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magnitudes are varied. The common factor that multiplies all loads as they vary in

fixed proportion is called the load factor. The procedure for finding the load factor

is as follows [13.5]:

1. Find the locations of the plastic hinges in each component of the frame using

the same method as for beams.

2. Form possible failure modes called mechanisms by different combinations of

plastic hinges. The number of hinges in each mechanism is equal to the number

of redundancies plus 1.

3. Calculate the collapse load factor for each mechanism.

4. Calculate the moments in the frame for each collapse load factor to determine

the correct load factor. The true load factor should be such that the moment in

the frame due to this load should not exceed the plastic moment Mp .

In addition to the collapse load factors that can be determined, a safe-load region

can be established. Table 13-6 shows safe-load regions for several frameworks. In

Table 13-6, a combination of forces applied on the frame define a point on the xy

plane. When this point falls inside the safe region, no collapse occurs. When the

point falls on the boundary of the region, collapse occurs and the collapse mode is

identified by the location on the boundary, as indicated by the figures in Table 13-6.

Loadings leading to points outside the region correspond to a collapsed framework.

In fact, an attempt to increase the applied loads beyond that necessary to reach the

boundary results in further movements of the plastic hinges without an increase in

the collapse loads. See Ref. [13.5] for techniques for calculating the safe-load region.

13.3 GRIDWORKS

A special case of frames is a gridwork, or grillage, which is a network of beams

rigidly connected at the intersections, loaded transversely. That is, a gridwork is a

network of closely spaced beams with out-of-plane loading. It may be of any shape

and the network of beams may intersect at any angle. These beams need not be

uniform.

The gridworks treated here are plane structures (Fig. 13-5), with the beams lying

in one direction called girders and those lying in the perpendicular direction called

stiffeners. Either set of gridwork beams can be selected to be the girders. In prac-

tice, the wider spaced and heavier set is usually designated as girders, whereas the

closer spaced and lighter beams are stiffeners. For a uniform gridwork, the girders

are identical in size, end conditions, and spacing. However, the set of stiffeners may

differ from the set of girders, although the stiffeners are identical to each other. The

treatment here is adapted from Ref [13.6].

For the formulas here, the cross section of the beams may be open or closed, al-

though torsional rigidity is not taken into account. For closed cross sections this may

lead to an error of up to 5%. Stresses in the girders and stiffeners can be calculated

using the formulas for beams in Chapter 11.
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Figure 13-5: Typical gridwork.

For gridworks not covered by the formulas here, use can be made of a framework

computer program. The structural matrices, including transfer, stiffness, and mass

matrices, for a grillage are provided in Section 13.4. The sign convention of the

transfer matrix method for displacements and forces for the beams of Chapter 11

apply to the gridwork beams here.

Static Loading

The deflection, slope, bending moment, and shear force of the gth girder of the grid-

work are given in Table 13-7. The ends of both the girders and stiffeners are simply

supported. Table 13-8 provides the parameters K j for particular loadings. Sufficient

accuracy is usually achieved if only M terms, where M ¿ ∞, are included in the

formulas for Tables 13-7 and 13-8; that is,

∞
∑

j=1

=
M

∑

j=1

Example 13.6 Deflection of a Gridwork with Uniform Force The grillage of

Fig. 13-6 is loaded with a uniform force of 10 psi. Use the formulas of Tables 13-7

and 13-8 to find the deflections at the intersections of the beams. Assume that the

axial forces in both the girders and stiffeners are zero.

As indicated in case 3, Table 13-8, only a single term is needed in the summation

of the formulas of Table 13-7. It is reasonable to assume that the loading inten-

sity along either of the stiffeners will be ps = (10 psi)Lg/(ns + 1) = 10( 100
3

) =
333.33 lb/in. Use one term of case 1, Table 13-7:

wg = sin
πg

ng + 1
K1 sin

πx

Lg

= K1 sin
πg

3
sin

πx

100
(1)

where from case 3 of Table 13-8, since Pg = Ps = 0,
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Figure 13-6: Grillage for Examples 13.6–13.8.

