for stage IV hard-
ening are thus definitely attained at low stress triaxiality in terms of the overall deformation. Low stress triaxiality condi-
tions prevail in metal forming applications (Badreddine et al., 2010; Chéhab et al., 2010; Pardoen, 2006) or in thin plate
fracture (Pardoen et al., 1999, 2004). Now, even at large stress triaxiality, typical of crack tip regions in thick components
(see Pardoen and Hutchinson, 2003; Tvergaard and Hutchinson, 2002), the local strain is likely to reach large values in
the close neighborhood of voids, and in the ligaments between closely spaced voids, enough to activate the stage IV hard-
ening. For all these reasons, the significant decrease of the hardening rate during stage III, and the rather abrupt transition
from stage III to stage IV, during which the hardening rate is nearly constant, are expected to significantly affect the growth
and coalescence of voids. This study has two main objectives:

o The first objective is to analyze to what extent void growth and void coalescence are affected by the details of the stage III
and stage IV strain hardening. For this purpose, an extensive parametric study is performed through 2D axisymmetric FE
calculations on unit cells containing a spheroidal void at the center. The matrix material of the unit cell is modeled as a J,
isotropic elasto-plastic solid, with a Kocks—Mecking type strain hardening response. The importance of accounting for the
stage IV hardening is emphasized.

The second objective is to incorporate the Kocks—-Mecking strain hardening law into a Gurson type micromechanics based
damage model. The damage model uses the Gologanu-Leblond-Devaux (GLD) porous plasticity model for void growth,
and a new form of the Thomason void coalescence criterion suitable for a strain hardening matrix. These extensions
are important in order to improve the capacity of current ductile failure models to link the physical mechanisms of defor-
mation influenced by the microstructure to the end used fracture properties.

The paper is organized as follows. Section 2 presents the parametric study performed via the unit cell calculations. Sec-
tion 3 introduces the ingredients of the damage model, that is the GLD porous plasticity and the Thomason void coalescence
criterion, which are both modified in order to account for a Kocks—Mecking type strain hardening law. In Section 4, the full
damage model is assessed towards the unit cell calculations. Finally, Section 5 concludes this paper.

2. Parametric study
2.1. FE void cell model

The void cell calculations performed in this paper directly follow the methodology set by Koplik and Needleman (1988). A
solid material containing regularly distributed voids can be represented by a 3D periodic array of hexagonal cylindrical unit
cells, each containing a void at its center. In order to decrease the computational time, the hexagonal cylinders are approx-
imated by circular cylinders, which allow 2D axisymmetric calculations. Even though the circular cylinders do not com-
pletely fill the space when stacked together, they provide a good approximation for hexagonal cells, as shown in e.g.
Worswick and Pick (1990). Due to the symmetry of the problem, only one quarter of a unit cell is meshed, see Fig. 2. Three
non-dimensional parameters related to the unit cell dimensions fully characterize the damage configuration: the void aspect
ratio W, the relative void spacing yx, and the porosity f, defined as
R, _ R . 2RR
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Fig. 2. (a) Geometry and dimensions of the unit cell and (b) a typical mesh with the boundary conditions and the loading system used for axisymmetric
tensile calculations under constant stress triaxiality.

where R, and R, are, respectively, the radial and axial void radii, and L, and L, are respectively the radial and axial mean void
spacings, see Fig. 2(a).

The FE calculations are performed within a finite strain setting, using the commercial software ABAQUS, 2008. The log-
arithmic strain components &, and &, are directly obtained from the change of the unit cell dimensions, see Fig. 2(a):

(L (L
&r=1In (m) &, =1In (Q) (2)

The loading corresponds to axisymmetric tension — with the main loading in the z axis direction - and the stress triaxiality T
is kept constant during the entire loading history. In the literature, different methods are used to keep the stress triaxiality
constant (see e.g. Brocks et al., 1995; Lin et al., 2006; Pardoen and Hutchinson, 2000; Steglich et al., 2008). Here, the follow-
ing method is used. An extra node M is created at the top right corner of the cell, see Fig. 2(b). In order to enforce periodicity,
the top and side surfaces of the unit cell are kept straight by coupling the displacements in the axial (i.e. the z axis) and radial
(i.e. the r axis) directions, respectively, of all the nodes on these surfaces to the corresponding displacements of the node M.
Also, for the nodes of the bottom surface (of the axis of symmetry), the axial (the radial) displacements are fixed while
imposing zero traction in the radial (the axial) direction. Note that, for the axisymmetric loading condition analysed here,
the ratio of the radial tensile stress o, to the axial tensile stress o,, acting on the unit cell is related to the stress triaxiality
T through
gy 3T-1

0, 3T+2 3)

As the displacements of the top and side surfaces of the unit cell are coupled to the displacements of the node M, a point
force applied to the node M is fully transmitted to the unit cell, and the stress tractions read

F F

__ b _ Lz
arr—zﬂrLz., 0z i (4)

where F, and F, are, respectively, the radial and axial forces acting on the node M. To apply these forces, two additional nodes
are created, N, and N,, which are connected to the node M via two springs (CONN2D2 elements of the ABAQUS element li-
brary), see Fig. 2(b). Now, the point forces read

Fo=c(u —u), Fo=c(uf ), 5)

where u; and u, are, respectively, the radial and axial displacements, and c is the stiffness of the springs. Inserting Eqgs. (4) and
(5)into Eq. (3), a single equation with four unknowns is obtained which needs to be satisfied at each strain increment to keep
the stress triaxiality T constant:

3T-1_
3T+2

In order to solve Eq.(6), an ABAQUS user subroutine to define multi-point constraints is used (see MPC subroutine in ABA-
QUS, 2008).

