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SUMMARY

In order to eliminate ratcheting a so-called intergranular strain has been added to a hypoplastic constitutive
model. This additional state variable represents the deformation of the interface layer between the grains. The
new concept is outlined and comparisons with and without intergranular strain are presented. Some comments on
numerical implementation and determination of material constants are made. A discussion on the uniqueness of
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1. INTRODUCTION

The theory of hypoplasticity has been developed by Kolymbas and Gudehus and their associates

since the late seventies.1±8 Similar models have also been proposed independently by other authors,

e.g., Reference 9. Hypoplastic models have been shown to perform very well for deformations due to

rearrangements of the grain skeleton. However, application of hypoplasticity to cyclic stressing or

deformation with small amplitudes (e.g., Reference 10) reveals some defects. The most striking

shortcoming is an excessive accumulation of deformation predicted for small stress cycles, called

ratcheting. For undrained cyclic shearing the hypoplastic approach predicts too large a build-up of

pore pressure.3 Neither the small-strain stiffness nor effects of the recent history have been ade-

quately modelled by hypoplasticity as yet.

The purpose of the present paper is to extend hypoplasticity to improve the small strain perfor-

mance after changes of direction of stress or strain path. We assume that the material is dry or fully

saturated and that thermal, chemical and electrical effects can be disregarded. We also neglect

viscosity.

The behaviour of granular soils is incrementally non-linear even at low strains except for a small

elastic range, not exceeding ca. 1075.11 In this range the stiffness is higher and approximately

independent of strains. Values can be obtained with precise measuring of displacements (LVDT,

proximity transducers). Alternatively, they can be calculated from P-wave or S-wave velocities

(resonant column, bender elements). The size of the elastic range in strain space is reported rather to
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be independent of stress and void ratio, and the elastic stiffness depends on stress and density in a

similar manner to the incremental stiffness during monotonic deformation.12

Depending on the deformation history, the stiffness, at a given stress and density and for a

certain direction of strain rate, can have different values. In particular, for any sharp change of

direction of the strain path an increase of stiffness is observed, and the maximum value appears with a

complete (i.e., 180�) strain rate reversal.13 If straining is continued with nearly the same direction the

stiffness decreases gradually, and after a certain strain path, of length called eSOM (measured from the

reversal), the stiffness regains the low value typical for a monotonic path (SOM is an abbreviation for

swept-out memory).14

Micromechanical considerations15±17 indicate that intergrangular forces are transferred through

thin amorphous zones in the intergranular interface. We propose a concept of an elastic range that is

qualitatively related with properties of such zones. We formulate the elastic range in strain space

rather than in stress space. Owing to the postulated pressure independence of the elastic strain range

the required evolution equation can be very simple.

In this paper, after a brief description of a hypoplastic reference model, the extension for small

strains is presented. Two conceptually similar models from the literature are also brie¯y discussed. A

new state variable, called intergranular strain, is presented ®rst with a 1D model and then for 2D

strain paths. Finally, a general tensor formulation is given and supplemented by some comments on

numerical implementation.

The proposed extension requires ®ve additional constants. Three of them, the size of the elastic

range and two ratios of characteristic stiffnesses, have a clear physical meaning. Two exponents,

related to the transition between different deformation modes (intergranular strain and grain rear-

rangement), appear to be universal as exponents used in the physics of second-order phase transitions.

A detailed procedure for the determination of the constants is given. Finally, the performance of the

extended and the original hypoplastic model is compared for some element tests.

Tensors of second order are denoted with bold letters (e.g. D;T; d;N) and tensors of fourth order

with calligraphic letters (e.g. l;m). Different kinds of tensorial multiplication are used:

TD � TijDkl;T : D � TijDij;l : D � LijklDkl;T � D � TijDjk . The Euclidean norm of a tensor is

kDk � ������������
DijDij

p
. Unit tensors of second and fourth order are denoted 1 �dij� and i�Iijkl � dikdjl�,

respectively. Compressive stresses and strains are negative.

2. THE HYPOPLASTIC REFERENCE MODEL

Hypoplasticity is a framework for the description of mechanical behaviour of granular materials. It

assumes that grains are aggregated to a so-called simple granular skeleton de®ned by the following

properties:

� the state of a granular material is fully characterized by granular (effective) stress T and by void

ratio e only;

� grains are permanent, i.e., they keep their size and general form during deformations;

� deformation of the granular skeleton is due to grain rearrangements, which are understood as

relative displacements of grains including evolution and decay of grain contacts. Compression,

abrasion and crushing of grains are negligible;

� surface effects (capillarity, cemented bridges, osmotic pressures) are absent;

� the deformation under homogeneous boundary conditions is homogeneous (without shear

localization);

� three pressure-dependent limiting void ratios can be distinguished (Figure 1):

� ei represents the upper bound of the simple granular skeleton and corresponds to the
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maximum void ratio during isotropic compression starting from the minimum density by

pressure zero, e > ei suggests macropores and honeycomb formations;

� ec corresponds to the critical void ratio;18

� ed represents the lower bound of the simple granular skeleton and corresponds to the

minimum void ratio after a cyclic shearing with a small amplitude, e < ed suggests a

masonry-like granular skeleton;

� change of the limiting void ratios with the mean pressure is related to a so-called granular

hardness hs, which represents a reference pressure-independent stiffness of the soil and is the

only dimensional constant in the hypoplastic equation;

� rate effects are negligible.