K1 =

4L4
s

E Isπ5

2
∑

s=1

ps sin πs
3

3
2

+ 3
2

=
4L4

s ps

E Isπ5 (
√

3/2 +
√

3/2)

3
2

+ 3
2

=
4L4

s ps

E Isπ5

√
3

3
(2)

Then

w1|x=Lg/3 = w2|x=Lg/3 = w1|x=2Lg/3 = w2|x=2Lg/3

=
4L4

s ps

E Isπ5

√
3

3
sin

π

3
sin

π

3
= 0.062886 in. (3)

Example 13.7 Moment in a Gridwork with Uniform Force and Axial Loads

Find the maximum bending moment in the grillage of Fig. 13-6. The grillage is

loaded with a transverse uniform force of 10 psi. In addition, the girders are subject

to compressive axial forces of 5000 lb.

The bending moments in the girders are given by case 3, Table 13-7. As noted in

case 3 of Table 13-8, only one term in case 3, Table 13-7, is required. Thus

Mg = E Ig sin
πg

ng + 1
K1

π2

L2
g

sin
πx

Lg

(1)

The coefficient K1 is taken from case 3, Table 13-8. Use the data Ls = Lg =
100 in., E = 3×107 psi, Is = Ig = 100 in4, Ps = 0, Pg = 5000 lb, ns = 2, ng = 2,

ps = 333.33 lb/in (Example 13.6).

Pe =
π2(3 × 107)100

1002
= 2,960,881 = Pc,

Pg

Pc

= 1.69 × 10−3 (2)

K1 =

4L4
s ps

E Isπ5

2
∑

s=1

sin πs
3

3
2
(0.99831) + 3

2

=
4L4

s ps

E Isπ5
(0.57784) (3)
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It follows from symmetry that the maximum moment occurs at x = 1
2

Lg. Then,

for g = 1,

M1,max = Mg|x=Lg/2 = E Ig sin
(π

3

) 4L4
s ps

E Isπ5
(0.57784)

π2

L2
g

= 215,190 in.-lb (4)

Example 13.8 Deflections Due to Concentrated Forces Consider again the

grillage of Fig. 13-6. Assume that there are no distributed or in-plane axial forces.

Suppose that concentrated forces of 10,000 lb act at each intersection.

With equal concentrated forces, sufficient accuracy is usually achieved with one

term of the formulas of Table 13-7:

wg = K1 sin
πg

3
sin

πx

100
(1)

with (case 1 of Table 13-8)

K1 =

2L3
s

E Isπ4 × 10,000
2

∑

s=1

2
∑

g=1

sin
πg
3

sin πs
3

3
2

+ 3
2

=
2L3

s

E Isπ4
× 10,000 (2)

Substitute (2) into (1):

w1|x=Lg/3 = w2|x=Lg/3 = w1|x=2Lg/3 = w2|x=2Lg/3 = 0.0514 in. (3)

Buckling Loads

The buckling or critical axial loads in the girders of uniform gridworks are given

in Tables 13-9 and 13-10. That is, these are formulas for Pg = Pcr. The formulas

that apply for girders and stiffeners with fixed or simply supported ends are accurate

for gridworks with more than five stiffeners. In some cases, the formulas will be

sufficiently accurate for as few as three stiffeners.

Example 13.9 Buckling Loads Compute the critical axial forces in the girders

of the gridwork of Fig. 13-7 if the girders can be simply supported or fixed. The

stiffeners are simply supported. Suppose that Ig = Is and Lg = Ls = L. From

Fig. 13-7, ng = 3 and ns = 12.

The girder buckling loads Pcr are given by the formulas of Table 13-9 for gird-

ers with fixed or simply supported ends. These formulas involve the constant C1,

which is taken from Table 13-10 according to the stiffener end conditions. To use

Table 13-9, first calculate D1. For simply supported stiffeners and ng = 3, the con-

stant C1 is given as 0.041089 in Table 13-10. Thus,

D3 =
√

C1Lg L3
s Ig/[Is(ns + 1)] =

√

C1L4/13 = L2
√

C1/13
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Figure 13-7: Example 13.9.

and

D1 = 0.0866L2
g/D3 = 0.0866

√

13/C1 = 1.54

D2 = 0.202L2
g/D3 = 3.5930

Since D1 > 1, cases 2 and 4 in Table 13-9 are used. These give Pcr = D2 Pe =
3.5930Pe for simply supported girders and Pcr = 6.5930Pe for fixed girders.

Natural Frequencies

Designate the natural frequencies of a gridwork as ωmn , where the subscript m in-

dicates the number of mode-shape half waves in the y (stiffener) direction and n

indicates the number of half waves in the x (girder) direction. Figure 13-8 illustrates

typical mode shapes associated with ωmn .