Axisymmetric, four-noded, bilinear elements (CAX4 elements of the ABAQUS element library) are used for the mesh, and
detailed convergence studies have been performed to ensure that the results are independent of the mesh refinement up to
after the onset of void coalescence. The matrix of the unit cell is modeled as an isotropic ], elastoplastic material with the

()L 20— )L

0. (6)
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hardening law given in a pointwise manner based on the Kocks—Mecking model, see the next section. The method used in this
paper to keep the stress triaxiality constant is very successful and computationally more efficient compared to other iterative
methods employed in earlier works (see e.g. Pardoen and Hutchinson (2000)) and more accurate than the Riks approach (Las-
sance et al., 2006; Steglich et al., 2008). The convergence of the results is independent from the stiffness of the springs, c, but
the larger the stiffness, the faster the calculations are performed. Yet, the internal iterations of the ABAQUS solver for the MPC
subroutine do not converge for very large c values; a value of ¢ ~ 50EL,q is used, with E being the Young’s modulus of the ma-
trix of the unit cell and L,y being the initial radial mean void spacing for the unit cell set equal to 1, see Fig. 2.

Voids grow with the plastic deformation of the surrounding matrix, and the relative distance between neighboring voids,
x, decreases. At some point, plastic deformation localizes inside the ligaments connecting neighboring voids, while the rest
of the unit cell goes through elastic unloading, see Fig. 3. This point corresponds to the onset of void coalescence, after which
the unit cell deforms in a uniaxial straining mode, i.e. with |9¢,,/0¢,,| becoming very small. The onset of coalescence is con-
sidered to occur when |d¢,,/0¢,,| becomes smaller than 5% of its value during the first part of the deformation. The transition
being very sharp, the selected magnitude of the change of slope has almost no effect on the determination of the coalescence
strain. In the present axisymmetric problem, the localization sets in the ligament perpendicular to the main loading direction
- which is aligned with the z-axis, see Fig. 2 — leading to the so-called internal necking mode of coalescence.

2.2. Strain hardening model

A Kocks-Mecking type hardening law is used, which explicitly accounts for stages III and 1V, for the strain hardening of
the unit cell matrix. Stage III is approximated by a linear decrease of the hardening rate with a constant slope g, i.e. 00/9
oy, =—p, and stage IV by a constant hardening rate, ® = @y, see Fig. 4. Even though the transition from stage III to stage
IV is smoother in reality, see e.g. Simar et al. (2010), a sharp transition is assumed here, in order to limit the number of
parameters in the model. In the integrated form, the Kocks-Mecking hardening law reads

r (7)

KL +% [1 —exp(—peie)] for oy < o) (stage III),
Tt Ow(dhe — ) fora, > ot (stage IV),

_tr

where gy is the initial yield stress, and a},r and &z correspond, respectively, to the values of the flow stress and of the accu-
mulated plastic strain at the transition point from stage III to stage IV, given as

) 6y 6

of = o+ 2O, (8)
1 (N

p-tr _

8acf - [3 ln (@IV>. (9)

2.3. Results of the parametric study

Before presenting the results of the parametric study, it is important to underline the physical relevance of the material
properties used in the rest of the paper, for the unit cell calculations as well as for the parametric studies performed later

Fig. 3. Evolution of the radial strain &, with axial strain ¢,,, with T=1, Wy =1, ®¢/ao =10, =15 and @ = 1. The sharp change in slope indicates the onset
of coalescence, with |9¢,,/0¢,,| becoming smaller than 5% of its value during the first part of the deformation.
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Fig. 4. Schematic representation of the Kocks-Mecking type strain hardening law used in this paper. (a) Stage III is represented by a linear decrease of the
hardening rate with a constant slope , i.e. 0©[da, = —p, and stage IV is approximated by a constant hardening rate, @ = @,. (b) Corresponding yield stress-
accumulated plastic strain curve showing the cases @;, =0 (no stage IV) and @, > 0.

with the damage model, see Table A.1. The material properties have been chosen to encompass a large range of parameters
typical of aluminum alloys, involving various precipitation hardening conditions, see e.g. Simar et al. (2007). Several authors
observed that, for single crystals under uniaxial tension, stage IV usually starts at very large strains over 1, well after the
onset of necking that corresponds to the Considére point with @ = gy, see e.g. Argon (2008), and Rauch (2009). Now, for a
wide range of polycrystalline metals, the strain hardening rate @ remains, to a very good approximation, constant after
the Considére point, see e.g. Byun et al. (2004), and Nielsen et al. (2010) as well as the short discussion in the introduction.
The values of the parameter ®@;, were thus chosen to vary widely between 0 (i.e. no stage IV), and the Considére stress,

oy =(p oo+ Op)/(1+p).

2.3.1. Influence of T and Wy, with or without stage IV hardening

Fig. 5 shows the variation of (a,b) the axial stress ¢,,, (c,d) the porosity f, and (e, f) the void aspect ratio W as a function of
the axial strain &, for (a,c,e) three different stress triaxiality values, T=2/3, 1, 3, with Wy = 1, and for (b, d, f) three different
initial void aspect ratio values, Wy =1/3, 1, 3, with T=1. Two cases are presented in each figure: ®,,= 0 with dashed lines
and @)y = o, with solid lines. For @y = 0, the strain hardening is entirely dictated by the stage III response (with @¢/oo =3,
and B = 15), and the strain hardening rate @ linearly decreases down to zero with increasing stress. For @,y = g,, on the other
hand, the strain hardening is governed by stage III until the Considére point @ = g, and by stage IV afterwards. The onset of
void coalescence is indicated by a filled circle e on each curve. The results are shown only for the calculations with an initial
porosity fo = 0.1%, but similar tendencies are observed for other fy values.

