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3.1 Introduction 
 
 
Hydraulic control systems are used to control the position or speed of resisting loads. 
The final drive is usually either a linear motion hydraulic cylinder or a rotary-motion 
hydraulic motor. Figure 3.2 illustrates two simple hydraulic control systems. The 
actuator develops its force or torque by receiving liquid from a positive displacement 
pump at a relatively high pressure, and the actuator develops its motion by receiving 
flow rate of liquid from the pump. 
It is not sufficient for the designer of a hydraulic system to know that the system will 
move. He also need to know how it will move. He needs to appreciate not only the 
initial and final states of the responses, but also the time-domain path between these 
states. He should know if the system response is stable, if it is fast enough or perhaps 
too fast, if it is oscillatory, etc. A meaningful dynamic analysis cannot be made without 
including the dynamics associated with the linear cylinder or the rotary motor.  
One of the elements the designer must take into account is the natural frequency of the 
system. From the laws of physics we know that the formula for undamped, natural 
frequency is  
 

 
m/cn =ω  

 
where 
 
c     the spring constant   
m    the moving mass.           
 

 
 

Fig. 3.1  Spring-mass system 
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Fig. 3.2  A linear and rotary drive hydraulic control system 

 
The spring constant for a hydraulic system can be related directly to the oil volume 
trapped between the controlling element, typical a valve, and the actuator. The natural 
frequency determine how fast a load can be accelerated and decelerated without causing 
instability and subsequent damage to the system. This frequency can be calculated 
mathematically to tell us how fast this weight can be moved back and forth without 
having the weight of the object directly oppose the input to the spring. For example, the 
input to the spring-mass system (see Figure 3.1) could be someone’s hand moving the 
spring-mass system up and down a certain distance. As long the spring is moved more 
slowly than the natural frequency of the total spring-mass system, the weight will 
follow the movement of the spring. There will be very little difference between the 
movement of the spring and the weight.  
The faster the input, or hand movement to the spring, the more the weight will lag. If 
the input to the spring is at the same frequency as that of the total spring-mass system, 
as one’s hand moves down, the weight moves up. Likewise, as the hand moves up, the 
weight moves down. The weight would then be in direct opposition to the movement of 
the spring. This would result in a system performing a function opposite of that 
required. This is called instability, or resonance. 
To put this concept in perspective with respect to a hydraulic system, the natural 
frequency can be calculated and trying to accelerate or decelerate high inertia loads too 
quickly is likely to cause a cylinder or motor to become unstable. 
In the following sections the nonlinear equations of a hydraulic cylinder and rotary 
motor will be derived, and the natural frequency and damping of a symmetrical 
cylinder. But first some necessary fluid theory will be introduced.   
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3.2 Lumped Fluid Theory 
 
 
3.2.1 Flow continuity equation 
 
The physical principle used to derive the continuity equation is conservation of mass. It 
is intuitive that mass neither can be created nor destroyed; if the flow rate of mass into a 
control volume exceeds the rate of flow out, mass will accumulate within the control 
volume. Conservation of mass requires that the sum of the rate of change of mass within 
the control volume (CV) and the net rate of mass outflow through the control surface 
(CS) be zero.  

∫∫ ⋅ρ+ρ
∂
∂=

CSCV
AdVVd

t
0

rr
 (3.1)

 
In Equation (3.1) the first term represents the rate of change of mass within the control 
volume; the second term represents the net rate of mass efflux through the control 
surface. Now consider the control volume given in Figure 3.3 and the Equations in 
(3.2). 
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Fig. 3.3  Fluid volume 
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(3.2)

If a mean density, ρ , is assumed throughout then expanding Equation (3.2) gives 
 

dt
dV

dt
dVQQ outin

ρ
ρ

+=−  (3.3)

 
Equation (3.3) needs to be transformed to a more usable form. This can be achieved by 
using Equation (2.14) and Equation (2.15). The latter defining the bulk modulus of the 
fluid.  

F

dpd
β

=
ρ
ρ  (3.4)

 
Combining Equation (3.3) and Equation (3.4)  gives 
 

dt
dpV

dt
dVQQ

F
outin β

+=−  (3.5)

 
The first term on the right side is the flow consumed by expansion of the control 
volume; if the volume is fixed this term is zero. The second term is the compressibility 
flow and describes the flow resulting from pressure changes.  
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Normally expansion of the control volume due to wall deformation in the different 
components is assumed to be contained in the definition of the effective bulk modulus 

Fβ . Equation (3.5) will be referred to as the flow continuity equation.  
 