For a uniform grillage with simply supported stiffeners, the lower natural frequen-

cies (radians per time) are given by

ω2
mn =

E Is Lg

(

πm
Ls

)4
+ E Ig

ng+1

Cn L3
g

− Ps

(

mπ
Ls

)2
Lg

ρs Ls + ρg Lg

(13.1)

where ng is the number of girders; Ig, Is are the moments of inertia of girders

and stiffeners, respectively; Lg, Ls are the length of girders and stiffeners, respec-

tively; ρg, ρs are the mass per unit length of girders and stiffeners, respectively

(M/L , FT 2/L2); and E is the modulus of elasticity. The stiffener axial force Ps

Figure 13-8: Mode shapes corresponding to frequencies ωmn .
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is simply set equal to zero if the stiffeners are not subject to axial forces. The pa-

rameter Cn is given in Table 13-11 for girders with fixed or simply supported ends.

Recall that either set of grillage beams can be selected to be the girders.

If each of the girders is subjected to an axial force Pg , Eq. (13.1) still provides the

natural frequencies if Cn is replaced by

Cn
Pe

Pe − Pg

(13.2)

where Pe = π2 E Ig/L2
g.

Example 13.10 Natural Frequencies of a Simply Supported Gridwork Find

the lower natural frequencies of a 3 × 3 grillage for which all beam ends are simply

supported. For this grillage, ng = ns = 3, Ig = Is = 100 in4, ρg = ρs =
1 lb-s2/in2, Lg = Ls = 100 in., and E = 3 × 107 psi. There are no axial forces

(i.e., Ps = 0, Pg = 0). From Eq. (13.1),

ω2
mn =

(3 × 107)100[m4π4 + (3 + 1)/Cn]/1003

2 × 100
= 15

(

m4π4 +
4

Cn

)

(1)

To calculate ω11, ω21, ω12, and ω22, enter Table 13-11 for ns = 3 and find C1 =
0.041089 and C2 = 0.0026042. Use (1):

ω2
11 = 15(π4 + 4/C1) = 2921.37 or ω11 = 54 rad/s

ω2
21 = 15(16π4 + 4/C1) = 24,838.347 or ω21 = 157.6 rad/s

ω2
12 = 15(π4 + 4/C2) = 24,500.831 or ω12 = 156.5 rad/s

ω2
22 = 15(16π4 + 4/C2) = 46,417.89 or ω22 = 215 rad/s

(2)

Other frequencies can be calculated in a similar fashion.

General Grillages

The formulas for uniform gridworks are provided in this section. Since gridworks

are a special case of frameworks, use a computer program for the analysis of frames

to find the response of complicated grillages. The structural matrices for grillages are

listed in Section 13.4 under plane frames with out-of-plane loading.

13.4 MATRIX METHODS

Frames and trusses (both generally referred to as frames) can be considered as as-

semblages of beams and bars. As a consequence, they can be analyzed using the ma-

trix methods (transfer and displacement) of Appendix III. The displacement method
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can be employed to obtain the nodal responses, while the displacements and forces

between the nodes along the members can be obtained using the transfer matrix

method. Such references as [13.7]–[13.10] contain frame analysis formulations.

Frames are often classified as being plane (two-dimensional) and spatial (three-

dimensional) in engineering practice.

Transfer Matrix Method

The transfer matrices provided in Chapters 11 and 12 can be combined to obtain the

transfer matrices for the analysis of frames or frame members. See Appendixes II

and III.

Stiffness and Mass Matrices

In general, the analysis of plane frames requires the inclusion of the axial effects

(extension or torsion) as well as bending in the stiffness matrix. As discussed in

Appendix III, the analysis also requires a transformation of many variables from local

to global coordinates. Then the global system matrix can be assembled. For dynamic

problems, the mass matrices can be treated similarly to establish the system mass

matrix. The nodal displacements are found by introducing the boundary conditions

and solving resulting equations. See the examples in Appendix III.

The stiffness matrices for plane and space trusses and frames are presented in

Tables 13-12 to 13-15. Mass matrices for frames are listed in Tables 13-16 and 13-17.

All of these matrices use sign convention 2 of Appendix II. Use a frame analysis to

analyze a truss for dynamic responses. Stiffness matrices for more complex members

can be constructed from the general stiffness matrices of Chapter 11. For example,

it is possible to introduce a 4 × 4 beam stiffness matrix that includes the effect of an

axial force on bending. Also, if thin-walled cross sections are of concern, the 4 × 4

structural matrices of Chapter 14 can replace the 2 × 2 torsional matrices of this

chapter.