The results for ®), =0, i.e. only stage III hardening, closely resemble the results obtained in the literature for a power law
with a strain hardening exponent n ~ 0.1, see e.g. Koplik and Needleman (1988), and Pardoen and Hutchinson (2000). An
important difference between the two cases @, =0 and ©, = g, is that, for the former, a distinct softening regime is ob-
served after the peak stress before the onset of void coalescence, while, for the latter, void coalescence initiates soon after
the peak stress is reached, as shown in Figs. 5(a) and (b). As expected, void coalescence occurs earlier with increasing stress
triaxiality T, irrespective of the strain hardening behavior of the matrix material. Note also that coalescence was not attained
for T=2/3 in either case of strain hardening. Fig. 5(b) shows that the more prolate the initial void is, the later void

Table A.1
Material properties used for the unit cell calculations and the damage model.
Parameter Name Value (s)
E Young'’s modulus 70 000 MPa
v Poisson ratio 0.3
ao Initial yield stress 300 MPa
fo Initial porosity 0.1%
T Stress triaxiality 0.66,1,15,2,3
Wo Initial void aspect ratio 0.33,1,3
B Dynamic recovery rate 2.5,5, 8,12, 15, 20, 40, 50
Oylag Normalized dislocation storage rate 2, 3, 10, 20

Oylao Normalized stage IV hardening rate 0, 0.4, 0.7, 1, g,/d¢
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Fig. 5. Variation of the (a,b) axial stress g, (c,d) porosity f, and (e,f) void aspect ratio W as a function of the axial strain ¢, for (a,c,e) different values of
stress triaxiality T, with Wy = 1, and for (b, d,f) different values of the initial void aspect ratio values Wy, with T = 1. Dashed lines correspond to @, =0, i.e.
only stage III hardening (with @¢/do=3 and S =15), and solid lines to @ = g, i.e. both stages IIl and IV hardening. The onset of void coalescence is

indicated by a filled circle e.

coalescence sets in, see also Pardoen and Hutchinson (2000). For low porosity, as investigated here, the void aspect ratio has
only a very limited effect on the overall stress evolution and affects only the onset of coalescence.
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The porosity increases faster for @, =0, the effect being more pronounced at low and moderate stress triaxialities, see
Figs. 5(c) and (d). Fig. 5(d) also shows that voids grow faster when they are initially oblate (W, < 1) than when initially pro-
late (W > 1). The difference in the void growth rate for different @,y values appears already at relatively small strain values.
In fact, for ©), = g, the transition from stage III to stage IV occurs early in the deformation process, at the close vicinity of the
void where large local strain values are reached at rather low overall strains. After the transition, the strain hardening capac-
ity is obviously larger for the case @), = g, than for @,, =0, which makes void growth more difficult. Fig. 6 shows two con-
tour plots of equivalent plastic strain, &b, for T=1, Wy =1, @¢/ao = 10, for (a) O =0, and (b) O,y = g,, at an overall axial
strain value &,, = 0.6, which is before the onset of coalescence; the local strain around the void is larger for (a), for which case
the void growth rate is also larger. Plastic flow is also more localized in the absence of stage IV (©®), = 0) due to the absence of
strain hardening (perfect plasticity) at large strains.

Finally, Figs. 5(e) and (f) show that for low and moderate stress triaxiality and for all initial void aspect ratio values, voids
have a tendency to become more prolate for @, = g, than for @, = 0. For T = 3, however, voids deform toward an oblate
shape for either case. Indeed, for T = 3, void coalescence initiates at a very low overall strain value, which does not allow dis-
tinguishing the differences related to different strain hardening mechanisms.

2.3.2. Influence of the strain hardening parameters @y, @ and p

Fig. 7 shows the variation of the (a,b) axial stress o, (c,d) porosity f, (e,f) void aspect ratio W as a function of the axial
strain &, for different values of (a,c,e) @, and (b,d,f) @,y; for (a,c,e), @, =0, and for (b,d,f) ® =100, with T=1, Wy =1,
B =15 for all the calculations. For @, =0, the peak stress, which increases with increasing @, is reached relatively early,
while for @, > 0 it is postponed until soon before the onset of void coalescence, see Figs. 7(a) and (b). During deformation
of the unit cell, there is a competition between the hardening due to strain hardening of the matrix material, and softening
due the increase of porosity, as can be observed from the stress-strain curves. Even for a relatively low @), value, the strain
hardening of the matrix dominates almost throughout the entire deformation regime, see Fig. 7(b). For ®),, = 0, although ©®,
controls the value of the peak stress, it has almost no effect either on the void growth rate, see Fig. 7(c), or on the evolution of
the void aspect ratio, see Fig. 7(e). Consequently, the strain value corresponding to the onset of void coalescence is almost the
same for all ®g values. With increasing @y, however, the void growth rate decreases, see Fig. 7(d), and voids have a tendency
to become more prolate, see Fig. 7(f), which postpones the onset of coalescence. Note also that the slope of the unloading
curve after the onset of coalescence is hardly affected by the value of @y, as evident from the initial part of the unloading
curves shown in the stress-strain figures.