The hypoplastic constitutive model is generally described by a single non-linear tensorial equation

that yields the stress rate T
�

(objective, Jaumann) with the stretching rate D:19

T
� �l :D� NkDk: �1�

The constitutive tensors l�T; e� and N�T; e� are functions of stress and void ratio. These functions

are of essential importance for the quality of predictions by hypoplastic model. For completeness of

this paper the mathematical representation of l�T; e� and N�T; e� given by von Wolffersdorff8 is

attached in Appendix A.

To satisfy the requirement of rate-independence, equation (1) is positively homogeneous of the ®rst

degree in D. However, owing to the second term in equation (1), it is non-linear in D, i.e.,

ÿT
��D� 6� T

� �ÿD�. The anelastic behaviour is thus achieved without the decomposition of deformation

rate into an elastic and a plastic part as is usual in elasto-plasticity. Explicit formulation of yield

surfaces or a ¯ow rule is not necessary, although they can be derived from equation (1).20

There are seven material constants in the hypoplastic model of von Wolffersdorff.8 All of them are

closely related to the geometric and material properties of grains, and for a non-cohesive soil they can

be easily determine from standard index tests.21 Their explanation is given in Appendix A.

Now, we demonstrate brie¯y the major shortcoming of hypoplasticityÐratcheting. For small strain

cycles in a 1D case, equation (1) can be simpli®ed to the scalar form

_T � LD� N jDj; 0 < ÿN < L: �2�
Values of L and N can be considered constant during a cycle provided that the changes of stress and

of void ratio are small. The accumulated stress in one strain cycle, �De � �DDt (Figure 2(a)), is then

DT acc � LDe� N jDej � L�ÿDe� � N j ÿ Dej � 2N jDej: �3�

Figure 1. Pressure-dependent limiting void ratios
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An accumulation of strain, viz.,

Deacc � DT

L� N
� ÿDT

Lÿ N
� ÿ2N

L2 ÿ N2
DT �4�

is similarly calculated but for a small stress cycle (Figure 2(b)). In both cases the accumulation is

generally too large compared with experimental results. This so-called ratcheting is typical for

several constitutive models and has often been discussed in the literature22±25 from different aspects.

Our main objective in this paper is to remove the excessive ratcheting from hypoplasticity.

3. TWO OTHER SMALL-STRAIN MODELS

Among constitutive relations describing small-strain soil behaviour, we have chosen for comparison

an approach with multisurface plasticity and a strain-space plasticity model, hoping that a comment

might be helpful.

Stallebrass26 has proposed an extension of the cam-clay elasto-plastic model incorporating an

elastic locus and a history-dependent surface inside the bounding surface (Figure 3). Both surfaces

evolve kinematically in the stress space. This model predicts the same initial stiffness after a 90� and

a 180� change of the stress path direction, which contradicts experimental observations.13 Contrary to

this approach, our elastic region is formulated in strain space, history surface is not explicitly de®ned,

and stiffness depends on the vertex angle of the strain path.

A different model has been proposed by Simpson27 in a strain space. The behaviour of soil in a

small-strain range is described by an analogy in which the strain path is represented by a walking man

dragging along several bricks attached to his feet by strings of different length. (A similar model,

using springs of different lengths ®xed between two plates, has been proposed by Guyon and

Troadec.28) The movements of the man correspond to the prescribed strain path and the movements

of the bricks represents portions of the plastic strain rate. If all bricks are dragged along one line then

the plastic strain rate is identical with the total one. Using the language of this brick analogy, the

model proposed in our paper is constituted of a man with a single brick attached by a string of length

R (Figure 4). We need fewer state variables, however, the calculations of stiffness and movements are

somewhat more complicated than in Simpson's model. In our model, the motion of the brick induces

stress rates according to the hypoplastic model (Figure 4(b)), whereas movements of the man with

respect to the brick lead to intergranular strains with corresponding stress rates (Figure 4(a)).