Stability Analysis

The stiffness matrices listed in the tables of this chapter do not include the interac-

tions between bending and axial forces. However, in some analyses (e.g., a stability

analysis), this interaction must be considered in that the bending moment caused

by the axial forces must be included. To do so, introduce the stiffness matrix of

Table 11-22 with P 6= 0. The buckling loading can be obtained using a determinant

search after the global stiffness matrix is assembled and the boundary conditions

applied. The details of this instability procedure follow.

1. Perform a static analysis of the frame using the stiffness matrices given in

Tables 13-12 to 13-15 to determine the axial forces in each element resulting

from a given load.
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2. Use element stiffness matrices, such as that given in Table 11-22, that include

the effects of bending and the axial force interaction.

3. Assemble the element matrices to form the global stiffness matrix, and impose

the boundary conditions on the global matrix using the procedure described in

Appendix III.

4. Let all internal axial forces remain in the same fixed proportions to each other

throughout the search for the critical applied load. These fixed proportions are

determined in step 1. Introduce a single load factor λ that holds for global

structural matrices that model the entire structure. This λ is a common factor

that multiplies all loads as they vary in fixed proportion.

5. Let the determinant of the global stiffness matrix be zero and determine λ,

usually employing a numerical search technique. This λ is the critical load

factor.

For examples, see Ref. [13.11].

The stability analysis can also be conducted approximately, but efficiently, by

employing the geometric stiffness matrix given in Table 11-23 and using the dis-

placement method of Appendix III.
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TABLE 13-7 UNIFORM GRIDWORKSa

Notation

The ends of both the girders and stiffeners are simply supported.
Girders: beams that lie parallel to the x axis.
Stiffeners: beams that lie parallel to the y axis.

ng, ns = total number of girders and stiffeners, respectively

g, s = index for girders and stiffeners, respectively

wg, θg, Mg, Vg = deflection, slope, bending moment, and shear force of gth girder

Ig, Is = moments of inertia of girders and stiffeners, respectively. All girders
have the same Ig and all stiffeners have the same Is .

Lg, Ls = length of girders and stiffeners, respectively. All girders have the same
Lg and all stiffeners have the same Ls .

M = number of terms chosen by user to be included in summation

〈x − xs〉0 =
{

0 if x < xs

1 if x ≥ xs

K j = Take from Table 13-8.

Response

1.
Deflection

wg = sin
πg

ng + 1

∞
∑

j=1

K j sin
jπx

Lg

2.
Slope

θg = − sin
πg

ng + 1

∞
∑

j=1

K j
jπ

Lg

cos
jπx

Lg

3.
Bending moment

Mg = E Ig sin
πg

ng + 1

∞
∑

j=1

K j

(

jπ

Lg

)2

sin
jπx

Lg

4.
Shear force

Vg = E Ig sin
πg

ng + 1

∞
∑

j=1

K j

×

[

(

jπ

Lg

)3

cos
jπx

Lg

+
π4 Is

(ng + 1)L3
s Ig

M
∑

s=1

〈x − xs〉0 sin
jπxs

Lg

]

aFrom Ref. [13.6].
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TABLE 13-8 PARAMETERS Kj OF TABLE 13-7 FOR THE STATIC
RESPONSE OF GRIDWORKS

Notation

Pg, Ps = axial forces in girders and stiffeners, respectively (all girders have the
same Pg and all stiffeners have the same Ps)

ps = loading intensity along the sth stiffener (F/L)

Wsg = concentrated force at intersection xs, yg

Pe =
π2 E Is

L2
s

Pc =
π2 E Ig

L2
g

Loading K j

1.
For concentrated
loads Wsg at
xs, yg

2L3
s

E Isπ4

Pe

Pe − Ps

ns
∑

s=1

ng
∑

g=1

Wsg sin
πg

ng + 1
sin

jπs

ns + 1

ng + 1

2
j4

(

Ls

Lg

)3 Ig

Is

(

1 −
Pg

j Pc

)

+
ns + 1

2

2.
For uniform
force ps along
sth stiffener

4L4
s

E Isπ5

Pe

Pe − Ps

ns
∑

s=1

ps sin
jπs

ns + 1

ng + 1

2
j4

(

Ls

Lg

)3 Ig

Is

(

1 −
Pg

j Pc

)