In contrast with the athermal hardening rate @, the dynamic recovery rate 8 has a strong effect on the void growth and
void aspect ratio evolution rates, depending on the value of the stage IV hardening rate @y, see Fig. 8. With increasing p (i.e.
with increasing rate of reduction of @, see Fig. 4), the void growth rate increases and void coalescence starts earlier if @;, =0,
i.e. only stage Il hardening, see Figs. 8(a) and (c). The rate of change of void aspect ratio also decreases with increasing p and
voids become less prolate, see Fig. 8(e). On the other hand, if ®/ao = 1.5, the tendency is inversed: void coalescence starts
later, and voids grow slower and become more prolate with increasing B, see Figs. 8(b), (d) and (f).

Finally, Fig. 9 shows the variation of the axial strain at the onset of void coalescence, &, as a function of the normalized
stage IV hardening rate, @/, for several values of the dynamic recovery rate f. The plastic strain at the onset of void
coalescence is a good approximation of the true local fracture strain corresponding to the end of the coalescence process,

Fig. 6. Contour plots of the local equivalent plastic strain &, in the region close to the void for (a) @y =0, (b) @,y =g, at an overall axial strain value
£,=0.6, for T=1, Wp=1, @p/op=10 and p=15.
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Fig. 7. Variation of the (a,b) axial stress a,, (c,d) porosity f, (e,f) void aspect ratio W as a function of the axial strain &, for different values of (a,c,e) @, and
(b,d,f) Oy; for (a,c,e), @ =0, for (b,d,f) @y=100¢, and T=1, Wy =1, =15 for all the calculations. The onset of void coalescence is indicated by a filled
circle o.

see Pardoen and Brechet (2004), and Simar et al. (2010). As also shown in Fig. 7, void coalescence is postponed with increas-
ing @y, but this effect is less obvious for low g values. Furthermore, the influence of  on &, strongly depends on the value of
Oy for Opfog < 0.7, &, decreases with increasing B, whereas for larger @, values an opposite tendency is observed, i.e.
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&, increases with increasing f. Indeed, at large ®,y, reaching stage IV earlier, as allowed by a higher g, is similar to produce,
on average, a higher strain hardening capacity. A high strain hardening capacity delays void growth and the onset of coales-
cence. The same reason applies to low @y, where the best way to keep a high strain hardening capacity is to have a low 8.
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3. Damage model
3.1. The Gologanu-Leblond-Devaux void growth model

Voids continuously grow and change shape with increasing plastic deformation of the surrounding matrix material. When
imposing volume conservation of the matrix, the void growth rate in a ductile solid reads

f=a-pi (=r02). (10)

As stated earlier in the introduction section, the original Gurson model deals with the growth of a spherical void. Gologanu
etal, 1993, 1994, 1997 extended the Gurson model to account for spheroidal void shapes. In the Gologanu-Leblond-Devaux
(GLD) model, for the axisymmetric loading conditions analyzed in this paper - for which the main void axis remains parallel
to the maximum principal stress — the evolution of the void aspect ratio reads
%% . .

W: (1 +hShThf)(822_8rr)+h5f8ii7 (1])
where the correction factor hs is a function of the void shape W, hyis a function of the porosity f, and hgis a function of both
W and f. Expressions for these dummy parameters can be found in Gologanu et al. (1993, 1994, 1997) or Lassance et al.
(2007). Note also that the parameter hr is a polynomial function of stress triaxiality T and depends on strain hardening; it
has been adjusted by Pardoen and Hutchinson (2000) for a power law hardening description of the form

E n
O'y:ag(l +—8§CC> . (12)
0o
The plastic strain 85 is normal to the flow potential @
. .0
P _ ~
& = /(’)O'ij’ (13)
and @ is given as
C 2 Gﬁ 2 2 2
¢ = (02— 0w +105)" +2q(g + 1)(g +f)cosh (k2 ) = (g+1)" —q* (g +f)" =0, (14)
y y

where

e C, 1, g K and o, are analytical functions of W and f, see e.g. Gologanu et al. (1993, 1994, 1997), Lassance et al. (2007), and
Pardoen and Hutchinson (2000).

. Jﬁ is a generalized hydrostatic stress defined as: 0'% =200, + (1 — 202)04,.

e ¢ is a calibration parameter which depends on strain hardening. Similar to the parameter hr, ¢ has been adjusted by
Pardoen and Hutchinson (2000), and Lassance et al. (2007) for the power law strain hardening given by Eq. (12), see
further.
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The accumulated plastic strain rate &, is determined from the energy balance initially proposed by Gurson (1977a)
Gyégcc(l _f) = Uijéﬁ- (15)

and the evolution of the flow stress o, is directly given by the Kocks-Mecking strain hardening relationship, Eq. (7). Finally,
o0y is given by the consistency condition
(3. 7.f. W) = 0. (16)
The original GLD model is an upper-bound limit load solution for a spheroidal void growing in a rigid-perfectly plastic
matrix. It has been later heuristically extended by Pardoen and Hutchinson (2000) to account for the power law strain hard-
ening given by Eq. (12). Here, the GLD model is extended for the Kocks-Mecking hardening law given by Eq. (7). Only two
parameters, g and hr, are related to the strain hardening; therefore only these two parameters must be adapted to the Kocks—
Mecking hardening law.

