
Finding files and syntax notes

NX Open requires that the application programmer references files that are included with NX.

Every NX installation includes a specific set of directories that are all relative to the directory that

is selected for NX installation. In this document the NX installation directory selected by the

system administrator referred to as the NX install directory.

Different operating systems use different syntax to specify directory paths. For instance the

location of the .NET libraries are:

For Windows: NX install directory\UGII\managed\

For non-Windows: NX install directory/ugii/managed/

This document uses Windows format to define directory paths that are relative to the installation

directory.

Environment Variables

Environment variables are very useful in command line scripts for defining directory locations. NX

provides a set of standard environment variables. The following are two commonly used standard

NX environment variables.

UGII_BASE_DIR = NX install directory

UGII_ROOT_DIR = NX install directory\UGII\

The syntax to reference environment variables is also different for different operatiing systems.

For instance, the syntax to reference UGII_BASE_DIR in a command line is:

For Windows: %UGII_BASE_DIR%

For non-Windows: $UGII_BASE_DIR

So in a command line, the path to the .NET libraries is:

For Windows: %UGII_ROOT_DIR%\managed\

For non-Windows: $UGII_ROOT_DIR/managed/

This document will use Windows format to reference environment variables.

Tools to set NX environment variables

The most convenient way to set the NX environment variables is to use the NX Command

Prompt. The NX Command Prompt is started as follows:

For Windows: Start → Programs → NX→ NX Tools → Command Prompt (where <NX> depends

on your specific installation and NX release).

For non-Windows: run ugmenu, and select the UGOPEN-API option. Then select Non-menu

activities and the shell type.

Available Toolkits

There are many software toolkits provided for NX and other Siemens PLM Software products. NX

Open specifically refers to the procedural APIs that are provided to work directly with the NX

Object Model. Each API supports a specific programming language. A set of relatively new

languages all share a common object model and thus have a Common API. Three other APIs

have existed for many years and are collectively referred to as the legacy or Classic APIs.

This section will discuss the NX Open APIs. Other toolkits available for NX automation are also

introduced and a select few toolkits for other Siemens PLM Software products are noted. What

each toolkit does and when to use it is discussed.

This Programmer's Guide focuses on the Common APIs. The legacy Programmer's Guides and

Reference manuals are still available for the Classic APIs. Complete information for the Classic

APIs and the other toolkits referenced in this section can be found in the user's guides that are

provided for each of the tools.

Common API

The NX architecture requires NX developers to expose new features and functions to a common

object model. Using this common object model it is possible to automatically generate multiple

language bindings. This mean that all languages derived from the Common API have the same

set of objects, object properties and methods. Furthermore, the class hierarchy is the same for all

Common APIs.

There are many advantages to this architectures over the architecture used for the Classic APIs.

For instance:

∑ All Common API languages are equal in terms of NX capabilities. This mean you have the

freedom to chose an implementation language that suits your specific needs without having

to worry about missing functionality.

∑ New features and functions are available for automation when introduced into NX, there is

no longer delay between the capability being available interactively versus programmatically.

∑ You now have access to the same object model that is used by NX developers.

The following language bindings are available for the Common API.

NX Open for .NET - This API uses Microsoft's .NET framework. This API makes it possible to

create automation programs using any of the .NET compliant languages, including Visual Basic

.NET and C#. Users can take full advantage of all the benefits provided by the .NET framework

including native Windows dialog development tools and all of the capabilities of the Visual Studio

Integrated Development Environment (IDE). This API is ideal if Windows is your platform of

choice.

NX Open for Java - This API uses Sun's Java platform. Java provides many benefits including

platform independence and a huge library of existing classes. The Java Abstract Windows Toolkit

(AWT) and Swing provide tools for building platform independent dialogs. The Java Remote

Method Invocation (RMI) methods provide tools to build client/server based applications. Also,

free development environments are available such as Eclipse. This API is ideal if a multiple

platform client/server application is being developed.

NX Open for C++ - This API provides a C++ interface to NX. This new C++ library is compatible

with the Open C and Open C++ APIs. This API is ideal if you have existing C/C++ applications

that you need to enhance.

Journaling

Although Journaling is not a toolkit it is introduced here because it can be used to produce

automation solutions or to generate code for use by larger applications.

