SAMPLE PROBLEM 18.6

The rotor of an electric motor weighs 6 lb and has a radius of gyration of 2 in. The angular velocity of the rotor is 3,600 rpm counterclockwise as viewed from the positive x axis. Determine the reactions exerted by the bearings on the axle AB when the motor is rotated about the y axis clockwise as viewed from above and at a rate of 6 rpm.

Solution. During a time interval Δt the momentum couple $\bar{I}\omega$ of the rotor is rotated in a horizontal plane through an angle $\Delta \phi$. The change in angular momentum about the z axis is thus $\bar{I}\omega \Delta \phi$. Denoting by M_z the moment of the couple applied about the z axis, we

express that the angular impulse $M_z \Delta t$ must equal the change in angular momentum.

$$M_z \Delta t = \bar{I}\omega \Delta \phi$$
 $M_z = \bar{I}\omega \frac{\Delta \phi}{\Delta t}$

Denoting by Ω the angular velocity about the vertical y axis, we write $\Omega = \Delta \phi / \Delta t$ and obtain

$$M_z = \bar{I}\omega\Omega \tag{1}$$

Using the given data, we have

$$\omega = 3,600 \text{ rpm} = 377 \text{ radians/sec}$$
 $\Omega = 6 \text{ rpm} = 0.628 \text{ radian/sec}$

$$\bar{I} = m\bar{k}^2 = \frac{6}{32.2} \left(\frac{2}{12}\right)^2 = 0.00518 \text{ lb-ft-sec}^2$$

Substituting these values in (1), we obtain the moment of the gyroscopic couple

$$M_z = (0.00518)(377)(0.628)$$

=
$$(0.00518)(377)(0.628)$$
 $M_z = 1.226 \text{ lb-ft}$
Reactions at A and B. The

gyroscopic reaction A_g and B_g

1.226 =
$$A_g(\frac{1}{12})$$

 $A_g = 3.68 \text{ lb} \downarrow$
 $B_g = 3.68 \text{ lb} \uparrow$

Since the static reactions are $A_s =$ 3 lb \(\) and $B_s = 3$ lb \(\), the total reactions are

$$A = 0.68 \text{ lb} \downarrow \qquad B = 6.68 \text{ lb} \uparrow$$