Figure 2. Excessive stress (a) and strain (b) accumulation during stress and strain cycles, respectively
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4. EXTENDED HYPOPLASTIC MODEL

Consider an element of a granular soil under such boundary conditions that its deformation can

suf®ciently well be described by the development of strain rate D. The strain is a result of (i)

deformation of the intergranular interface layer and of (ii) rearrangement of the skeleton. The

interface deformation is called intergranular strain d and is considered as a new state variable. Let us

assume that two opposite directions of straining correspond on the micromechanical level to two

opposite deformations of the interface followed by a slip on a representative contact. This simple

micromechanical situation is depicted in Figure 5. The interface is represented by the shaded area.

Prior to deformation we set d � 0, Figure 5(a). We may choose an arbitrary value of the deformation

rate, e.g., D � _e � ÿ1. During the deformation the intergranular strain reaches its extremum d � ÿR,

Figure 5, which cannot be surpassed by further stretching: the interface remains deformed while the

grains are sliding. This sliding corresponds to a rearrangement of the grains. After a reversal of D,

Figure 5(c), the deformation concentrates in the interface alone until d passes through the original

zero value, Figure 5(d). Finally d can reach the limit d � R on the opposite side, Figure 5(e). The

intergranular strain can be understood as a macroscopic measure of microdeformations of an inter-

face. Note that a small value of macroscopic measure may correspond to large microdeformations.

The total strain results from intergranular strains and contact slips.

Figure 3. Three-surface model proposed by Stallebrass26

Figure 4. Brick analogue proposed by Simpson27

Figure 5. 1D interpretation of the intergranular strain
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In this simple model we propose a constant maximum value of intergranular strain R independently

of the stress level. With increasing skeleton pressure only the intergranular contact area becomes

larger, which is consistent with the explanation of dry friction as a contact adhesion17,29,30 going back

to Terzaghi.31

The evolution equation of d in the above 1D model can be written as

_d � 1ÿ jdj
R

� �
D for d � D > 0;

D for d � D4 0:

8<: �5�

A geometrical interpretation of equation (5) is shown in Figure 6. At the beginning of the defor-

mation, the rate of intergranular strain jumps to _d � D � ÿ1 (point 1), which means that no rear-

rangement of grains takes place. As d � D > 0, the absolute rate of d continuously decreases until

d � ÿR is reached (point 2). On further deformation in the same direction d cannot grow any more.

This corresponds to a pure rearrangement of grains. The change of the sign of D results in elastic

microrebound. We have d � D4 0, and _d � D � �1 (point 3) as long as d � D4 0 holds (point 4).

Subsequently the condition d � D < 0 is ful®lled, and _d decreases towards zero as dictated by equation

(5). A cycle is closed after changing the deformation rate to D � ÿ1 again (point 6) and reaching

d � 0 �point 1�:
In the next example the evolution of intergranular strain is demonstrated for the strain path in two-

dimensional strain space, as shown in Figure 7. The evolution equation takes the form

_di �
Di ÿ

d1D1 � d2D2

R

���������������
d2

1 � d2
2

q
0B@

1CAdi for dkDk > 0;

Di for dkDk 4 0:

8>>>><>>>>: �6�

Let us now consider different strain paths and the corresponding changes of intergranular strain

(Figure 8). The strain path (a) and the path of intergranular strain (b) for one-dimensional com-

Figure 6. Evolution of d in 1D model in a single strain cycle
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pression and extension corresponds to the 1D model as in Figures 5 and 6. After a sharp bend (90�) of

the strain path (c) the intergranular strain (d ) adapts itself to the new direction of deformation, i.e.,

d! D
R

kDk
not exceeding R. One can obtain a similar picture also for other directions of strain path (e), ( f ).

The asymptotic evolution of intergranular strain is similar to the asymptotic evolution of the stress

path given by monotonic compression (with D� constant), towards a straight line of constant ratio of

stress components.14 Actually we may speak of two levels of SOM-effect, one for intergranular

behaviour and one for macrodeformations. Reaching the asymptotic state by grain rearrangements

requires much longer proportional straining than is needed for the intergranular SOM-state.

In the following a more general tensorial formulation of the model will be presented with the strain

rate D and the stress T being second-order tensors. The intergranular strain d is obtained by accu-

mulation of DDt so it must also be a second-order tensor.

It is convenient to denote the normalized magnitude of d as

r �def �kdk=R� �7�

Figure 7. Different intergranular strains d related with different deformation histories. Only the recent part of the previous strain
path (bold arrow) has an in¯uence on d. Current stress, void ratio and strain rate at the point * may be same in all three cases

Figure 8. Strain paths and corresponding paths of intergranular strain
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and the direction d̂ of intergranular strain as

d̂ �def d=kdk for d 6� 0

0 for d � 0

�
�8�

We will see below that the singularity as kdk � 0 is not acute numerically.