The Journal utility is a rapid automation tool that records, edits, and replays interactive NX

sessions. Built from the Common API and based on .NET, it produces a scripted file from an

interactive session of NX which can be run at a later time to replay the session. These sessions

can be edited and enhanced with simple programming constructs and user interface components

to produce a rapidly-generated customized program (see Journals and Applications).

Although Journal replay is currently limited to Visual Basic .NET and C#, the use can choose to

record in any of the Common API languages. This technique can be used to generate example

code which can then be used in larger applications.

The ability to record and playback Journals is included with every NX seat. See Journals for an

introduction to working with Journals. Complete information on recording, editing and replaying

Journals can be found in: Getting Started → Working with Parts → Common Tools → Journal.

Classic APIs

Before the Common API was adopted by NX three APIs were developed. These API are still

maintained but they are no longer actively enhanced.

Open C - The Open C API is a direct programming interface to NX that allows users to create

custom applications using the popular C programming language. It has been used by NX

developers, customers, and partners to produce unique applications to augment NX or to act as

completely separate utilities. Open C also provides a fully extensible data model, allowing

customers to define new types of objects that can be treated just like standard NX objects and

stored persistently in NX part files.

The Open C API has grown over many years and consist of over 5,000 functions. The functions

are collectively know as User Functions. The applications developed with this API are often

called UFUNC or UF programs. The Open C functions typically have the naming convention of:

UF_<application area>_<function>. For instance, UF_MODL_create_plane().

Given the history of this API, it provides a wide range of coverage. To ensure that new

applications have access to this coverage .NET and Java wrappers have been provided (see

Wrappers). Note that wrappers are not required for programs written using NX Open C++

because the Open C functions and Open C++ methods may be called directly from NX Open

C++ programs.

Open C++ - This API provided the first object oriented interface to NX. Written in C++, this API

takes full advantage of object oriented features including inheritance, encapsulation and

polymorphism. Open C++ provides complete access to its class hierarchy, allowing customers to

override methods, derive their own classes, and create entirely new, persistent objects in NX.

Open C++ is fully compatible with the Open C API.

NX Open GRIP - GRIP (Graphics Interactive Programming) is an intermediate scripting language

for automating CAD/CAM/CAE tasks. Users can create applications to automate Numerical

Control (NC) operations, create geometric and drafting objects, control system parameters,

perform file management functions and modify existing geometry.

Knowledge Driven Automation

Knowledge Fusion (KF) - This API is an interpreted, object-oriented, language that is embedded

in NX. KF allows you to add engineering knowledge to a task by creating rules which are the

basic building blocks of the language. The language is declarative, rather than procedural, which

means that the rules are executed when needed, regardless of the order. The Knowledge Fusion

rule engine determines the correct rule firing sequence driven by the dependencies between the

rules. Additionally, the language has the capability to access external knowledge bases such as

databases or spreadsheets and to interface to other applications such as analysis and

optimization packages. This API is ideal for applications that require associative, persistent

objects that participate in model update. For more information see Knowledge Fusion and

Knowledge Fusion Help and Best Practices.

Other NX Toolkits

In addition to the NX Open API toolkits provided above, Siemens PLM Software provides the

following automation tools for NX. This document will provide introductions for NX Open working

with these toolkits. Complete information for each toolkit can be found in their respective user's

guides.

Block Styler (UI Styler) - The Block Styler is a visual user interface builder that makes it possible

to interactively design portable NX style dialogs. It is used internally by NX developers and

externally by users and third party developers. Block Styler provides a dialog builder that runs

within NX. The dialog definition files produced by the builder are automatically loaded by NX and

provide the necessary event callbacks for programs to handle user interactions during a running

NX session. For more information see Block Styler and the Block Styler user's guide. The Block

Styler is ideal if your application needs to run on multiple platforms and would benefit from an NX

look and feel.

MenuScript - This tool allows end users and third party developers to create and edit NX menus.

MenuScript is a text language that can be used to define custom NX menu items used to launch

applications from an interactive session of NX. Menu files support custom tailoring of the main

menu bar and the Quick View Popup menu. The standard NX menus can be customized to meet

the requirements for a specific workflow or new menu items may be added to launch dialogs

created with the Block Styler. MenuScript is available with all NX seats. For more information see

Menu Items and the MenuScript user's guide.

Open User Interface Styler (UI Styler) - The UI Styler is a visual user interface builder that is used

to maintain dialogs that were created before NX adopted Block based dialogs. New dialogs

should be defined with the Block Styler. For more information see UI Styler and the Open User

Interface Styler user's guide.

