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In addition to the above basic assumption, the following assumptiong
will also be used where further simplification is necessary in subsequent
discussions: |

B. The slope of the channel is small; so that:

1. The depth of flow is the same whether the vertical or normal (to -
the channel bottom) direction is used.

2. The pressure-correction factor cos 8 [applied to the depth of the flow
section, Eq. (2-12)] is equal to unity.

3. No air entrainment occurs. In case of notable air entrainment, the
computation may be carried out assuming no entrainment and then
corrected approximately, at the end, using Eq. (2-15).

C. The channel is prismatic; that is, the channel has constant align-
ment and shape.

D. The velocity distribution in the channel section is fixed. Thus,
the velocity-distribution coefficients are constant.

E. The conveyance K (Art. 6-3) and section factor Z (Art. 4-3)
are exponential functions of the depth of flow.

F. The roughness coefficient is independent of the depth of flow and
constant throughout the channel reach under consideration.

9-2. Dynamic Equation of Gradually Varied Flow. Consider the
profile of gradually varied flow in the elementary length dx of an open
channel (Fig. 9-1). The total head above the datum at the upstream
section 1 is

V2
H=z+dcoso+a—2-£—] (3-2)
where H is the total head in ft; z is the vertical distance of the channel
bottom above the datum in ft; d is the depth of flow section in ft; 8 is
the bottom-slope angle; « is the energy coefficient; and V is the mean
velocity of flow through the section in fps.

It is assumed that 6 and o are constant throughout the channel reach
under consideration. Taking the bottom of the channel as the z axis and
differentiating Eq. (3-2) with respect to the length z of the water-surface
profile, which is measured along the z axis, the following equation is
obtained:

+ cos 6 —— + (9-1)

dz  dz dz T “dz\2g

It should be noted that the slope is defined as the sine of the slope angle
and that it is assumed positive if it descends in the direction of flow and
negative if it ascends. Hence,'in Fig. 9-1, the energy slope Sy = —dH/dz,

dH _ de dd | d (V”)

11t should be noted that the frictional loss dH is always a negative quantity in the
direction of flow (unless outside energy is added to the course of the flow) and that
the change in the bottom elevation dz is a negative quantity when the slope descends.
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Horizontal line paraliel to datum

Fra. 9-1. Derivation of the gradually-varied-flow equation.

and the slope of the channel bottom So = sin § = —dz /dz. Substituting
these slopes in Eq. (9-1) and solving for dd/dz,

dd _ So — S; (9-2)
dr  cos 0 + ad(V?/2g)/dd

This is the general differential equation for gradually varied flow, referred
to hereafter as the dynamic equation of gradually varied flow, or simply as
the gradually-varied-flow equation. It represents the slope of the water
surface with respect to the bottom of the channel. The depth d is measured
from the bottom of the channel, and the channel bottom is taken as the
z axis. Thus, the slope of the water surface is equal to the bottom slope
8o if dd/dz = 0, less than So if dd/dx is positive, and greater than So
if dd/dz is negative. In other words, the water surface is parallel to
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the channel bottom when dd/dz = 0, rising when dd/dz is positive, and
lowering when dd/dz is negative.

In the above equation, the slope angle 8 has been assumed constant or
independent of z. Otherwise, 2 term —d sin 6(d6/dd), where 6 is a func-
tion of z, would have been added to the denominator. For small 8,
cos§ =~ 1,d =~ y, and dd/dx ~ dy/dz. Thus Eq. (9-2) becomes

dy _  Se—
&~ 1+ ad(V¥/29)/dy

(9-3)

In most problems, the channel slope is small; accordingly, Eq. (9-3) will
be used in subsequent discussions.

The term « d(V?/2¢)/dy in the varied-flow equation represents the
change in velocity head. The coefficient « has been assumed to be con-
stant from section to section of the channel reach under consideration.
Otherwise, the change in velocity head would have been expressed as
d(aV?/2g)/dy, where a is a function of z. Since V = Q/A, Qis constant,
and d4/dy = T, the velocity-head term may be developed as follows:

AV _eQidd | eQUdd | _o@T o
Yw\29) " 20 Tdy = gdddy —  gA?
Since Z = +/A%/T, the above may be written
ad (v _  a@? .
5 (%)=~ 5% @)

Suppose that a critical flow of discharge equal to Q occurs at the section ;