3.1.1. New calibration of the parameter q

The heuristic parameter q as initially introduced by Tvergaard (1981, 1982)! in Eq. (14) has been adjusted by Pardoen and
Hutchinson (2000) by comparing the predictions of the GLD model with the results of unit cell calculations, similar to those
performed in this paper, with the objective of getting the best agreement in the early stage of deformation. For the parameter
q, the following expression was suggested

g, — 1
s

1 1
q=j+Q1 ‘+§qb7 (17)

where g, = arctan (10 — 4T). In order to avoid introducing a dependence on the stress triaxiality T, q; is taken here as equal to
1.5, as also proposed by Lassance et al. (2007). The parameter g, which is a function of f,, Wy and n, is given as

B 1.1\ /1 arctan(2.4 —2InW,) 1
g =1+ (fsh*if&) <§+ = 744Wo> (18)

with
fsn =0.65 - 1.75n. (19)

Note that Eq. (18) is valid for W, > 0.1; for W, < 0.1, g, is taken to be equal to g,(fo,n, Wy = 0.1), see Lassance et al. (2007). The
validity of (19) has been checked in the range n=0.1 to 0.3 (Pardoen and Hutchinson, 2000).

Now, the strain hardening exponent corresponding to the hardening law (7) is not a constant. Fig. 10 shows the evolution
of the incremental strain hardening exponent d(In ¢)/d(IneP), called here n,. For a power law description, n. is constant, equal
to n. During straining, n, increases very fast from zero to a maximum value n} and then decreases. If the strain hardening
capacity of the material involves a stage IV, n, increases again after &' has been reached. The higher the value of @y,
the earlier stage IV starts and the larger the increase of n, with strain. If there is no stage 1V, i.e. @, =0, n. keeps decreasing
slowly with deformation to asymptotically tend to zero. A simple extension of the definition of fy, in Eq. (19) in the case of a
varying strain hardening exponent is to calculate the incremental value n. and introduce an evolving fs,(n;):

fin(n;) = 0.65 — 1.75n,. (20)

An alternative approach to re-express f;;, based on g and @y, is proposed in Appendix.

3.1.2. New calibration of the parameter hr

In the work of Gologanu et al. (1997), hr is defined as a polynomial function of T, to give the best agreement between the
void shape evolution predicted by Eq. (11) and the (as) exact (as possible) numerical solution given by the FE cell calcula-
tions. Pardoen and Hutchinson (2000) provide two different expressions, according to the value of the strain hardening expo-
nent n equal to 0.1 or 0.3, when expressed with a power law as (12). The values of hr for intermediate n can be obtained by
linear interpolation.

Same as for f;,, the hy parameter is adjusted as a function of n,.. Here, the method of Pardoen and Hutchinson (2000) has
not been followed; a new, more accurate fit is proposed. The void shape evolution has been fitted in the early stages of defor-
mation, based on a large number of cell calculations performed using the Kocks-Mecking hardening law in the following
way. A single constant hy value has been first determined to best match the beginning of the evolution of W with straining.
This value of hris associated to the peak n;, which is an upper bound approximation of the mean n, during the first stages of
deformation. This is done for a wide set of parameters (T, 8, ©o, ©)y), while the following fo = 0.1% and Wy = 1 have been kept
constant. Fig. 11 exhibits the values of the best hy obtained from the model and adjusted to the cell calculations for different
n; and stress triaxialities T. For each value of T, a polynomial function of hr(n}) fitting the results is found. Moreover, for each
value of n, hr can also be expressed as a polynomial function of T (not shown). Now, in order to account for the fact that n,

1 As a matter of fact, Tvergaard introduced three parameters q;, q> and gs; g3 being equal to 2. The parameter g, was essentially correcting for the absence of
void shape effects in the original Gurson formalism but is not necessary anymore in the formalism of the GLD model.
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Fig. 11. Evolution of the hr parameter with strain hardening exponent maximum value n; and stress triaxiality T, using: Wp = 1.

varies with strain, the expression found for various n; in the early stages of deformation, i.e. hr(n}) is changed all along defor-
mation, i.e. nj is replaced by the current n; in hr. A more rigorous procedure based on an exact average n, over the range of
strains used for the fitting has been attempted, giving essentially the same result. The generic expression for hr as a function
of both T and n, writes

hr = A(n.) + B(n.)T + C(n,)T* + D(n,)T?, o)
with

A(n,) = 1.69 — 12.50n, + 36.20n? — 28.06n, 2

B(n,) = —1.60 + 19.06n, — 59.10n% + 50.20n?, 23

C(n;) =0.81 —7.27n, + 17.71n% — 11.43n3, o

D(n;) = —1.29 + 6.62n, — 10.31n? + 4.17n}. 25)

These expressions are valid for n. < 0.45. When n, > 0.45, hr is taken equal to hy{n. = 0.45).
3.2. The Thomason void coalescence criterion
During void growth, although strain concentrates in the close vicinity of the voids, plastic deformation spreads through-

out the entire matrix material. At some point, the stable growth of voids is interrupted by a uniaxial deformation mode,
where plasticity localizes in the ligaments connecting neighboring voids, and the regions off the localization plane undergo
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elastic unloading. This sudden transition to localized plasticity is referred to as the onset of void coalescence, i.e. the starting
point of the coalescence stage of ductile fracture. For the void distribution and loading conditions analyzed in this paper (see
Fig. 2), the only mode of void coalescence which has been observed is the one referred to as internal necking, where the lig-
ament between the two voids shrinks in a similar way to the necking process under uniaxial tension. Depending on the void
distribution and loading conditions, other modes such as shear and necklace coalescence are also possible, see e.g. Benzerga
(2000), Leblond and Mottet (2008). For many metals, the strain increment from the onset of void coalescence to the complete
fracture of a sample is only a few percent. Therefore, for practical purposes, approximating the fracture strain of a metal by
the strain at the onset of void coalescence provides acceptable accuracy, see Simar et al. (2010).