Other Siemens PLM Software Toolkits

Siemens PLM Software offers many other automation and system integration toolkits. Two

toolkits are mentioned here due to the frequency they are used in conjunction with NX. The

usage of these toolkits are out of scope for this manual. For more information see their respective

user's guides, which are not part of the NX Help Library.

Parasolid - Parasolid is the world's leading production proven geometric modeling software,

enabling users to model the industry's most complex parts and assemblies. Used as the

geometry engine in hundreds of different computer aided design, manufacturing and engineering

(CAD/CAM/CAE) applications, Parasolid has established an industry standard in global product

design. Parasolid is the solid modeling kernel used by NX. The Parasolid API is ideal for

programs that provide interfaces to third party applications that produce Parasolid models.

Teamcenter Engineering Integration Tool Kit (ITK) - This API provides the functions and utilities

used to customize Teamcenter to support your organization's specific data management needs.

Teamcenter is a client-server architecture based system. Customization can be made both to the

server and to the client portions. This API is ideal for applications that must directly interact with

Teamcenter to automate the process of saving or retrieving product data produced by NX and

other third party applications.

Source Notes: 1. NX Open General Programmer's Guide → About NX Open → Available Toolkits

2. Other Siemens PLM Software Toolkits - new content

Journals and Applications

In the Available Toolkits section the ability to record and playback a Journal was discussed. This

ability provides an easy way to create automation solutions in NX without having to program. It

does not however provide the ability to create complete applications without programming. For

instance, a Journal will simply replay the steps that were recorded, it will not produce a user

interface that lets the user change options. A good example is selection. If the selection of an

object is recorded in a Journal then that same object (or one with the same name) is required to

successfully replay the steps of the Journal.

This document uses the term "application" to refer to automation solutions that provide general

solutions to a given problem domain. An application lets a user create objects based on general

inputs from a user. The inputs may be in the form of data files or an interactive user interface.

The objects created may be reports, data files, geometric models, NC programs, CAE models or

just about anything imaginable.

It is possible to start with a Journal and modify the program to add general user inputs and output

to produce a complete application. This topic is discussed in Turning Journals Into Applications.

It is also possible to use a Journal to create example code. This technique is very useful for using

interactive NX to learn how to program using the common object model. Since Journals are

recorded in the Common API language of your choice, the code produced by Journals can be

copied into complete automation systems which are compiled and linked using all of the

capabilities of high end application development tools.

Journals

This section provides an introduction to Journaling. A complete reference for creating, editing and

replaying Journals is found in the NX Help Library: Getting Started → Working with Parts →

Common Tools → Journal

Recording, Replaying and Editing a Journal

To record a Journal, choose Tools → Journal → Record. You will be prompted to specify the

output file to store the Journal. Then each NX command that supports Journaling will record the

Common API calls that are required to implement the NX command. The language that is

recorded is a preference that is set with the menu command: Preferences → User Interface.

Open the Journal tab on the Preferences dialog to find the language selections.

To playback a Journal, choose Tools → Journal → Play. The Journal Manager dialog is

displayed. You can browse to and select the desired Journal. After selecting the Journal, click the
Run button to execute the Journal. You may also define menu items and toolbar buttons to

execute Journals. For more information on these topics see the sections in this manual on

Executing NX Open Automation (Menu Items and Toolbars). Currently Journal playback is limited

to Visual Basic .NET and C# .NET on the Windows platform.

To edit a Journal you can use any text editor or IDE. You can also use the Journal Manager to
select a Journal and then click the Edit button to access a built in editor.

Journal Indicators

When a Journal is being recorded each NX command can display a marker that indicates if the

command supports Journaling. The following table shows the Journal indicators and their

meaning. Partial Journal support means that not all options of the NX command are recorded.

Menu Item Indicators

Full Journal Support

Partial Journal Support

Toolbar Indicators

Fully Journal Support

Partial Journal Support

If the Journal indicators are not shown when recording a Journal, they can be turned on by

defining the following environment variable: UGII_JOURNAL_INDICATOR.

Journal Fundamentals

Here are just a few things to keep in mind when using Journals for automation.

1. Although you can pick the language to record in, playback is currently limited to Visual

Basic .NET and C# .NET. If you need to develop with some other language then you can

only use Journals to produce code to be compiled and linked with your application.