The general stress±strain relation is written as

T
� �m :D �9�

The fourth-order tensor m represents stiffness and is calculated from the hypoplastic tensors l�T; e�
and N�T; e�, which may be modi®ed (increased) by scalar multipliers mT and mR, depending on r and

�d̂ :D� as indicated in Figure 9.

We ®rst consider the case of r � 1 (point B in Figure 9) corresponding to the maximal inter-

granular strain.

1. For monotonic continuation of straining with D � d̂, we take

m �l� Nd̂ �10�
Notice that in this case D � d̂kDk so Nd̂ :D � NkDk and we obtain the hypoplastic equation

(1).

2. For reversed deformation, i.e. D � ÿd̂, we postulate an elastic microrebound with

m � mRl �11�
The multiplier mR is a new material constant, mR > 1. The second hypoplastic term unlike in

equation (10) is switched off.

3. For a neutral strain rate, de®ned by D ? d̂ �D : d̂ � 0�, we postulate

m � mTl �12�
with a constant mT in the range mR > mT > 1.

Figure 9. Modi®catin of the stiffness with mR and mT for r � 0 and for r � 1. For simplicity this ®gure assumes proportionality
_T�D� � D
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Next we consider the case r � 0 (point A in Figure 9) for which

m � mRl �13�
has been postulated. The stiffness is thus increased by factor mR independently of the direction of D if

r � 0.

For more general case �0 < r < 1� we calculate stiffness m using the following interpolation

m � �rwmT � �1ÿ rw�mR�l� rw�1ÿ mT �l : d̂d̂� rwNd̂ for d̂ :D > 0

rw�mR ÿ mT �l : d̂d̂ for d̂ :D4 0

�
�14�

In order to obtain the special cases mentioned above, we may substitute d̂d̂ :D � D and d̂ :D � kDk
for D � d̂ and of course d̂ :D � 0 for D ? d̂. The transition from mRl to l� Nd̂ for 0 < r < 1 is

smoothed by a weighting factor rw, wherein w is a constant.

Immediately after a full (180�) strain reversal the stiffness mRl is the largest possible one for a

given stress and void ratio. It remains so as long as d̂ :D4 0. Intergranular strain d changes in this

case identically with macroscopic strain. In this case the grain skeleton is ®xed and hypoplasticity is

`switched off': the term Nd̂ does not appear in equation (14) for d̂ :D4 0. As soon as d̂ :D becomes

positive the intergranular strain starts to grow and the stiffness decreases down to the hypoplastic

value l� Nd̂ while the intergranular strain grows up to kdk � R.

Generalizing equation (6), we obtain the evolution equation for the intergranular strain tensor d.

With the aid of Figure 10, we postulate

d
� � �iÿ d̂d̂rbr� : D for d̂ :D > 0

D for d̂ :D4 0

�
�15�

where d is the objective rate of intergranular strain (see Appendix C). The exponent br is a material

constant which (for simplicity) was assumed equal to one in equation (6).

Consider now the evolution equation of intergranular strain. According to equation (15), during a

monotonic deformation with D� constant we have limt!1 d � DR=kDk. If d̂ :D > 0 and r � 1 then

the intergranular interfaces remain deformed during a proportional straining with

d � DR=kDk � constant and stress rate can be calculated from hypoplastic equation (equation (9)

with (14) becomes identical to (1)). In the case of a sudden change of the direction of straining (by

less than 90�) d rotates towards the new D keeping r � 1. Indeed, after perusal of equation (15) we

see that for r � 1 only the neutral part Dÿ d̂d̂ :D contributes to the evolution of d so that r remains

constant. For r � 0, we have d�D independent of the direction of D. Actually, equation (15) can be

seen as a kind a power law interpolation (with rbr) between the special cases r � 0 and r � 1

(Figure 11).

Figure 10. Rate of the intergranular strain for the special case r � 1. According to equation (15) the rate d̂ vanishes in the case
of Da � d̂ k Da k �d̂ :Da > 0�, and d̂�D in the case of Db�d̂ :Db < 0�
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The stress response TÊ (D) of the model is continuous if plotted over the direction of an applied

strain but the stiffness @TÊ =@D is not (see equation (14)). Thus, the extended constitutive model

presented above is not strictly hypoplastic in the sense of the de®nition given by Wu and Kolymbas.32

The linear part of the model is hypo-elastic so is not necessarily conservative. If desired, l can be

replaced by a hyper-elastic stiffness. An appropriate formulation can be found elsewhere, e.g.,

References 3 and 33.

5. NUMERICAL ASPECTS

Consider numerical element tests with stress or mixed control. Solving the constitutive equation (14)

is more complicated than the purely hypoplastic relation, because the new relation is bilinear, and the

sign of d̂ :D has to be tested in all increments.