Thomason (1985, 1990) formulated a condition for the (localized flow) internal necking mode of void coalescence for a
rigid-perfectly plastic material:

AleO-O :Asgzz, (26)

where, for the void distribution and loading condition shown in Fig. 2, A, is the area of the cross-section containing the lig-
ament connecting the voids, Cis a coefficient which measures the change in the load carrying capacity of the cross-section A
due to the presence of a void in the localized flow regime, g is the yield stress of the matrix material (no strain hardening),
A is the total surface of the unit cell, and o, is the stress applied on As. For the coefficient C;, Thomason proposed, based on
fitting slip line solutions, an empirical expression, which, in the notation used in the present paper, reads

1- X>2 1
G = oc( +K—]|, (27)
! { W N4
stating also that using o= 0.1 and k = 1.2 gives the best agreement for a wide range of intervoid matrix geometries. For the
axisymmetric unit cell shown in Fig. 2, Eq. (26) reduces to

2
o = Go(1 = 72) [0.1 (1/;WX> 12 \/l?} (28)

Eq. (28) states thus that void coalescence starts when a,, reaches a critical value set by the right hand side of the equation.
This critical value decreases as the voids open (W increases) and get closer to each other (y increases). Porosity f affects void
coalescence indirectly through the softening that it imposes on the applied stress a,,, as well as through its link with the void
spacing and the void aspect ratio; for example, f = (2/3)Wy>/4, with / = L,/L,, for the regular void distribution shown in Fig. 2.

In order to adapt the original Thomason criterion to the more realistic case of strain hardening materials, Zhang and Nie-
mi (1995) proposed to replace the initial yield stress, o, by the current overall yield stress of the matrix, ¢,, which can be
calculated using the energy balance given in Eq. (15). For the power law strain hardening rule given in Eq. (12), Pardoen and
Hutchinson (2000) showed that Eq. (28) accurately predicts the onset of void coalescence when oy is replaced with gy, if the
parameter o is taken to be a function of the strain hardening exponent, o(n)=0.1 + 0.217n + 4.83n?, with 0 <n < 0.3, and
K = 1.24. Again, a simple extension of that idea in the case of a varying strain hardening exponent is to calculate the incre-
mental value n, and introduce an evolving o(n;) as

2
(1- ) {cx(nx) (%) + 1.24}},} (29)

0
Oy

This will be referred hereafter as the version 1 of the Thomason model.
3.2.1. New extension of the Thomason criterion for strain hardening materials

In order to avoid the hardening law dependence of the Thomason criterion, Fabrégue and Pardoen (2008), Scheyvaerts
et al. (2011) proposed an alternative form

Oy 1—7\? 1
“Z = (1-y? 0.1( ") +1.24—]|, 30
ol (1-y ){ W \/7} (30)

where a’y“ is the current yield stress next to the void surface, which corresponds to the location of the largest accumulated
plastic strain, therefore to the largest local yield stress in the localization plane. In this new form, « is a constant, and the void
coalescence criterion is independent of the strain hardening rule used for the matrix material. The local yield stress ¢ is
related to the local accumulated plastic strain &27° through the hardening law. Hence, in the frame of the Kocks-Mecking

law, it writes

601 _ __peb-loc loc < gtr
o — 0o+ [l exp( Bebee )] for oy < a7, 1)

oy + O (8552“ - 85&") for ol > o,
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where

t

Jp-loc
Eoec /
Jo

By using simple geometrical arguments, Fabrégue and Pardoen (2008, 2009) showed that the local strain rates next to the
void surface, ég.’f, are linked to the applied strain rates, and to the evolution of the porosity f and the void aspect ratio W as

Zépeglede (ij=r,0,2). >

e 1. . f w

85)00C =3 <822 + 28 +f - W) ) (33)
. . . f oW\ 171

Slzgc_g<zz+28rr+§+2W> §<W+1> (34)
by =~ - &Y (35)

This version will be referred as the version 2 of the Thomason model.

3.2.2. Assessment of the new extensions of the Thomason criterion

Fig. 12(a) shows the evolution of the left and right hand sides of the version 2 of the Thomason criterion given in Eq. (30),
applied to unit cell calculations with T=1, Wy =1, =15, @y/0o = 10, for three different @)y, values. The onset of void coa-
lescence corresponds to the point where the two sides of Eq. (30) intersect with each other. Note that the parameters used in
Egs. (29) and (30), i.e. y, W and o, are directly extracted from the cell calculations at each increment of the deformation. The
local value a}"f entering (30) is calculated using (32) to (35), while the value of g, entering (29) is calculated using (15). As
explained earlier, the “exact” onset of coalescence is extracted directly from the change of the deformation mode in the unit
cell calculations which corresponds to the point at which 9¢,,/0¢,, becomes suddenly very small (see Fig. 3), indicated by a
filled circle in Fig. 12(a). For the present set of conditions, the coalescence strains predicted by the second form of the Tho-
mason criterion are in very good agreement with the unit cell solution. Similar plots are obtained with the version 1.

