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ABSTRACT

After discussing general properties of implicit Finite Elermaemdlysis using ANSYS and explicit analysis
using LS-DYNA it is shown when and how quasi-static limit load y@es can be performed by a tran-
sient analysis using explicit time integration. Then we focufiemamaining benefits of implicit analysis
and how a proper combination of ANSYS and LS-DYNA can be used to ptéear@ansient analysis by

common preprocessing and static analysis steps. Aspects ofid&met solution control, consideration

of imperfections and methods of checking the results are outlined.
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ANSYS, LS-DYNA, CAD-FEM

ANSYS" is a finite element system developed by ANSYS, Inc., CanonsburghUBA:, the finite ele-
ment system LS-DYNA" is developed by Livermore Software Technology Corporation (LSTC)r-Live
more, CA., USA; the CAD-FEM GmbH is an engineering company wainraompetence in finite ele-
ment method and is distributor of both ANSYS as well as LS-DYNA.

STATIC THIN-WALLED SHELL ANALYSISWITH ANSYS

ANSYS is a general purpose FE-program for static, dynamicedisas multiphysics analysis and in-
cludes a number of shell elements with corner nodes only and with codchetidside nodes. The imple-
mented bending theory is based on Mindlin kinematics or so-calledeRis€irchhoff conditions. The
behavior of low order Mindlin elements is improved by an ,assumedti@mulation for the shear
strains. Reduced Integration can optionally be chosen for in-plameessffProblems with large rotations
as well as with large strains can be handled. Shell elemamisecused with a number of material models
such as plastic, hyperelastic as well as creep behavior.

Contact analysis is implemented where the user must only spbeiffwo potential contact surfaces.
Shell thicknesses (updated due to transverse contraction in |laijeastalysis) are included. Penalty and
Lagrange methods can be chosen to fulfil the contact conditions. Umpdistsetization and not mod-
eled gaps or interferences can be automatically accounted foribgsophd parameters. Bonded contact
can be used to tie together surfaces with different meshes.

Solutions of nonlinear equations are obtained by a Newton-Raphson method usidgdmitas well as
iterative solvers for the sequence of linear systems of equations.

Last but not least the ANSYS command language (ANSYS PaiarDesign Language APDL) includes
a lot of elements of a higher programming language. For the applic@dnsidered in this paper this can
be used to translate model and result data into formats to be reatehyal programs in addition to pre-
defined interfaces.

Buckling and limit load analysis

Limit load investigations of thin-walled structures are usudlyted with a linear buckling analysis. The
results are buckling modes and load factors. Load factors areatestifor an upper limit of the ultimate
load; buckling modes show, how the structure will buckle. As it is well knibzat the structures are most
sensitive against imperfections in the shape of the lower buckimigsn they also give an idea of a con-
servative imperfection and can be applied to the ideal model as meo(stess-free) modifications
which is a simple function in the case of ANSYS.

Buckling and prestressed modal analysis taking into account the cstagnof loading after a nonlinear
static solution is possible to get proper information about the stalitteinavior. Both can also be used to
investigate whether a convergence problem is due to a numerical tw dyghysical instability. An ex-
ample is shown in Fig. 1 (Hanke, Dawani [ 2 ]): Unlike in a Zeppehich have a supporting girder
structure the upper hull of the keel airship Cargolifter is a lonane only. The goal of the FE analysis
was to determine how far the internal pressure can be decreastedadi@akage before the hull becomes
instable. This instability point is indicated by suddenly decreasing natural freegi€fig. 2).



Loading control and path-following methods

If imperfections are superimposed on a perfect shell structurejftlreation problem usually changes to
a non-linear stress problem or a snap-through problem depending on theatpastbehavior. Knowing
this behavior is essential for safety considerations. Howeversianalard force-controlled analysis ap-
proaching the critical load will end up in non-convergence of the solutumegs; displacement control
often is not possible and is only helpful if a characteristic digphent is chosen which is often difficult.
Therefore, arc-length methods are preferred as implemented ity @M&ich allow to control the load
level together with the length of the displacement increment. ddrisits to compute the post-critical
load-deflection path although force-type loads are applied.