3.2.2 Momentum equation 
 
Newton’s 2nd law of motion states:          
 

applied force - resisting forces = mass × acceleration ∑ (3.6)
 
Applying the equation to motion of a fluid volume gives: 
 

∑ =−−
dt
dvMF)ApAp( ioutoutinin  (3.7)

 
where  is the input net cross-sectional area and  is the output net cross-sectional 
area. M is the mass of the fluid being accelerated. To change the velocity in for example 
a pipe or a cylinder the fluid needs to be accelerated. The necessary force is generated 
by a pressure difference. 

inA outA

The application of Equation (3.6) depends upon the component being considered. In the 
following it is applied to a fluid line. 
 
3.2.3 Application of fluid theory to a line 
 
In this section we look at a circular pipe of uniform cross-sectional area as given in 
Figure 3.4. 
 

ρ
m

A
 

 
Fig. 3.4  Circular pipe 

 
From the flow continuity equation (3.5) we can write an expression for the pressure in 
the pipe 
 

dt
dpVQQ

F
outin β

=−  ;    
4
dA,LA

2π==V  (3.8)

 
Where d is the internal diameter of the pipe and L its length. The momentum equation, 
from Equation (3.7), becomes 
 

∑ ρ=−−
dt
dQLFA)pp( ioutin  (3.9)

 
The resisting force  is assumed to be entirely due to fluid viscosity effects. Other 
effects are due to flow in a piping system may be required to pass through a variety of 

∑ iF
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fittings, bends, or abrupt changes in area. The loss can be expressed as a pressure loss, 
meaning 
 

ApFi∑ ∆= ;  where  
2

v
d
lp

2

ρλ=∆  (3.10)

  
Where v is the fluid velocity. The friction factor  is determined experimentally, and 
can be expressed as a function of Reynold’s number :  

λ
µρ= /dvRe  

 

For laminar flow (Re < 2300):        
Re
64=λ  

 

For turbulent flow (Re > 2300):     25.0Re
3164.0=λ  

(3.11)

 
where µ  is the dynamic (or absolute) viscosity. 
 
3.3 Cylinders 
 
 
Consider the asymmetric cylinder shown in Figure 3.6. We want to write up the 
equations describing the dynamics of the cylinder and load.  
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Fig. 3.5  Asymmetric linear actuator 

 
Applying the momentum equation (3.6) to the cylinder motion gives 
 

LR2P1L FApAp
dt
dvM −−=  (3.12)

 
Consider next the flow continuity equation (3.5) applied to the actuator. 
 
Extending 
 

dt
dpV

dt
dV0Q 1

F

11
1 β

+=−  

dt
dpV

dt
dVQ0 2

F

22
2 β

+=−  

Retracting 
 

dt
dpV

dt
dV0Q 2

F

22
2 β

+=−  

dt
dpV

dt
dVQ0 1

F

11
1 β

+=−  

(3.13)
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Simplifying Equation (3.13) gives 
 
Extending 
 

dt
dpVvAQ 1

F

1
P1 β

+=  

dt
dpV

vAQ 2

F

2
R2 β

−=  

Retracting 
 

dt
dpV

vAQ 2

F

2
R2 β

+=  

dt
dpVvAQ 1

F

1
P1 β

−=  

(3.14)

 
If we are consistent about the notation, it is possible to reduce Equation (3.14). If the 
flow directions shown in Figure 3.6 are termed positive and the extending velocity is 
termed positive, then Equation (3.14) reduce to  
 

 

)vAQ(
Vdt

dp
P1

1

F1 −
β

=  

 

)QvA(
Vdt

dp
2R

2

F2 −
β

=  (3.15)

 
A cylinder is a full stroke component and dynamically both volumes  and V  vary 
with piston motion. In linearised analysis we are often interested only in the transient 
behaviour around some operating point. In this situation it is ok to neglect the variation 
of the volumes. In a nonlinear simulation model, however, the variation must be taken 
into account. 

1V 2

Also, other phenomena like viscous friction and spring terms can be added to the 
momentum equation.  
 