+
ns + 1

2

3.
If uniform
force ps is
same for all
stiffeners

Only the first term ( j = 1) in the equations
of Table 13-7 is required:

K1 =

4L4
s

E Isπ5

Pe

Pe − Ps

ns
∑

s=1

ps sin
πs

ns + 1

ng + 1

2

(

Ls

Lg

)3 Ig

Is

(

1 −
Pg

Pc

)

+
ns + 1

2
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TABLE 13-9 CRITICAL AXIAL LOADS IN GIRDERSa

Notation

ns = number of stiffeners

Lg, Ls = length of girders and stiffeners, respectively

E = modulus of elasticity

Ig, Is = moments of inertia of girders and stiffeners, respectively

Pcr = unstable value of Pg, axial force in girders

The length, moment of inertia, and axial force do not vary from girder to girder.
The lengths and moments of inertia of the stiffeners also do not vary from each other.

D1 =
0.0866L2

g

D3
D2 =

0.202L2
g

D3
D3 =

√

C1Lg L3
s Ig

Is(ns + 1)

Pe =
π2 E Ig

L2
g

Take C1 from Table 13-10.

End Conditions of
Girders Case D1 Pcr

Simply supported 1 ≤ 1 (1 + D1)Pe

2 > 1 D2 Pe

Fixed 3 ≤ 1 (4 + D1)Pe

4 > 1 (3 + D2)Pe

aFrom Ref. [13.6].

720 TABLE 13-9 Critical Axial Loads in Girders



TABLE 13-10 VALUES OF C1 OF TABLE 13-9 FOR STABILITYa

End Conditions of Stiffeners, C1
Number of
Girders, ng Simply Supported Fixed

1 0.020833 0.0052083
2 0.030864 0.0061728
3 0.041089 0.0080419
4 0.051342 0.010009
5 0.061603 0.011997
6 0.071866 0.013990
7 0.082131 0.015986
8 0.092396 0.017982
9 0.10266 0.019979

10 0.11293 0.021976

aFor simply supported stiffeners the formula

C1 =
ng + 1

π4



1 +
∞
∑

j=1

{

[

2 j (ng + 1) + 1
]−4 +

[

2 j (ng + 1) − 1
]−4

}





applies for any ng .

TABLE 13-10 Values of Stability Parameters 721



TABLE 13-11 VALUES OF NATURAL FREQUENCY PARAMETERS Cn OF EQS. (13.1) AND (13.2)

Number

of

Stiffeners,

ns C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Girders with Simply Supported Ends

1 0.020833

2 0.030864 0.0020576

3 0.041089 0.0026042 0.00057767

4 0.051342 0.0032240 0.00065790 0.0002462

5 0.061603 0.0038580 0.00077160 0.00025720 0.00012564

6 0.071866 0.0044962 0.00089329 0.00028895 0.00012688 0.000073890

7 0.082131 0.0051361 0.0010177 0.00032552 0.00013769 0.000072209 0.000047321

8 0.092396 0.0057767 0.0011431 0.00036387 0.00015157 0.000076208 0.000045226 0.000032215

9 0.10266 0.0064178 0.0012691 0.00040301 0.00016667 0.000082237 0.000046681 0.000030328 0.000022963

10 0.11293 0.0070590 0.0013954 0.00044252 0.00018233 0.000089133 0.000049521 0.000030753 0.000021400 0.000016967

Any ns Cn =
ns + 1

π4

[

1

n4
+

∞
∑

j=1

{

[2 j (ns + 1) + n]−4 + [2 j (ns + 1) − n]−4
}

]

Girders with Fixed Ends

1 0.0052083

2 0.0061728 0.0011431

3 0.0080419 0.0011393 0.00042165

4 0.010009 0.0013459 0.00039075 0.00020078

5 0.011997 0.0015917 0.00043081 0.00018009 0.00011111

6 0.013990 0.0018480 0.00048904 0.00018923 0.000098217 0.000067910

7 0.015986 0.0021078 0.00055303 0.00020779 0.000099794 0.000059682 0.000044545

8 0.017982 0.0023691 0.00061925 0.00022977 0.00010668 0.000059226 0.000039097 0.000030804

9 0.019970 0.0026311 0.00068645 0.00025320 0.00011572 0.000061961 0.000038155 0.000027067 0.000022193

10 0.021976 0.0028934 0.00075415 0.00027732 0.00012573 0.000066109 0.000039232 0.000026101 0.000019547 0.000016522
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