Fig. 1: Construction of the keel airship Cargolifter CL160
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Fig. 2: Dependency of natural frequencies of hull of CL160 from the internal pressure
Possible problemsin limit-load analysis
Even when using arc-length methods achieving convergence close tditiaé load is often difficult, in

particular, if different non-linearities are active. Especiailyconjunction with contact difficulties may
appear since contact elements change their status (from opesdaclvice versa) which is not differen-



tiable for Newton’s method. In such cases a lot of effort is nedadhieve proper solution control in
order to determine the ultimate load within a sufficient accuracy.

POPERTIES OF LS-DYNA

LS-DYNA in general is designed for transient dynamic analgkisighly nonlinear problems. The es-
sential ingredient determining the solution properties is the us@ @plicit time integration scheme
which in the case of LS-DYNA is a slight modification of thanstard central differential scheme. The
equilibrium is fulfilled at the time; tvhereas;i; is the unknown state. According to Newton's axiom the
disequilibrium forces cause accelerations which can be integi@teelocities and displacements. The
forces computed with these quantities can be viewed as driving steensyowards equilibrium which,
however, will never be reached exactly since forces change dhengje step. For solution stability
and to avoid unpredictable errors a critical time step size lms#te so-called Courant-Friedrichs-Lewy
criterion must not be exceeded. This time step is determined digallgan a conservative way within
the program from the sound speed and the element lengths. Theseeprsaas usually become rather
small for reasonable FE discretizations. However, the solution ofahienear systems of equation using
this time integration scheme only requires the inversion of the masrix within each time step. If a
lumped form is assumed and therefore diagonalization each equatiory idivadéd by a scalar. The
computational effort is mainly influenced by the formation of thermateforces via the elements and the
contact surfaces and can be very efficiently tailored for vagoogputer architectures such as vector and
massively parallel computers.

It must be emphasized that considering geometrically nonlineadingl large strain problems with con-
tacts with LS-DYNA is not posing any further problem due to nonlibeaiithin the explicit time inte-
gration scheme — a simple forward marching scheme - no itematioonlinear systems and no con-
vergence control is required. Therefore, no convergence problem can appear.

Besides quasi-static analysis the main applications of LS-D#hAcrash and occupant simulation, metal
forming, drop tests and further contact related applications. Mosentremhancements are concerned
with fluid-structure interaction.

Many LS-DYNA FE discretizations of real industrial problems dominated by thin shell elements in-
cluding some beam and solid elements. A large number of elementldtions for shells (mainly based
on Mindlin theory) is available offering the choice between computatesfieiency and improved accu-
racy. Reduced integration is often preferred in large deformatialysees because of the efficiency con-
cerning the formation of the element vectors and robustness in ciasgeoélement distortions. There is
a choice of methods and formulations to avoid hourglassing problems.

More than 100 different material models are available to represamy types of highly nonlinear mate-
rial behavior. The program contains in particular many rate-dependsngelastic, viscoplastic and
foam material laws. Many models also offer the capability to consider failure

Rigid body kinematics is included reducing the description of the bodymetusually any part of the
FE model discretized by an FE mesh or other arbitrary geoalesucfaces - to six master degrees of
freedom. All other nodes of the considered FE part are coupled toter ma@asgeometric relations ac-
counting for large rotations. The nodes and surface segments ofithbodies can be used e.g. to de-
scribe contact surfaces.

Advanced robust and computational efficient contact algorithms arfeetire of most LS-DYNA appli-
cations. Shell thicknesses can be accounted for. Although contact zonkes dafined to any level of
precision desired, also general contact algorithms are avaNdlele the only input is the switch to acti-
vate the specified contact algorithm for the whole model or for selected parts only.