Unless D is given directly, we have to solve the auxiliary equation

T
� �l : D* �16�

instead of equation (9) for D*, where D* is an estimate of the strain rate. In stress-controlled

problems all components of TÊ are given and D* can be obtained from equation (16). A unique strain

rate D can then be found for a given stress rate TÊ from equations (9) and (14), provided it is unique

for the non-extended version of hypoplasticity TÊ �l : D� NkDk.
For a mixed control, some components of D and some components of TÊ are given. In this case,

®rst, equation (16) must be solved for the unknown components of D*. The estimation of D* suf®ces

(in place of D) to determine the sign d̂ :D, being identical with the one of d̂ :D*. For proof of this fact

and for discussion of the uniqueness of solution of mixed problems see Appendix B. Having the sign

of d̂ :D, we may proceed with solving a mixed problem using equation (9) with an appropriate m
given by equation (14).

An automatic incrementation algorithm should be used in numerical calculations with the proposed

model. Especially, directly after sharp reversals of strain paths unusually small increments must be

used. The strain increments used in the following numerical calculations are chosen as De � 0:001

for d̂ :D > 0 and smaller than 0�2R for d̂ :D < 0 in order to secure numerical stability. The recom-

mended maximum De during d̂ :D > 0 can be calculated from equation (15) as

Demax �
mR

1ÿ rbr
�17�

Figure 11. Evolution of the intergranular strain d. After a 180� strain reversal D is assumed to remain constant. At ®rst D � ÿd̂
so d̂�D, then D � d̂ so kdk decreases according to equation (15)
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where 0 < m < 1 is a parameter that controls the magnitude of the increment Demax (we propose

m � 0:2). However, even so small increments cause some second-order errors. In classical stress-

space elasto-plastic models the necessary correction is usually made by projecting the updated stress

onto the updated yield surface. In the case of our strain-space formulation for r > 1 it is preferable to

correct d rather than to modify the actual strain.

Although some correction of d may follow automatically in next time-steps due to the rbr term in

equation (15), we do not recommend to rely on this `self-healing' property of the evolution equation

in predictions of cyclic response.

An updated Lagrange formulation with an explicit Euler time integration scheme seems appro-

priate. Then we have

Tt�Dt � Tt � _TtDt �18�
whereby _Tt is calculated using the stress state Tt and the void ratio et at the beginning of an

increment. In general, the Jaumann term �ÿW � T� T �W�Dt has to be included. The same should be

done when updating d, see Appendix C.

The Jacobian (stiffness) matrix, @DT=@De, can be calculated assuming that the next strain incre-

ment is proportional to the current one. One should avoid the updating of state variables during

equilibrium iteration because of the danger of non-physical (numerical) reversals.

6. DETERMINATION OF THE ADDITIONAL CONSTANTS

The maximum value of intergranular strain can be found from stress±strain curves obtained either

from so-called dynamic tests or from static tests with strain reversals. The incremental stiffness

remains approximately constant within a certain strain range there. The size of this range can be

identi®ed with the constant R (Figure 12).

In order to determine the constants mT and mR in equation (14), we recommend comparative tests

at ®xed values of T, e and D but with different d, i.e., with different recent deformation histories.

Intergranular strains d induced by various recent strain histories have been already depicted in Figure

7. The asterisks in Figure 7 correspond to the starting point (e � 0) of the stiffness±strain curves in

Figure 12 for which T, e and D are the same. During monotonic deformation (a) the stiffness E0 may

slowly change (here decrease) also due to the general E0�T� dependence. After a 90� reversal of the

strain path (b) the stiffness decreases starting from ET down to E0, and after a 180� strain reversal (c)

from ER to E0. All three stiffnesses approximately coincide at e � eSOM. Small discrepancies in

stiffness at e � eSOM are caused by a different stresses. Note that T and e are identical only for e � 0

Figure 12. Characteristic stiffness values for the model calibration
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and not for the whole strain path of interest. The increase in stiffness is modelled by the constants mT

and mR. They can be measured from a series of strain controlled tests with D� constant (e.g., plane

strain tests34) starting from a given stress, void ratio but preceded by different recent deformation

histories.

The parameter br in¯uences the evolution of intergranular strain and can be correlated with the

length eSOM of the straight strain path, measured from the reversal point to the point where the

additional stiffness becomes by de®nition less than 10% of its value directly after reversal, see Figure

12.

We approximate the upper curve in Figure 12 as

E � mRE0 �� ER� for e < R

E0 � E0�mR ÿ 1��1ÿ rw� for e > R

�
�19�

which follows directly from equation (14) for D � d and with N � 0. The dependence of r on d can

be found for e > R from (7) and (15) under assumption of a 1D monotonic path with _e � d̂ and

_e : d̂ > 0. The resulting ordinary differential equation

dr
de
� �1ÿ rbr�=R �20�

can be solved for the known boundary conditions rwje�R � 0 and rwje�eSOM
� 0:9. In our solutions we

disregard the dependence E0 on T for 0 < e < eSOM.