2. A Journal may not make calls to methods in other Journals. If your problem is too large

and complex for the code to be managed in a single file, then you need to compile and link

your Journals into an application.

3. The first time a Journal runs the .NET libraries have to load. So the first execution will take

longer.

4. NX is not linked with all .NET libraries. If your Journal tries to make a call to a method not

in the libraries linked with NX then you will get an error.

The following .NET libraries are supported by journaling:

∑ mscorlib.dll

∑ System.dll

∑ System.Windows.Forms.dll

∑ System.Drawing.dll

Any .NET functionality not supported in one of these libraries will not replay from a Journal. If

your application requires .NET functionality not found in these libraries then you will need to

compile and link your application referencing the required library. For instance, if your application

needs to implement a client/server architecture you may need to link to

System.Runtime.Remoting.dll.

Compiling and Linking Applications

Application development using NX Open works just like developing any other application. You

simply need to compile and link your application's source code while including the required

compile time and link time resource files. This section identifies all of the compile time and link

time resource files provided for each language supported by the Common API. To compile and

link classic APIs refer to the manuals supplied for those APIs.

The required libraries for an application will depend on how that application is intended to be

used and the type of user interface that is required. There are three modes of executing an NX

Open program: Interactive, Batch and Remote. The execution modes are defined in Execution

Modes. How to execute in these modes are covered in detail in Executing NX Open Automation.

The required libraries are also driven by the user interface requirements. If the application needs

to interact with the NX user using NX provided user interface tools, such as selection, NX dialogs,

NX Menus or toolbars, then the libraries for those tools will need to be referenced by the

application. Applications that need to interact with the NX user using NX provided tools must

execute in interactive mode.

Compiling and Linking - Language Specific Details

NX Open for C++

NX Open for .NET

NX Open for Java
NX Open for C++

This section defines compile and linking of NX Open C++ applications. Classic Open C and Open

C++ applications should reference the Programmer's Guides for those API.

All NX Open C++ libraries included with NX are found in: <NX install directory>\UGOPEN\

All NX Open C++ include files (.hxx) are found in: <NX install directory>\UGOPEN\NXOpen\

Compiling and linking tools providing by NX use <NX install directory>\UGOPEN\ as the base

directory for all include files. To reference the NX Open C++ include files (.hxx), the NXOpen

subdirectory should be referenced in the source. For example:

#include <NXOpen/Session.hxx>

The following table show the C++ library names and provides a description for when to use the

library.

.NET Library
Name

Purpose

libnxopencpp.lib Contains base functionality that can be used in batch or
interactive applications.

libnxopenuicpp.lib Contains User Interface functionality that can only be used in
interactive applications.

Note:

NX Open C++ may reference the classic Open C and Open C++ API directly. See the

Programmer's Guides for those API to learn more about the their libraries.

The following table shows the types of executables that are used by .NET applications.

Executable Type File
Extension

When Used Operating System

Dynamically Loadable
Library

.dll Interactive
Applications

Windows

Library .so/.sl Interactive
Applications

Non-Windows

Executable .exe Batch Applications Windows and Non-
Windows

Non WindowsC++ Compiling and Linking

NX Open C++ applications can be compiled on Non-Windows/LINUX using NX supplied tools like

ufmenu or using system "make" command in conjuction with a makefile.

Using ufmenu

NX provides tools to compile and link applications on Non-Windows systems. These tools hide

the details of various compile time and link time switches. They also include the correct search

paths for compile time include files and link time libraries. The tools are:

Tool
Name

Purpose

ufmenu General script providing access to edit, compile and link scripts. Also, provides
access to to execute NX Open applications.

ufcomp Called by ufmenu or used directly for compiling NX Open C++ applications.

uflink Called by ufmenu or used directly to link NX Open C++ applications.

For specific instruction on how to use each tool see: ufmenu, ufcomp and uflink.
Using -makefile

On non-Windows systems NX also provides the following example makefile.

<NX install directory>/ugopen/ufun_make_template.ksh

The template makefile can copied and customized to compile and link NX Open applications.

Instructions on how to use the template file are fully explained in the commented section of the

file.

The template file should first be copied to the application project folders and renamed to either

"Makefile" or "makefile", which are the standard names for non-Windows makefiles. Alternatively,

you could use the "-f" switch with the make command to specify the makefile name.

The template makefile was designed to be used with the make command supplied by the

platform's vendor. For further information on make and file dependencies use "man make".