Advantages of using LS-DYNA for limit load analysis

The main advantage of LS-DYNA in limit load analysis is theeabs of convergence problems inherent
to the solution algorithm. Not even arbitrary contact surfaces chfielties. Due to status changes in

contact the contact forces might oscillate sometimes. This vdmtégdiorate convergence considerably in
an implicit analysis but in LS-DYNA analyses this is of mimaportance. Due to small time steps am-
plitudes usually remain within a certain level and the averaged forces renaimgiel.

A further advantage of dynamic analysis is that in the vicinity ofitical point the inertia forces stabilize
the system motion even in the post-critical range where the |lbadhthe system can carry decreases
with increasing displacements. Thus, the character of the post-critical betevioe studied.

Disadvantages of explicit transient solution in static limit load analysis

The LS-DYNA solution scheme is only applicable to general trahsiealysis. Thus within the solution

always inertia forces, often also damping forces are included. fbhwssatic resp. quasi-static analyses
velocities and accelerations have to be chosen in such a fashioortest due to inertia and damping
remain negligibly small.

In particular, initial conditions must be chosen carefully to avoidlasons; they should match a static
solution very closely and should introduce any motion very smoothly into the system.

The mentioned advantage of not setting up and decomposing a systexisraitisadvantage within a
limit load analysis. Eigenvalue buckling computations or direct deteof stability points cannot be per-
formed.

COMBINING ANSYSAND LS-DYNA

The combination of ANSYS and LS-DYNA is the ANSYS/LS-DYNA suitt consists of the general
ANSYS pre- and postprocessor plus further extensions for specifioYINA features and the LS-

DYNA solver. Besides nodes and elements e.g. the LS-DYNA contfacitides, properties for many of

the material models, load curve definitions for transient anadyisinitial conditions can be prepared
within the preprocessor. As in the standard ANSYS FE program tHRYINGA preprocessing is sup-

ported by a graphical user interface. For analysts with someiexpe with ANSYS there is only a small
step towards LS-DYNA.

ANSYS/LS-DYNA in limit load analysis

Since ANSYS and LS-DYNA have elements of comparable theoré@ackground and thus comparable
stiffness it is possible to take advantages of the two programseéquential fashion. Once a discretiza-
tion is modeled for the one type of analysis it is straightfaiviarswitch to the other. A standard appli-
cation is deep drawing simulation in LS-DYNA and springback or madaysis with respect to residual
stresses in ANSYS, or static pre-stressing of a rotor byYS\N&hd subsequent impact simulation by LS-
DYNA. For such purposes some ANSYS elements can handle stremsethé LS-DYNA run as initial
stresses and LS-DYNA can read predeformations from a filehwdain be created by ANSYS/LS-DYNA
after an ANSYS run.

In case of limit load analysis ANSYS can be used for eigen\alakling analysis, for determining and
applying imperfections and calculating static initial conditions, redi® LS-DYNA drives the system to
the ultimate load and behind. Such a procedure is studied in detail in the following.



REAL-LIFE AND MODEL PROBLEM

Fig. 3: Simplified model of part of a telescope crane at the onset of buckling

One of the buckling — post-buckling problems solved with LS-DYNA, which iwasstigated in detall,
was the telescope arm of a mobile crane shown on the title pladéeésler/Rust/Franz [ 3 ]). At the
beginning it was not clear whether the results would be availabfablication. Thus, a modified model
problem was chosen in addition (Fig. 3). This system was first analyzed using ABYBartel [ 1 ]).