3.4 Motors 
 
 
The rotary hydraulic motor (see Figure 3.6) is an important element in hydrostatic 
transmissions. The motor transforms, as earlier described, hydraulic power to 
mechanical power.  
Newton’s 2nd law of motion  for a rotating device states:          
 

generated torque - resisting troques = inertia × angular acceleration ∑ (3.16)
 
Now, let us look at the elements in Equation (3.16). The ideal generated torque is  
 

)pp(DT 21mg −=  (3.17)
 
where , by definition is the flow through the motor  ( ) divided by the shaft speed 
of the motor (

mD LQ
ω);  

 
ω≡ /QD Lm  (3.18)

 
and is called the volumetric displacement (or simply displacement) of the motor, 
[ cm ]. In Equation (3.17) the term  is the pressure difference across the 
motor. 

rad/3
21 pp −
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Fig. 3.6  Rotary motor with inertia load and load torque 
 
However, there are at least three sources of resisting torque losses which detract from 
the generated torque. The first one is viscous damping due to shearing in the fluid in the 
tight clearances between the mechanical elements in relative motion. With as a 
viscous damping coefficient, this damping torque can be written as 

mB

 
ω= md BT  (3.19)

 
Investigation into the movement and forces of each piston gives a friction force 
opposing motion that is proportional to the pressure acting on the piston.  
 

)p,p,(fT 21f ω=  (3.20)
 
This nonlinear term in Equation (3.20) has to be experimentally determined. Now, the 
torque equation (3.16) can be written as 
 

Lfd21mL TTT)pp(D
dt
dJ −−−−=ω  (3.21)

 
In the torque equation the load inertia  and load torque T  are included, see Figure 
3.6. Looking at the fixed displacement axial piston motor schematical represented in 
Figure 3.7, we can write down the continuity equations for the two motor chambers.  
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Fig. 3.7  Fixed displacement axial piston motor 
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Only two chambers is shown in Figure 3.7, but the leakage flows from all the pistons 
are lumped  at these two pistons. 
From the figure we can see that there are at least two types of leakage flows; internal or 
cross-port leakage between the pressure side and the return side, and external leakage 
resulting from oil passing the pistons. Due to the very small clearances in hydraulic 
motors the leakage flows are laminar and therefore proportional to the pressure drop. 
Thus, the internal leakage can be written 
 

)pp(CQ 21ilil −=  (3.22)
 
where  is the internal og cross-port leakage coefficient, and  the pressure 
difference across the motor. 

ilC 21 pp −

The external leakage is though proportional to the particular chamber pressure and may 
be written 
 

1el1el pCQ =    ;     2el2el pCQ = (3.23)
  
where  is the external leakage coefficient. elC
The compressibility flow is normally neglected when writing the continuity equation 
(3.5) for the motor, since the small internal volumes on either side of the motor usually 
are added to the line volumes connecting the valve/pumpe and motor.  
The steady-state continuity equations for the motor chamber then are 
 

1el21ilm1 pC)pp(CDQ +−+ω=  (3.24)
   

2el21ilm2 pC)pp(CDQ −−+ω=  (3.25)
 
These two equations completely describe the flows in the motor. If leakage is zero, we 
have that ω== m21 DQQ  (ideal motor). 
 
3.5 Linear Characteristics of a Cylinder 
 
 
In this section we will derive the dynamic characteristics of a cylinder. In Figure 3.8 is 
schematically shown a double-acting cylinder and the related parameters that will be 
used in the section. 
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Fig. 3.7  A double-acting piston actuator 
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The dynamic characteristics will be expressed by the natural frequency and damping 
ratio. We consider a situation where the cylinder ports are blocked.  
 
Newton’s 2nd law of motion of the piston states:          
 

)pp(AxFxm 21 −−α−= &&&  (3.26)
 
where α  is a viscous damping coefficient. 
The flow continuity equations for the two cylinder chambers can be written as 
 

0
dt

dPVxAQ 1

F

1
1 =

β
−= &  (3.27)

 

0
dt

dPVxAQ 2

F

2
2 =

β
+= &  (3.28)

 
where the chamber volumes  and  are functions of the piston displacement. The 
equations (3.27) and (3.28) are non-linear, and we need to linearise the equations 
around an operating point – the index o meaning evaluated in the operating point. To 
linearise the product term we utilise Taylor expansion for functions of more than one 
variabel (see also Equation (2.45)). 