The solution of equation (20) can be presented for different w in the form of a diagram, see Figure

13. For example, for w � 6;R � 0�0001 and eSOM=R � 8 we obtain from this diagram br � 0�50.

The parameter w�w > 1� describes the degradation of the stiffness from ER to E0 during monotonic

deformation. Equation (14) provides a smooth transition from ER�� mRL� to the hypoplastic stiffness

E0 � L� N as r changes from 0 to 1. The parameter w can be calibrated from cyclic test with small

strain amplitudes. The stress accumulated during a single strain cycle of the amplitude DeA is a

function of w and br. Consider a series of small strain cycles such that T and e remain nearly constant

as well as l and N. Owing to the evolution equation (15), after a number of cycles a kind of stable

state is achieved in which d oscillates periodically around d � 0 with the amplitude �dA (Figure 14).

Figure 13. Correlation of br versus eSOM=R for different w
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This can be considered as a kind of micro shakedown. The accumulation of stress after one cycle (cf.

equation (3)) is then

DTacc � 2NR

�rA

0

rw

1ÿ rbr
dr �21�

The maximum intergranular strain during such a cyclic deformation is dA � R � rA. The relation

between rA and the straining amplitude eA can be found from (7) and (15) as

2
eA

R
ÿ rA ÿ

�rA

0

dr
1ÿ rbr

� 0 �22�

Equations (21) and (22) must be solved numerically for different br. The results are plotted in

diagrams (Figure 15).

In order to ®nd w, one can perform a cyclic strain test and measure the stress response. E.g., during

undrained cycles with a small amplitude of axial strain eA � constant we observe a decrease in the

vertical stress with each cycle. Having measured DTacc at the given eA, the corresponding value of w
can be found from Figure 15 (only the cases br � 0�05 and br � 0�5 have been shown there).

7. NUMERICAL SIMULATION OF ELEMENT TESTS

The performance of the extended hypoplastic model is compared now with the reference version (see

Section 2). The hypoplastic constants in Table I have been found for Hochstetten sand from the

vicinity of Karlsruhe, Germany.8,35

We assume that the intergranular strain tends to zero after some resting period. According to

Jardine, Symes and Burland11 an increase of stiffness is observed after strain reversals as well as after

a `resting period'. In order to take this second phenomenon into account one could introduce a slow

monotonic change of d towards zero, e.g. d
� � ÿkd, with k being a positive scalar function of time. As

long as this process is not suf®ciently recognized we prefer simply to set d � 0 after each resting

period. We argue that the pure resting period is a mathematical simpli®cation only and there are

always some small movements. According to equation (15) such small cyclic changes of e make d
drift towards zero.

Using the constants in Table I, an in¯uence of the recent deformation history on the stiffness

has been numerically calculated and depicted in Figure 16. The tangential stiffness Gt �
d�T1 ÿ T2�=d�e1 ÿ e2� has been computed after a change in direction of straining according to Figure

Figure 14. Evolution of d for strain cycles with a small amplitude eA. The unsymmetry of intergranular strain d gradually
dwindles with the number of cycles
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7. The state in Figure 7 corresponds to the isotropic stress T�ÿ100 kN=m2 and the void ratio

e0 � 0�695. The deformation corresponds to biaxial (plane strain) compression with constant volume.

There is a distinct elastic range with the higher stiffness after the strain path reversal (180�). All

three curves coincide at strain of ca. 1073 which may be taken as eSOM, i.e., at this strain the previous

deformation history is swept out from the material memory. The dotted curve does not exactly

coincide with the lower ones because of the dependence of G on T (stresses at eSOM are different).

Stress cycles during a one-dimensional (oedometric) compression test in the overconsolidated

range show a much smaller accumulation of compaction (see Figure 17 left) as compared with the

pronounced ratcheting of the stress±strain curves from the reference hypoplastic model (in Figure 17

right) for this type of deformation.

Figure 15. Relation between the strain amplitude and the accumulated stress in one-half of the strain cycle for different
w;br � 0�05 (left) and br � 0�5 (right)

Table I. Hypoplastic parameters of Hochstetten sand

j��� hs�MPa� n ec0 ed0 ei0 a R mR mT br w

33 1 000 0�25 0�95 0�55 1�05 0�25 16 1074 5�0 2�0 0�50 6�0

Figure 16. Calculated stiffness Gt � d�T1 ÿ T2�=d�e1 ÿ e2� for a biaxial compression with constant volume after a change of
strain path direction
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The ratcheting of the stress±strain curve of the reference hypoplastic model in calculation of a

triaxial drained compression test (Figure 18 right) is overcome with the extended model (Figure 18

left).