A look onto the load deflection curve of the industrial system (Fighdyvs nearly linear behavior up to
the limit load (a). This is typical for optimized designs. A &oontrolled analysis will end up in a non-
converged solution there, thus only the linear behavior would be visible. Theritical path (b) gives
the most reliable criterion whether a physical or a numerical instabilitydtasred.
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Fig. 4: Load-deflection diagram of the telescope arm of a crane, real system

PREPARING THE SIMULATION WITH ANSYS/LS-DYNA

At first an ANSYS model for implicit analysis is createithin the ANSYS preprocessor. It contains
shells, some solid elements for the parts between outer and inngsaduoie contact areas allowing the
tubes to slide and plastic material behavior. At first a satiigtion at a lower load level was calculated.
There an eigenvalue buckling analysis was performed leading toghbuckling mode shown in Fig. 9.



The load factors for the different buckling modes were sufficieselyarated so that it appeared rea-
sonable that only the first mode was of interest. The latteradded to the ideal geometry of the model
as a geometric imperfection.

In the second stage of the analysis the elements were chartgedctoresponding LS-DYNA types, and
some specific inputs were created, such as contact and the loasHers curves to specify smooth
loading conditions as discussed below.

LOADING SPECIFICATION

The loading must be specified in such a way that the computatisrefi@ent as possible; on the other
hand the inertia forces should remain negligible. The first condidquimes a high velocity within the

process, the second condition requires a small acceleration valtezeftifvays to overcome this prob-
lem are considered.

In general a displacement control is preferable, as then the ghobah of the structure can be well con-
trolled. However, the loading consisted of a force F and a momentié &p of the part model. There-
fore, the LS-DYNA model is extended by a rigid beam (Fig. 9heflength e = M/F and then the dis-
placement of the end node is controlled.

Constant acceleration

The most direct way of load application is to start with anahitelocity O and a constant acceleration,
because this leads to nearly constant inertia forces in the nitodedpplied to the rigid beam as a line-
arly increasing velocity of the free node. Whether this acdelargs too high or not can only be seen
after the simulation when the ratio of the inertia forces tddted forces has been checked. Therefore, it
is recommended to carry out the simulation for a short time onlyremdconsider a modification after
checking the static equilibrium.

In the model problem an acceleration of about 28 g led to the regerit igi Fig. 5. At a first look such a

level of acceleration seems to be far away from being statiabsolutely too high. However, it must not
be compared with the weight of the system but with the limit ésatthe equilibrium situation there. Fig.
5 also contains a comparison of the results obtained with diffeemeat formulations. Since no visible

differences can be observed the computationally most efficient element can be chose
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Fig. 5: Load-deflection curve for the telescope crane; model problem; transigmsisanal



Unlike the real system the curve for the simplified model prolsleows two significant points: the limit
point and one at 80 % of the ultimate load. It can be noted that bucklimgascidng the plastic limit of

the shell cross sections is well separated. In this caseastcpimit is well below the elastic limit load.
Thus the load-deflection curve of the simplified model problem can laéizdd to be a piecewise linear
curve; in the real telescope system which is more optimized wongdhe plastification the behavior is
nearly linear up to the ultimate limit load.

If a displacement control is not possible, e.g. in the case oftditd loads, the acceleration is alterna-
tively determined by the amount AF which is the difference between the static reaction and theappl
load. This load increment should be constant. In the case of a neady pire-buckling behavior this can
be achieved by a linearly increasing force. Then it is advisableduce the loading velocity in the vicin-
ity of the limit load according to the system response. For narglkicated pre-critical load-defelection
paths the load-vs.-time curve perhaps must be adapted to the syspemsesfrom a first run, especially
when oscillations starts to appear.

An advantage of constant acceleration loading is that it does not need any stataolptenss.

Constant velocity

The major disadvantage of the constant acceleration type of loadihgtiover a larger time range only
small displacements are generated resulting in small fardmsever, when approaching the limit load,
the most interesting point of the analysis, the velocity reatteemaiximum and the resolution concern-
ing the states of the results the minimum.