Eq. (4.4) gives
= 9 -
0=172, \/; (9-6)

where Z, is the section factor for critical-flow computation for discharge
Q at depth y.. The symbol Z, used herein should be carefully dis-
tinguished from the Z in Eq. (9-5). The symbol Z simply represents the
numerical value of +/A%/T, which is computed for the discharge Q at a
depth equal to y of the gradually varied flow. The value of Z, is the
section factor, which is computed for Q at the depth y. as if the flow were
considered critical. Now, substituting Eq. (9-6) for Q in Eq. (9-5)

and simplifying,
d [V? Z 2
“t(m) -7 oD

The term S; in Eq. (9-3) represents the energy slope. According to the
first assumption in Art. 9-1, this slope at a channel section of the gradually
varied flow is equal to the energy slope of the uniform flow that has the
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When the Manning formula

velocity and hydraulic radius of the section.
is used, the energy slope is

n2V2

8 = 395R%

(9-8)

When the Chézy formula is used,
8=
s

~CR -9

In a general form, expressed in terms of the conveyance K, the energy
slope, from Eq. (6-4), may be written

2
8 = (9-10)

Suppose that a uniform flow of a discharge equal to @ occurs in the
section. The energy slope would be equal to the bottom slope, and Eq.
(9-10) may be written

2

SO:T{?

(9-11)
where K, is the conveyance for uniform flow at a depth y,. This K,
should be distinguished from K in Eq. (9-10). The notation K represents
simply the numerical value of the conveyance at a depth y of the gradually
varied flow. The value K, is the conveyance computed for @ at the
depth y, as if the flow were considered uniform.

Dividing Eq. (9-10) by Eq. (9-11),

S; K2
5~ K? (6-12)
Substituting Eqs. (9-7) and (9-12) in Eq. (9-3),
dy _ o 1 — (K./K)*
&~ S T= @y ©12

This is another form of the gradually-varied-flow equation.
There are other popular forms of the gradually-varied-flow equation
that can readily be derived, such as

dy _ 1 — (K./K)?

dz ~ "1 = r(K./K)?
where r = Sy/S.s, or the ratio of the channel slope to the critical slope at
the normal depth of discharge @ (Art. 6-7);

dy =8, 1-— (Q/Qn)2 (9_15>

dz T—(Q/Q)

(9-14)
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where Q is the given discharge of the gradually varied flow at the actual
depth ¥; @, is the normal discharge at a depth equal to y; and Q. is the
critical discharge at a depth equal to y; and
dy So— Q*/C*A’R )
iz = 1= aQ*/gA’D (9-16)
where D is the hydraulic depth, C is Chézy’s resistance factor, and the
rest of the notation is as defined in this article.
For wide rectangular channels,

1. When the Manning formula is used,

dy _ g 1= /)
dx 1 — (/y)?

2. When the Chézy formula is used,

y _ o 1 — a/y)® )
e O 19

9-3. Characteristics of Flow Profiles. The dynamic equation of
gradually varied flow developed in Art. 9-2 expresses the longitudinal
surface slope of the flow with respect to the channel bottom. It can
therefore be used to describe the characteristics of various flow profiles
or profiles of the water surface of the flow. For simplicity, the channel is
considered prismatic, and Eq. (9-13) is used for discussion. The values
of K and Z in this equation are assumed to increase or decrease continu-
ously with the depth y. This is true for all open-channel sections except
for conduits with a gradually closing top. In such conduits, the value of
K, after reaching its maximum value, will decrease as the depth of flow
approaches the top of the conduit (Art. 6-3).

The flow profile represents the surface curve of the flow. It will repre-
sent a backwater curve! (Art. 4-5) if the depth of flow increases in the
direction of flow and a drawdown curve (Art. 4-5) if the depth decreases in
the direction of flow. Following the description in the preceding article,
it ean be seen that the flow profile is a backwater curve if dy/dx is positive
and a drawdown curve if dy/dz is negative.

For a backwater curve, dy/dz is positive; thus, Eq. (9-13) gives two
possible cases:

1.1 — (K./K)? > 0and 1 — (Z./2)2 >0
2.1 - (K,/K)*<0and 1 — (Z./Z)* <0

'

1The term “backwater curve’ is used primarily to indicate the longitudinal sur-
face curve of the water backed up above a dam or into a tributary by flood in the main
stream. Many authors have extended its meaning to include all types of flow profiles. -