1V 2V

 

)yy(
y
f)xx(

x
f)y,x(f)y,x(f o

o
o

o
oo −

∂
∂+−

∂
∂==  (3.29)

 
 Applying Equation (3.29) to Equation (3.27) and Equation (3.28) we get  
 

x
V

A
dt

dp

10

F1 &
β=  (3.30)

 

x
V
A

dt
dp

20

F2 &
β−=  (3.31)

 
Equations (3.26), (3.30) and (3.31) represent the linear equations describing the 
dynmics of the cylinder. After Laplace transforming the equations we have 
 

))s(p)s(p(A)s(x)s(f)s(xsm 21 −−α−= &&  (3.32)
 

)s(x
sV

A)s(p
10

F
1 &

β=  (3.33)

 

)s(x
sV

A)s(p
20

F
2 &

β−=  (3.34)

 
Equations (3.32), (3.33) and (3.34) may be solved simultaneously to obtain 
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)s(f
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2010

F
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2 +β+α+
=&  (3.35)

 
Comparing the coefficients in the denumerator with a standard second order system we 
get the natural frequency and damping ratio as 
 

)
VV
VV

(
m

A)
V
1

V
1(

m
A

2010

2010F

2010

F
n

+β=+β=ω  (3.36)

 

)VV(m
VV

A2 2010F

2010

+β
α=ς  (3.37)

  
 The total volume under compression is defined V . Inserting  in 
equations 3-36 and 3-37 gives 

2010T VV += TV

 

)VV(V
V

m
A

10T10

TF
n −

β=ω  (3.38)

 

TF

10T10

Vm
)VV(V

A2 β
−α=ς  (3.39)

  
Now, it is easy to verify that the minimum natural frequency, is when the piston is in its 
mid position, meaning . In this position we obtain from Equation 
(3.38) and Equation (3.39). 

2/VVV T2010 ==

 

T

F
minn mV

A2
β

=ω  and  
F

T
2/V m

V
A42 β
α=ς  (3.40)

 
 
 

EXAMPLE 

Given the following values for a double-acting cylinder 
Area of the piston  :  2cm45A =
Piston travel   : L  mm640=
Bulk modulus   : bar7000F =β  
Mass of the load and piston :  kg100m =
Viscous friction coefficient :  m/Ns6.175=α

 
Inserting these values in Equation (3.40) gives 
 

Hz348
sec
rad2190

minn ==ω   ;     2.0
2/VT

=ς  
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3.6 Over Centre Valve 
 
 
3.6.1 Introduction 
 
Over centre valves are useful in a variety of mobile fluid power applications. For 
example they are often used in mobile cranes to ensure that a broken pipeline will not 
cause the load to drop, see Figure 3.8.  
 
Other applications are on vehicle and winch drives, to ensure that the load does not run 
ahead of the pump flow, creating cavitation inside the motor. When the load is reversing 
they allow normal operation using by-pass elements and has built in relief valve 
protection. The valve also provides velocity control on descending load. 
 

Directional Control

LS

T P

Valve

Over Center
Valve

 
Fig. 3.8  Hydraulic sub system for a single actuation 

 
Today, almost all systems including over centre valves, are based on a similar 
configuration. The flow to the actuator is controlled by a directional control valve and 
the overcenter valve is placed at the outlet of the actuator, pilot-operated from the 
pressure in the inlet connection. Over centre valves, are closely related to pressure relief 
valves and check valves opened by a pilot pressure. An over centre valve is, in effect, a 
pilot opened pressure relief valve.  
 
It is well known that systems equipped with over centre valves are prone to oscillations 
in the load and can also become unstable. Another unwanted behaviour is the tendency 
to abruptly stop when the speed of the load is retarded. In many cases, these types of 
instability can lead to harzardous conditions.  
Since safety reasons and legislations makes them a necessary element in many systems, 
they are used despite the drawbacks of their dynamic behaviour, and the method used to 
get a satisfactory operation is often trial end error. In particular, it is difficult to combine 
this kind of valve with load sensing systems or systems with constant flow 
characteristics (see section 5.2). In this section the over center valve will be modelled. 
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3.6.2 Functional description 
 
The over center valve considered in this section is shown in Figure 3.9. It consist of the 
valve body (3), control plunger (4), check valve (2), and pilot piston (1).  
 