Windows C++ Compiling and Linking

NX Open C++ applications can be compiled and linked using NX supplied tools or by using visual

studio

Command Line

To compile and link NX Open C++ application on a NX command prompt, use uflink
Using Visual Studio

Creating a NX Open C++ application is exactly same as any other application you create using

Visual Studio. The following project/solutions settings ensure that correct runtime libraries are

used by the NX Open application.

∑ If working with a Debug project, make sure that Runtime Library (In C/C++ → Code

Generation) is set to Multi-Threaded DLL (/MD).

∑ Additional Include directory correctly points to the directory location of NX Open C++ header

files.

∑ Additional dependencies lists all the NX Open library the application should link against.

Alternatively, you can use the visual studio wizard to automatically set the appropriate

project/solution settings for NX Open C++ application.

Using NX Visual Studio Wizard

NX provides visual studio wizard to build NX Open applications using visual studio. The wizard

sets up the necessary options in visual studio for NX Open applications. For more information on

how to install the wizard see: Visual Studio Application Wizard Setup

Once the wizard is set up, use the following steps to set up a NX Open C++ project in Visual

Studio:

1. Inside Visual Studio, select File → New → Project, and select the desired language, then

select the related Wizard.

2. Highlight the NX5 Open Wizard

Name: (your desired project name)

Location: (your work area)

OK

Next

3. Select "An internal application...." (Or whatever matches your project intentions)

Next>

4. Make appropriate selections for your project.

5. Select Finish

x64 Compiling and Linking (Using Visual Studio)

Visual studio defaults to Win32 project on x64 machines also. To compile and link 64-bit

applications:

1. Select Build→Configuration Manager.

2. Select x64 under Active solution platform:

3. If x64 is not listed, select <New...> from the option menu under Active solution platform:

4. In the New Solution Platform Dialog, select x64 from the option menu: Type or select the

new platform

Note:

If x64 is not listed under Type or select new platform, you need to install 64-bit extensions for

visual studio. Refer to visual studio installation guides.

NX Open for .NET

All .NET libraries included with NX are found in: <NX install directory>\UGII\managed\

The following table show the library names and provides a description for when to use the library.

.NET Library
Name

Purpose

NXOpen.dll Contains base functionality that can be used in batch or interactive applications.

NXOpen.Utilities.dll Contains utility functionality that can be used in batch or interactive applications.

NXOpenUI.dll Contains User Interface functionality that can only be used in interactive
applications.

NXOpen.UF.dll Contains .NET wrapped user function for use in batch or interactive applications.
Only use this library if the application requires access to the classic API.

The following table shows the types of executables that are used by .NET applications.

Executable Type File Extension When Used

Dynamically Loadable Library .dll Interactive Applications

Executable File .exe Batch Applications

Other .NET Libraries

Another library in the UGII\managed directory is ManagedLoader.dll. This library is for internal

use and should not be included with any NX Open application.

Other files in the UGII\managed\ directory are: NXOpen.Utilities.xml, NXOpen.xml and

NXOpenUI.xml. These files are used by Visual Studio and other development tools to provide

documentation. For more information see: Browsing the Class Hierarchy

Command Line

The Microsoft .NET Framework SDK includes compilers for all of the .NET languages. For

instance, vbc.exe is available to compile Visual Basic and csc.exe is available to compile C#.

These compilers take .NET source files as input and produces a .dll file which can be loaded and

executed interactively by NX. The .NET compilers can also produce .exe files, which are used for

batch applications.

For example, assuming the directory for vbc.exe and csc.exe is included in the active PATH and

that UGII_ROOT_DIR = <NX install directory>\UGII\, the following commands could be used to

create .NET interactive executables (<application>.dll) on Windows:

Creating Class Library

vbc /libpath:%UGII_ROOT_DIR%\managed /t:library /r:NXOpen.dll /r:NXOpen.Utilities.dll

/r:NXOpen.UF.dll <application>.vb

csc /libpath:%UGII_ROOT_DIR%\managed /t:library /r:NXOpen.dll /r:NXOpen.Utilities.dll

/r:NXOpen.UF.dll <application>.cs

Creating Executable (Batch Program)

To create a batch application executable (<application>.exe) set the /t option to "exe" instead of

"library". For example:

vbc /libpath:%UGII_ROOT_DIR%\managed /t:exe /r:NXOpen.dll /r:NXOpen.Utilities.dll

/r:NXOpen.UF.dll <application>.vb

csc /libpath:%UGII_ROOT_DIR%\managed /t:exe /r:NXOpen.dll /r:NXOpen.Utilities.dll

/r:NXOpen.UF.dll <application>.cs

Using Visual Studio for .NET Development

Visual Studio is a very popular development environment from Microsoft. The following is a check

list for using Visual Studio to develop NX Open applications. For more information on Visual

Studio see the Microsoft Developer Network webpage.