Cyclic undrained triaxial shearing leads to a build-up of pore pressure and a corresponding

decrease of effective stress. For medium-dense to dense granular material a so-called cyclic mobility

can be reached. It is characterized by a `butter¯y'-like trajectory in the stress space at a growing

strain amplitude. Though this butter¯y attractor itself is fairly well modelled by the reference version

of hypoplasticity it is approached too fast. Two examples are given in Figures 19 and 20 for

unsymmetric and symmetric deviatoric stress cycles respectively. The calculation was performed for

the initial void ratio e0 � 0�695 and initially isotropic pressure p0 � 0�3 MPa.

The number of undrained stress cycles sustained by the sample prior to cyclic mobility may be

practically important. The results for symmetric deviatoric stress cycles are shown in Figure 21. The

relation obtained in the numerical calculations coincides qualitatively with the experimental results in

Reference 36. From Figure 21 it is also apparent that the reference hypoplastic model predicts too

small a number of cycles, especially for low stress amplitudes.

Figure 17. Oedometric compression (left: extended model, right: reference model)

Figure 18. Drained triaxial compression with the same deviatoric stress cycles (left: extended model, right: reference model)
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Figure 19. Undrained triaxial compression with unsymmetric deviatoric stress cycles of different amplitude (left: extended
model, right: reference model). p0 � Tii=3 denotes the effective mean pressure, q is the stress deviator

Figure 20. Undrained triaxial compression with symmetric deviatoric stress cycles (left: extended model, right: reference
model)

Figure 21. Number of cycles to cyclic mobility in undrained triaxial compression with symmetric deviatoric stress cycles of
different amplitudes q=�2Tc�:Tc is the cell pressure and q the stress deviator
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APPENDIX A

We use a version of the hypoplastic model recently published by von Wolffersdorff.8 Its mathe-

matical formulation can be summarized as follows:

l � fb fe
1

T̂ : T̂
�F2i� a2T̂T̂� �23�

N � fd fb fe
Fa

T̂ : T̂
�T̂� T̂*� �24�

T̂ �def
T=trT; T̂* �def

T̂ÿ 1
3

1 �25�

a �def

���
3
p �3ÿ sinjc�

2
���
2
p

sinjc

�26�

F �def

�����������������������������������������������������������
1

8
tan2 c� 2ÿ tan2 c

2� ���
2
p

tanc cos 3y

s
ÿ 1

2
���
2
p tanc �27�

tanc �def ���
3
p
kT̂*k; cos 3y �def ÿ

���
6
p tr�T̂* � T̂* � T̂*�

�T̂* : T̂*�3=2 �28�

For T̂* � 0 is F � 1. The parameter jc corresponds to the critical friction angle. The development of

equation (23) can be found elsewhere.1,2,37,38

The scalar factors fb � fe and fd take into account the in¯uence of mean pressure and density:6,7

fb fe �def hs

n

1� ei

e

ÿtrT

hs

� �1ÿn

3� a2 ÿ a
���
3
p ei0 ÿ ed0

ec0 ÿ ed0

� �a� �ÿ1

�29�

fd �def eÿ ed

ec ÿ ed

� �a

�30�

Three characteristic void ratiosÐei (during isotropic compression at the minimum density), ec

(critical void ratio) and ed (maximum density)Ðdecrease with mean pressure according to a relation

by Bauer,7 see Figure 1:

ei

ei0

� ec

ec0

� ed

ed0

� exp ÿ ÿtrT

hs

� �n� �
�31�

The range of admissible void ratios is limited by ei and ed .

The constants of the hypoplastic relation can be determined from simple tests:21

1. jc, critical (residual) friction angle, corresponds to the angle of repose of a loose soil.

2. ec0, is identical to the conventional maximum void ratio emax or with critical ec for continued

granular ¯ow at vanishing pressure.

3. ed0, is identical to the conventional minimum void ratio emin obtained by shaking.
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4. hs, granular hardness, is a pressure-independent stiffness that for sands can be estimated from

mean grain size d50 and uniformity Cu, or precisely determined from an oedometer test.

5. An exponent n, appearing in the power law for proportional compression,39 is close to 0�30 for

many sands.

6. An exponent a, can be estimated from d50 and Cu, or calculated from the triaxial peak friction

angle at a given pressure and density.

7. ei0, is a maximum possible void ratio at zero pressure; ei0 � 1�1ec0 can be often assumed.

The relation between the Cauchy stress rate _T and the objective (Jaumann) stress rate TÊ is

_T � T
� �W � Tÿ T �W �32�

where W denotes the spin tensor.19

APPENDIX B

There are two formulae for TÊ in our constitutive model: one for d̂ :D > 0 and one for d̂ :D4 0. If the

stress rate TÊ is prescribed and we have to solve (9) for D, it is not obvious which equation should be

taken to calculate D and whether there always exists a unique solution of such a problem. We

demonstrate that the approximation D* obtained from (16) suf®ces to distinguish between d̂ :D > 0

and d̂ :D < 0.