Valve PortPilot Port 4

1
2

3

Cylinder Port

 
 

Fig. 3.9  Typical over center valve 
 
When lifting the load, the fluid passes from the valve port V through the check valve 
and port C to the consumer. During sinking, the flow directions is opposite – from C to 
V . The check valve is closed and the flow to the output V  is not possible until after the 
control plunger is lifted due to the load pressure and the pilot pressure. The pilot, or 
load lowering pressure acts on the pilot piston ( A ), see Figure 3.10, and pushes open 
the control plunger. Of course also the load induced pressure, which acts directly on the 
control plunger ( ), tends to push the plunger in the open position.  

P

CA
 

Av1 Av

Ac

2

Ap

AR

 
 

Fig. 3.10  Areas for combined actions in opening direction 
 
The displacement of the control plunger is proportional to the cracking pressure 
corresponding with the load. While the load pressure alone can open the valve the 
preload of the spring determines the relief setting. An important parameter 
characterising over center valves is the Pilot ratio ( PR ) defined as 
 

)A(PlungerControlofareaalDifferenti
)A(PistonPilotofAreaPR

C

P=  (3.41)
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A high pilot ratio permits to lower the load with little pilot pressure, allowing a quicker 
operation of the machine combined with energy saving. It is best suited for applications 
where the kinematic motion of the structure maintains the load induced pressure 
relatively constant. 
A low pilot ratio requires a high pilot pressure in order to lower the load, but it permits  
more precise and smooth control of motion. It is recommended for applications where 
the load induced pessure varies during motion and can induce instability on the 
machine. 
 
3.6.3 Mathematical model 
 
In deriving the mathematical model we only consider the case where the load needs to 
be counter balanced. In the other direction we assume that there is no loss when oil is 
flowing through the check valve. It normally has a very soft spring and a large opening 
area creating a negligable pressure drop.  
Defining the load pressure as , the pilot pressure as , and the back pressure  
we are able to describe the coverning equations for the over center valve. 

Cp Pp Vp ,

The flow trough the valve from the load to downstream the over center valve can be 
desribed by the orifice equation 
 

)pp(2)x(ACQ VCoodo −
ρ

=  (3.42)

  
The opening area can be calculated as shown in Figure 3.11. 
 

x
α

do__

o

2

 

 
 
 

)cossinxsinxd()x(A 22
ooooo αα−απ=  

 
  Fig. 3.11  Discharge area for a seat valve 
 
Normally the opening of such valves are relatively small, meaning that  is small. 
This means that Equation (3.42) can be rewritten as 

oo d/x

 

)pp(2sinxdCQ VCoodo −
ρ

απ=  (3.43)

 
Newton’s second law applied to the plunger yields; 
 

CoooSRFPLPVVCCPPoo FxBxKFF)AA(pApApxm −−−−−−++= &&&  (3.44)
 
where Figure 3.10 defines the areas where pressure is acting, and 
 

R2V1VV AAAA +−=  (3.45)
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The other terms in Equation (3.44) are 
  
  mass of plunger  om
  preloaded spring force on the plunger PLF

FF  flow force  

SRK  spring rate  

oB  viscous damping coefficient 

CF  coulomb friction force 
 
If  is zero, we say that the over center valve is compensated to back pressure with 
respect to the relief function. The back pressure still opposes the pilot piston, thus 
increasing the pilot pressure needed to open the valve and to lower the load. 

VA

The preloaded spring force on the plunger is equal to 
 

SRini_oPL KxF =  (3.46)
 
where  is the initial compression of the spring. ini_ox
The flow force can be found applying the theory from section 2.4. In Figure 3.12 is 
shown a control volume for the seat valve 
 

V2

Control volume

FF

Ao

V1

FF

 
 

Fig. 3.12  Control volume for calculating the flow force 
 
Applying the momentum equation (2.53) in the horizontal direction gives 
 

)VV(cosQF 21oF −αρ−=  (3.47)
 
Using  we have that the force opposing the spool motion can be written 21 VV >>
 

α−= cos)pp()x(AC2F VCoodF  (3.48)
 
Normally static friction from O-rings is modelled as Coulomb friction. 
 

F)x(signF oC &=  (3.49)
 
where F is the value of the friction force, but this type of friction is of such complexity 
that it mostly requires experimental investigation to find the friction characteristic. 

----- oo0oo ----- 

2nd Edition                                                                                                                                 Page 14 of 14      


	Dynamic Modelling
	Fluid Power Systems