∑ Make sure that the Microsoft .NET Framework SDK supported by your version of Visual

Studio is compatible with that required by the target NX release. You can find the .NET

Framework requirements for NX in NX Open System Information.

∑ For interactive applications (.dll executable) use the Class Library or Windows Application

project templates when creating the project.

∑ For batch applications (.exe executable) use the Console Application template when creating

a the project.

∑ To add the .NET libraries found in UGII\managed (described above) select the project in the

Solution Explorer. Using the right mouse button select the Add References... menu item.

Using the Browse tab locate the NX Open .NET libraries and add the libraries required by

the application.

∑ By default Visual Studio will copy referenced libraries to the project directories. If copies of

the NX Open libraries are not wanted then select each library from the list of project

references and in the Properties window set the Copy Local property to False.

∑ For batch applications make sure the entry point is set to the desired method. The Entry

Point property is found under project properties → Linker → Advanced.

Using NX Open Visual Studio Wizard

NX provides visual studio wizard to build NX Open applications using visual studio. The wizard

sets up the necessary options in visual studio for NX Open applications. For more information on

how to install the wizard see: Visual Studio Application Wizard Setup
NX Open for Java

All Java libraries included with NX are found in: <NX install directory>\UGII\

The following table show the library names and provides a description for when to use the library.

Java Library
Name

Purpose

NXOpen.jar Contains base functionality that can be used in batch or interactive applications.

NXOpenUI.jar Contains User Interface functionality that can only be used in interactive applications.

NXOpenUF.jar Contains Java wrapped user function for use in batch or interactive applications. Only
use this library if the application requires access to the classic API.

The following table shows the types of executables that are used by Java applications.

Executable Type File Extension When Used

Binary Class File .class Interactive or Batch Applications (during development cycle)

Java Archive .jar Interactive or Batch Applications (for signature and release)

Other Java Libraries

Also in the UGII directory are a set of Java libraries for remote applications: NXOpenRemote.jar,

NXOpenUIRemote.jar and NXOpenUFRemote.jar. These libraries are used when starting remote

client and server applications (see Executing Remote Processes).

Also in the UGII directory are a set of Java libraries that are used internally by NX that should not

be included in NX Open applications: NXOpenRun.jar, NXOpenUIRun.jar and NXOpenRun.jar.

Command Line

The Java Developer Kit (JDK) includes a Java compiler javac. The Java compiler takes .java

source files as input and produces a .class file which can be loaded and executed interactively by

NX or in batch mode.

Non-Windows JAVA Compiling and Linking

Use the following command to compile a Java program on non-Windows systems:

javac -classpath

".;$UGII_ROOT_DIR/NXOpen.jar;$UGII_ROOT_DIR/NXOpenUF.jar;$UGII_ROOT_DIR/NXOpen

UI.jar" <application>.java

Windows JAVA Compiling and Linking

Assuming the directory for javac.exe is included in the active PATH and that UGII_ROOT_DIR =

<NX install directory>\UGII\, the following command would be used to create the Java executable

(<application>.class) on Windows:

javac -classpath

".;%UGII_ROOT_DIR%\NXOpen.jar;%UGII_ROOT_DIR%\NXOpenUF.jar;%UGII_ROOT_DIR%\

NXOpenUI.jar" <application>.java

JAR Files

The javac command will create a .class file. The class file can be used during the development

cycle for testing. When the application is ready to release a .jar file will need to be signed (see
Signing Process). To create a .jar file use another utility included with the JDK -- jar. The syntax

for using jar is the same on non—Windows and Windows, for example:

jar cf <application>.jar <application>.class

See Sun's Java documentation on JAR for further information on all options available with JAR

utility. NX will load and execute both .class files and .jar files. Both types of executable can also

be executed in batch mode.

"For documentation on how to build a jar the following pages could be of interest.