If a constant velocity is applied, the accelerations and thedrferties result from nonlinear effects only.
Thus, high velocity and a linearly increasing displacement canhievad from the start. This holds un-
der the assumption that the distribution of the initial velocitiekines the static deformation as closely
as possible. Such a field can easily be computed if a smdlbfraaf the load is applied to the ANSYS
model in a static run. If an initial velocity\is chosen for the control node i the time increnlnis
known and the vector for the velocity distributioncan be computed from the displacement field u

A= and Vo =2

Vo At

This method is automatically carried out if a static or @tatiy ANSYS analysis is followed by a tran-
sient one. The necessary additional LS-DYNA input is written usm@NSYS macro command se-
guence.
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Fig. 6: Load-versus-time curve for A) constant velocity and B) constant acmalerat



The procedure described above leads to the better results, the tbbbs#iffness represented by the
ANSYS FE model matches that of the LS-DYNA discretization. st recently developed ANSYS

elements can optionally be used in a formulation being similar to those of LS-DYNA.

The larger is the difference in the formulation, the greatfreisianger of getting oscillations. Significant
oscillations represent too much deviation from the static solutionaméead to accumulating errors in
particular in path dependent problems such as in the case of plasticafs or in the case of friction.

Within an initial phase oscillations can be damped out, however, the daogirige (and should be) re-
duced to zero when approaching the ultimate load.

It is also obvious that the procedure with constant velocity is neorgts/e to unprecise contact condi-
tion i.e. if contacts being necessary for the equilibrium are natlipiclosed in the LS-DYNA run. Then
the contact closure may be rather sudden and leads to a shock type loading which caases®scil

In the model problem a velocity of 7 m/s at the end node of the rigioh beads to the system response
given in Fig. 6. Although the computational cost is reduced by a facfio¥ @ompared with the run with
constant acceleration, the result is as good. With the latterqui@cthe calculated critical load is lower,
l.e. probably closer to the static ultimate load. The reason ishiatelocity at the time when buckling
begins is higher fom = const than forv = const and the motion towards the buckles requires larger
changes in the velocities, i.e. accelerations, i.e. inertia forces.

Constant speed with initial displacement

Up to now it was assumed that the LS-DYNA analysis is stavtth the initial displacement being zero.
One additional capability is the ,Initialization to a PrescriBmbmetry“, where LS-DYNA expects a file
containing displacements for all nodes. For preparing this file fn@emesults of an ANSYS run and acti-
vating this option an ANSYS/LS-DYNA function is available.

The initial displacement can be taken from a nonlinear staticyYAN\&halysis at higher load level but in
the ,well-converging“ range. From this starting point with initiédplacements it is easier to achieve the
guasi-static limit load. As before an initial velocity distrilomtiis also required for this displacement state
which is achieved as described above except that the total displaceis replaced by the displacement
incrementAu from the last two states. This is a secant whereas antaisggesired. The latter can be best
approximated if the last load increment is small, e.g. by applyismall amount in a subsequent load
step especially for that purpose.

For this method it is of increasing importance that the respoosetfre ANSYS analysis matches that
from LS-DYNA. The danger of obtaining oscillations is slightlyhHegthan in the case of constant accel-
eration where increasing velocities make constant oscillations neglifgmesame time.

STATIC CHECK FOR TRANSIENT ANALYSES

Since a quasi-static solution should be obtained by the dynamic aretgsisted it must be checked
whether inertia and damping forces do not exceed a tolerable léeelcomparison of internal and ki-
netic energy is the easiest way to achieve this, but it canrbeeous, because the latter depends on the
velocity which can be high even if no acceleration appears.

If possible the static equilibrium should be checked. The disequilibswmeé to dynamic effects. In the
examples shown above the transverse force which can be determirtesl gopdgram for defined cross
sections and the fixed end must be constant, whereas the moments shpliltegdy. In a transient

analysis time discrepancies in the response curves for loadexea@fid might appear. In Fig. 7 (left) it



is shown that the forces excellently match for the considerd¢idrs®cin comparison, in Fig. 7 (right) it is
shown that significant oscillations in the loading phase may occuiodoe fast load application. In Fig.
8 it is demonstrated that for the model problem=atonst.=7 m/gip load and reaction at the fixed end
are synchronous whereas\watl4 m/sdifferences near the first significant nonlinearity becomartiye
visible.