In order to check the validity of the two versions of the Thomason criterion, the same comparison has been made for all
the unit cell calculations performed in this work, involving different material properties and being loaded under different
stress triaxialities, see Table A.1. In cases where the Thomason criterion does not predict the onset of coalescence before
it is attained by the unit cell calculations, the quantities - extracted from the unit cell calculations — used in the criterion
are linearly extrapolated as if coalescence did not start, until the Thomason criterion is satisfied. The comparison is made
in Fig. 12(b) and the corresponding error is given in Fig. 12(c). As shown qualitatively in Fig. 12(b) and more quantitatively
in Fig. 12(c), the Thomason criterion version 2 slightly overestimates the ductility at T= 1 by maximum 6%, while the version
1 has a tendency to underestimate it, by maximum 12%. At larger triaxiality, the quality of the predictions deteriorates. The
version 1 of the criterion underestimates the results with a maximum error equal to 15% for T = 2 and 30% for T = 3, while the
maximum error for version 2 is equal to 40% for T=2 and 150% for T = 3. At large stress triaxiality, the extrapolation of the
cell calculations results after the onset of coalescence becomes dubious and can explain part of the error associated with
version 2. Nevertheless, it is clear that the predictions of version 2 are less satisfactory at large stress triaxiality. Note that
the Thomason criterion version 1, Eq. (29), has a general tendency to underestimate the strain at the onset of coalescence,
which is a good point to produce conservative predictions regarding integrity assessment analysis. On the contrary, the ver-
sion 2, Eq. (30), generally overestimates the strain at coalescence, except in a few cases such as T=1, Wy =1/3, @p/0o =3,
B=15and O =0, see Fig. 12(c).

4. Assessment of the full damage model and final discussion

The predictions of the integrated void growth and coalescence model are assessed by comparison to the finite element
calculations. Fig. 13 (resp. Fig. 14(a, c,e)) presents results addressing different values of the stress triaxiality (resp. initial void
aspect ratio). A filled circle e indicates the onset of coalescence predicted directly by the finite element calculations. The on-
set of coalescence predicted by applying the version 2 of the Thomason criterion (30) with all the parameters taken from the
finite element calculations is indicated by a cross x. The difference in strain between the filled circle and the cross indicates
the error resulting only from the application of the void coalescence criterion. The onset of coalescence when combining the
extended Gurson model and the version 1, Eq. (29) (resp. version 2, Eq. (30)) of the Thomason criterion is indicated by a
square [ (resp. a circle o) on the curve predicted by the constitutive model.

Fig. 13(a) and Fig. 14(a) give the variation of the axial stress ¢, as a function of the axial strain &,,; the axial stress is well
predicted during void growth, except for T=2 and T = 3 for which the peak stress is slightly underestimated by the model.
Regarding the onset of coalescence, the version 2 of the Thomason model (Eq. (30) is discussed first. Fig. 13(a) and Fig. 14(a)
show that the coalescence model (30) provides accurate predictions at low stress triaxiality, whatever the initial void shape
W, in agreement with Fig. 12(b). As a matter of fact, when the coalescence criterion is used together with the extended
Gurson model, the error on the predicted onset of coalescence is mainly due to the error on the predicted porosity evolution
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“crit
the void coalescence criterion.

and the other parameters entering the void growth model. More precisely, the origin of the discrepancy can be detected in
Fig. 13(b) and Fig. 14(c): it essentially comes from inaccurate prediction of the porosity evolution after some amount of
deformation. There is indeed an acceleration of the void growth rate due to void interaction effects which occurs before
the onset of coalescence and which is not captured by the model. This observation agrees with earlier works of Koplik
and Needleman (1988), and Pardoen and Hutchinson (2000).

Now, it is important to observe that the extra error coming from using the Gologanu model to predict the parameters
entering version 1 of the coalescence criterion compared to the use of the parameters directly extracted from the cell calcu-
lations is significantly smaller than with version 2, see Fig. 13(a) and Fig. 14(a). The better behaviour of version 1 mostly ap-
pears when stage IV is accounted for. The fact that version 2 slightly overestimates the onset of coalescence when used with
the exact evolution of the parameters (from the cell calculations) is amplified when adding the underestimation of the void
growth rate at large strains coming from the Gologanu model. A simple remedy is to increase the value of o in Eq. (30) but this
was not attempted here. Indeed, the beauty of version 2 is to avoid the use of any fitting parameter. A more in depth analysis of
the impact of strain hardening on the localization process between two voids is needed to make further progress in this area.
For the time being, the full model with version 1 of the coalescence criterion can be used safely within the entire parameters
space, while the full model with version 2 should be avoided at high stress triaxiality and at high value of stage IV.

Fig. 13(c) (resp. Fig. 14(e)) gives the evolution of the void aspect ratio W with the axial strain ¢,, for several values of the
stress triaxiality T (resp. initial void aspect ratio Wy). The model reproduces well the opening of the voids during straining
(i.e. W increases) at low stress triaxiality and the closing (i.e. W decreases) at high stress triaxiality.
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Fig. 13. Comparison between cell calculations and the full damage model regarding the stress triaxiality T. Variation with axial strain ¢,, of the (a) axial
stress g, (b) porosity f, (c) void aspect ratio W, and (d) relative void spacing y, with Wy =1, =15, @y/do = 10, O/ =0.4.

Figs. 14(b,d,f) present results for different values of the stage IV hardening level ®y,. Fig. 14(f) shows that the void aspect
ratio W evolution is better reproduced when @), > 0. As a matter of fact, the hy parameter used to fit the evolution of the void
aspect ratio is less precisely fitted at low values of the incremental strain hardening exponent n.. When @y, = 0, n. has a low
value during most of the straining history, see Fig. 10.