We use the decomposition D � Dn � Dt, given by

Dn � d̂d̂ :D; Dt � �iÿ d̂d̂� : D �33�
Normal and tangential parts of D refer to the surface kdk � R shown in Figure 10 �Dnkd̂;Dt ? d̂�.

The stress response can be expressed as a sum of the responses to Dt and to Dn

T
� � T

��Dn� � T
��Dt� � al : Dn � bl : Dt � cNd̂ :Dn �34�

where

a � �1ÿ rw�mR � rw for d̂ :D > 0

rwmR for d̂ :D4 0

�
�35�

b � rwmT � �1ÿ rw�mR �36�

c � rw for d̂ :D > 0

0 for d̂ :D4 0

�
�37�

Assume ®rst that the solution of (34) is unique for all TÊ (this assumption will be proven further).

The test of sign�d̂ :D� can then be performed not necessarily with D but also with any

D* � a*Dn � b*Dt �38�
where a* > 0 and b* is any number. We limit ourselves to the case of condition equivalent d̂ :D4 0

since the opposite case results automatically. The constitutive equation takes the form

T
� �m : D � al : Dn � bl : Dt �39�

We choose a* � a and b* � b so that equation (34) takes the simple form

T
� � al : Dn � bl : Dt �l : D* �40�
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With limitation mR > 0 and 0 < r < 1 the value of a is positive, so the product d̂ :D* gives the true

sign of d̂ :D.

Next we have to prove the uniqueness of the solution of equation (34) for D. The uniqueness will

be lost if there exists D1 6� D2 such that TÊ 1�TÊ 2. If both D1 and D2 belong to the same regime, that is,

if sign�d̂ :D1� � sign�d̂ :D2�, the stiffness m in both cases is identical and the solution of such a linear

system is unique �D1 � D2�. Owing to the imposed continuity of the stress response, the stress rates

corresponding to the tangential strain rate Dt are for both regimes equal. According to the assumed

superposition (34), it is therefore suf®cient to consider Dn only. Without loss of generality we may

investigate D1 � d̂ and D2 � ÿx2d̂ with x being any real number. If a non-unique solution exists, the

difference of the respective stress rates must vanish

al : D1 � cNd̂ :D1 ÿ a0l : D2 �l : d̂�a� a0x2� � cN � 0 �41�
wherein a � �1ÿ rw�mR � rw and a0 � �1ÿ rw�mR � rwmR. Solving (41) for d̂ and using kd̂k � 1 we

arrive at the following condition for loss of uniqueness

a� x2a0

c

�����
����� � k ÿlÿ1 : Nk �42�

Since a and x2a0 are positive the condition (42) takes the form

k ÿlÿ1 : Nk5 a

c

��� ��� � mR ÿ rwmR � rw

rw

�����
����� �43�

With limitation mR > 0 and 0 < r < 1 (43) may be ful®lled only if klÿ1 : Nk > 1 that is, in the

stress range where the hypoplastic model itself yields non-unique solutions, see Reference 3. Thus,

the uniqueness of (34) has been proved provided that equation (1) is unique.

APPENDIX C

We demonstrate now (after Malvern40) that the co-rotational rate d̂
�

is objective. The constitutive law

is written tensorially and involves gradients of velocity only so it is immune against any change of the

co-ordinate system. This invariance of the formulation with respect to the rotated co-ordinate system

can be written as _T�Q � T �Q;Q � d �Q;Q � D �Q; e� � Q � _T�T; d;D; e� �Q where Q(� constant) is

an orthogonal matrix of rotation. A shift of time axis does not matter since time does not appear

explicitly in the equations. A shift of the origin of the co-ordinate system does not matter either since

the location in space does not enter the constitutive relation.

The requirement of frame indifference goes further than that. According to this requirement any

inertial observer (no change of acceleration relative to the ®xed stars) should measure the same

values involved in the constitutive equations. It means that the matrix of rotation Q�t� and drift of the

origin c�t� of space co-ordinates may be a function of time (but not of space). The co-rotational stress

rate and the rate of deformation are frame indifferent too, see Reference 40. The co-rotational rate of

d can be formulated analogously as the one of stress. Consider an alternative observer rotated with

respect to the main one by Q�t�. It measures the rate of d as

_d* � _Q � dQT �Q � _dQT �Q � d _QT �44�
Since (see Reference 40) _Q �W* �QÿQ �W and _QT � ÿQT �W*�W �QT we obtain

d̂
� � _dÿW � d� d �W as an objective co-rotational rate of d.
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