Boundary Nodal Point resultant force

Nodal Point Resultant Displacement

Fig. 7: Telescope arm; real system:
left: Static equilibrium check: force at fixed and free end,
cross section force in the middle
right: Oscillations before buckling due to overly high applied acceleration
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Fig. 8: Force at fixed (B) and free end (A), cross section force in the middle (C)
for v=const.=7 m/qleft) andv=14 m/s(right)

IMPERFECTIONS

Usually the analysis model of a system is taken with an idedkct geometry. This includes the danger
that in a numerical analysis bifurcation points may be missedcdémplex system, however, it is rather
unlikely that the characteristic buckling mode never appears butititaldoad may be calculated sig-
nificantly too high and by chance. Furthermore, in reality the lioaitt and the buckling type often de-



pend on imperfections __ (cf. the cylinder buckling example below). litstieamperfections are known
they should be used directly, otherwise a conservative imperfectidrbmestimated e.g. from an eigen-
value buckling analysis.

I mperfection from eigenvalue buckling

Since the ANSYS analysis of the telescope model led to a buchklnag (Fig. 9) this could be taken as
the shape of a geometric imperfection. It must be noted thatgiemlue buckling the status of the con-
tact elements is frozen. This requires that the contact is well establisheccansidered load level.

For the scaling of the imperfections the maximum change in a nodadinate was chosen to 1/250 of
the longer diameter of the main buckle (from inflection point to atif@ point). This measure was also
taken for the other types of imperfections described below. In thedsibackling mode there was still
space remaining such that no further contact appears between the tubes.

\\.I

For displace-
ment control

Fig. 9: First buckling mode of telescope arm; simplified model
Arbitrarily distributed imperfection

If no static pre-analysis is desired or it seems too cometidat analyze one, other kinds of imperfections
are possible. One type of imperfection is generated by the aichaflam distribution (Fig. 10). It can be
expected — as a result from many similar analyses - thangertant buckling modes will be initiated by
these imperfections and that the mode belonging to the lowest buddidgvill govern the load defor-
mation process. For practical purposes the shell normals are eveabighe nodes and the nodes are
moved in this direction by the values of an intrinsic random function @sifgNSYS/LS-DYNA macro
command procedure. In order to avoid excessive warping due to largerdifie from one node to the
other some smoothing may be necessary.

Contact zones should be excluded from adding imperfections to avoid initial penetrations.

Sinusoidal imperfection

Since known analytical solutions often lead to sinusoidal buckling modesypanfection of this kind
(Fig. 10) can be appropriate provided that the system geometiguisimeThe main advantage is that no
further smoothing is necessary. The number of half-waves per diresttould be set in such a way that



the resolution of the sinusoidal shape by the FE mesh is just high eneutiiat the discretization of the
waves is coarse.

Fig. 10: Random and sinusoidal distribution of imperfections

The results in Fig. 11 indicate that only in the case of the randginbdtion the limit load is lower than
in the other analyses. This seems to be an artificial eftexto the warping introduced by this imperfec-
tion.

In total the type of imperfection has little influence on the contpliteit load, especially for the model
problem. For the real system an increase of the maximum imaperféo twice the value led to a reduc-
tion of the ultimate load by 10 %. This appears to be due to théntddhe real system is optimized and
therefore more sensitive against imperfections.