A direct comparison of these predictions to experimental results is not straightforward. Indeed, it is usually difficult to
modify the strain hardening capacity of metals without affecting other characteristics which are playing a role in the ductile
failure process. One example is given by precipitation hardening in Al alloys through which both the yield stress and strain
hardening capacity are modified (Simar et al., 2007, 2010). Changing the initial yield stress can significantly alter the fracture
behavior of a material, in addition to having a direct effect on the void growth rate and on the onset of coalescence due to
differences in the strain hardening capacity. First, a lower yield stress gives rise to delayed void nucleation (e.g. Huber et al.,
2005; Simar et al., 2010). Accurately predicting void nucleation is still a matter of open research and the comparison between
the model and experiments will be affected also by the error coming from not capturing exactly this first step of the damage
process, see also Tekoglu and Pardoen (2010). Then, a high yield stress can favour the nucleation of a second population of
voids which will accelerate the onset of void coalescence (e.g. Faleskog and Shih, 1997; Fabrégue and Pardoen, 2008, 2009;
Gallais et al., 2007; Nielsen et al., 2010). The presence of a second population of voids can also modify the coalescence mode
from internal necking to shear dominated, leading to a slant fracture (Asserin-Lebert et al., 2005; Faleskog and Shih, 1997).
Hence, a direct analysis of the strain hardening effect on ductile failure requires an ideal material where void nucleation
takes place at small stress levels (or with voids already present in the microstructure) and without any secondary population
of particles. One example has been given in the case of extruded copper rods, involving a fraction of percent of micron sized
copper oxide inclusions, with a poor interface resistance with the matrix (Pardoen and Delannay, 1998; Pardoen et al., 1998).
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As-received samples had a high strength but low strain hardening capacity while annealed samples involved a high strain
hardening capacity and low strength (the strain-hardening evolution was modelled using a two parts power law hardening
fit). At the same stress triaxiality, the annealed samples presented a ductility higher by at least 20% compared to the as-re-
ceived samples.

A final point of discussion concerns the validity of using a Kocks—Mecking formalism to describe the strain hardening
around growing voids. If the voids are too small compared to the grain size, single crystal plasticity effects will play an
important role and grain orientation with respect to the loading configuration can significantly affect the evolution of f
and W (Yerra et al., 2010). If the voids are small compared to the intrinsic length of the dislocation structure, the averaging
response underlying the Kocks-Mecking model will not be fully valid anymore and more sophisticated analysis will be
needed. Recently, both the strain gradient plasticity theory (Borg et al., 2008) and the dislocation dynamics method (Segu-
rado and LLorca, 2010) have been used to simulate void growth. Now, when the Kocks-Mecking formalism can be safely
used, one of the interest is then to use extended versions of the Kocks-Mecking model in order to account for instance
for precipitates hardening (Simar et al., 2007) or grain size effects (Delincé et al., 2007), or to couple the model with lower
scale simulations, e.g. Naamane et al. (2010), to provide a link with the dislocation dynamics and intrinsic mechanisms of
plasticity with respect to real microstructures.

5. Conclusions

The effect of strain hardening —as described via a physics based stage Ill and stage IV Kocks—-Mecking model— on void
growth and coalescence has been addressed using FE cell calculations. The main finding is that the effect of stage IV hard-
ening, which will usually be attained either globally at low stress triaxiality, or at least locally around the voids at large stress
triaxiality, can be very significant. When comparing the cases of no stage IV and early onset of stage IV, the void growth rate
can change by a factor of two, hence the ductility. This shows that the use of a simple hardening law with improper extrap-
olation to large strains can introduce major errors in the predicted fracture strains. Furthermore, properly accounting for
stage IV can have a significant effect on the prediction of the void nucleation kinetics if void nucleation takes place at large
strains.

The ductile failure model, based on the GLD model for void growth and on two versions of the Thomason criterion for
coalescence, has been coupled to a Kocks—Mecking type hardening law involving stage III and stage IV. The final model gives
reasonable predictions over a wide range of parameters.

This study opens the road to the development of more realistic continuum damage models based on physics, and micro-
structure informed hardening laws. This is important in the context of building chain models which start from the micro-
structure evolution during processing and end with the predictions of the end use properties involving the fracture strain.
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Appendix A. Alternative expression of f,

The parameter g, is mostly sensitive to the void shape, see e.g. Savik and Thaulow (1997), and as shown in Fig. 7 has al-
most no effect on the evolution of either the void aspect ratio W or the porosity f; therefore, f, is assumed to be independent
of the athermal hardening parameter @,. An expression for the heuristic parameter f;, is obtained by comparing the predic-
tions of the GLD model with the results of unit cell calculations in terms of the best agreement in the void growth rate,
mainly in the early stage of straining. In the cell calculations, while changing the values of  and @,y for each calculation,
other parameters are kept constant at intermediate values, T=1, Wy = 1, @¢/0o = 10. Based on this comparison, the following
expression is suggested for fg;:

o™ {0.1 +(np-091)(~0.18% 1+ 03) for > 25, -

sh = 0 i
0.1 for p < 2.5,

(fn)¥ =035 for @ > 0. a2

Note that f;; is equal to (f;,)" during stage III, and to (f;,)'"V after entering stage IV. Also, Eqs. (A-1) and (A-2) are valid in the
range 0 < ®p,/0o < 1. Figs. A1(a) and (b) show, respectively, the accuracy of Egs. (A-1) and (A-2) in comparison with the FE
unit cell calculations for the evolution of (f;)™ and (f;,)", as a function of B, for different @), values.
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