7| Imperfektion
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Fig. 11: System response for different types of imperfections:
A) buckling mode, B) random distribution

Dynamic I mperfections

It should be first noted that the transient solution introduces ogwikaper se which is also a type of

imperfection itself. In Fig. 12 and Fig. 13 two buckling states oféaéproblem are depicted; the second
one is obtained after a slight modification of the wall thicknesHas same changes in the behavior were
observed in experiments, too. Although the imperfection was chosen on ihefode buckling mode

shown in Fig. 12 the buckling mode of Fig. 13 appears, i.e. the ,wrong" iegperi has no fatal influ-
ence on the result.
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Fig. 12: Buckling state with the original thickness distribution; real strudiamsient analysis

If necessary a further excitation in addition to the static tmadid be applied. This would be advisable, if

the behavior of the structure is not known at all.
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Fig. 13: Buckling state with a slightly modified thickness distribution; reatttre; transient analysis
In a quasi-static solution damping should be avoided, as this could leadrliplogk estimates for the

buckling load. In particular mass proportional damping which deceldhstegobal motion should not be
applied. For monotonous proportional loadings usually no damping is required, imélybease of con-

stant velocity some damping for the starting phase may be advantageous.

POST-CRITICAL BEHAVIOR

DAMPING



The post-critical behavior after reaching the limit load is ugughly dynamic (see oscillations in Fig.

8). However, this is closer to reality than any static postaliequilibrium path because buckling and
failure processes usually happen suddenly.

FURTHER EXAMPLE

For details we refer to Schweizerhof/Walz et al. [ 4 ] and restrict our coatater to the major effects.

Quasi-static roof crush analysis

A car roof (Fig. 14) is pushed by a more or less rigid contact batlyaxflat surface with low velocity,
l.e. static. It is simulated by LS-DYNA. Since the load is auapby a contact surface with small touching
areas at the beginning no initial velocity distribution is required.réasons of computational costs the
simulation speed should be as high as possible. Fig. 16 shows that tlemsdartdifferent velocities do
not differ until reaching a certain limit. Applying the load faséads to a qualitative difference in defor-

mation (Fig. 15) due to dynamic wave propagation. Then not only a highelelegdds calculated but
also higher peaks indicating dynamic effects.
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Fig. 14: Quasi static roof crush analysis, loading velocity 2000 mm/s
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Fig. 15: Quasi static roof crush analysis, loading velocity 10000 mm/s
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Fig. 16: Contact force (scaled) at loading plate for different velocities
OTHER QUASI-STATIC ANALYSIS

LS-DYNA has been used for quasi-static analyses of different kivads described here. Of particular
interest are processes consisting of a sequence of differentgeadisp. motions. Then damping is re-
quired to achieve a static solution at the end of one phase beforextHeatkcan be applied. These
damping periods can increase the computational time significantlyerbheless the quasi-static LS-
DYNA analysis can be advantageous if highly nonlinear phenomena Ieadwergence problems in an
implicit analysis which can only be overcome by time-consuming awpats concerning solution con-
trol.

In this paper only large deformations and elasticity with sonstigity was considered. The problems of
implicit solvers and thus the advantage of LS-DYNA increasesfisigntly if material failure is taken
Into account because sudden loss of stiffness is crucial for impkthods but is a ,standard“ option for
LS-DYNA materials.

CONCLUSIONS

Although standard ANSYS has a lot of advanced nonlinear features, sohétbnds and convergence
tools, a quasi-static LS-DYNA analysis can be an advantageeusadive in the case of systems contain-
ing multiple highly nonlinear effects. Limit load analyses gpchl examples of this kind but other ap-
plications can be solved in this way being at least less work consuming.

ANSYS/LS-DYNA for preprocessing and standard ANSYS for prepahadollowing transient analyses
by static solutions are appropriate tools to gain the maximum adeanfaexplicit transient analysis.
Especially the calculation of initial velocities and initiadtst displacement distributions can help consid-
erably to reduce computational costs. Eigenvalue buckling analyie eppropriate tool to determine
geometric imperfections. Randomly distributed imperfections should be handled mith ca
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