Sun's page on Jar files.

http://java.sun.com/javase/6/docs/technotes/guides/jar/index.html

Suns page on using the Jar tool on Windows —

http://java.sun.com/javase/6/docs/technotes/tools/windows/jar.html

Suns page on using the Jar tool on SUN (non-Windows) —

http://java.sun.com/javase/6/docs/technotes/tools/solaris/jar.html

Sun's JAR tutorial — http://java.sun.com/docs/books/tutorial/deployment/jar/"

Using Eclipse for Java Development

Eclipse is a free development environment for Java. The following is a check list for using Eclipse

to develop NX Open applications. For more information on Eclipse see www.eclipse.org.

∑ Remember to set the compiler preference to produce code for the Java Runtime

Environment (JRE) that is compatible with the JRE shipped with the target version of NX.

You can find the JRE version shipped with NX in NX Open System Information. To set the

Eclipse compiler preference open the project's properties dialog, select Java Build Path and

then the Libraries tab. Select the JRE System Library and then use the Edit button to select

the desired JRE version.

∑ Add the .jar files found in the UGII directory as described above. To add libraries open the

project's properties dialogs, select Java Build Path and then the Libraries tab. The Add

External JARs... button will bring up a file selection dialog. Browse the .jar files in the UGII

directory that are needed by your NX Open application and add them to the project.

∑ When exporting the .jar file for your project make sure the "Export generated class files and

resources" option is set on the JAR Export dialog.

Compiling Open C API Programs
Linking Open C API Programs

Turning Journals Into Applications

Journals can be used for automation but as discussed in Journals and Applications recorded

Journals do not provide a user interface. When the Journal is played back it will repeat exactly

what was recorded using the exact same named objects. This section will discuss the steps

required to modify a Journal to provide a user interface which will permit the Journal to implement

a general solution for a given problem. It will also discuss reasons for possibly migrating the

Journal into a fully compiled and linked solution

The following table shows differences in the capability between an as recorded Journal, one that

has been turned into an application and a fully compiled and linked system:

Journal (as recorded) Journal Application (adding
UI)

Fully Compiled and Linked
Application

Single Source File Single Source File Any number of source files

Operates on named
objects that match those
selected during record,
using parameters enter
by the author

Operates on user selected
objects, using parameters
entered by the user at
runtime

Operates on user selected objects, using
parameters entered by the user at
runtime

Limited to NX commands
that support Journaling

May use all Common API
classes supported by the
.NET libraries link with NX
(see Journal Fundamentals in
Journals)

May use all Common API classes and
any desired .NET class

Provides no ability to
initialize events during
NX startup

Provides no ability to initialize
events during NX startup

During NX startup the application may
be automatically loaded, a startup
method can be defined to register event
handlers to support dialogs, User
Defined Objects and many other runtime
options

Feature based license
checking

Feature based license
checking

Author license required during
development cycle, signature required
before release to the user base

QuickExtrude Example

The example in this section can be found in:

<NX install directory>\UGOPEN\SampleNXOpenApplications\

.NET\\QuickExtrude\QuickExtrude.vb

The QuickExtrude example starts with a Journal as recorded. The Journal selects an existing

sketch and then creates a solid by extruded the sketch a set distance. The source code has been

modified to ask the user for the distance and to let the user select the target sketch. The source

code shows the originally Journaled commands, which have been commented out. The added

user interface commands are highlighted. This example show exactly what to remove and what

to add to a recorded to turn it into an application.

The readme file in the example folder explains how to determine what code was added and

removed from the original journal. The code modifications are explained in more details below.

Adding a User Interface

In the QuickExtrude example two objects (extend1 and extend2) are used to set the starting and

ending offset expressions from the sketch for the extrude command. The recorded code sets the

starting and ending offset expressions to the values given to the interactive extrude command by

the author (0.0 and 1.0). The Visual Basic commands recorded to set these values are:

extend1.SetValue("0.0")

extend2.SetValue("1.0")

To add a simple user interface these commands can be replaced by commands that display a

dialog box to obtain a value from the user. For example:

Dim inputBox As NXInputBox = New NXInputBox

extend1.SetValue(inputBox.GetInputString("Set the Start Limit: ", "Extrude Starting Offset", "0.0"))

extend2.SetValue(inputBox.GetInputString("Set the End Limit: ", "Extrude Ending Offset", "1.0"))

These added command use the GetInputString method of the NXInputBox class. A dialog is

displayed for each value asking the user to key in the desired offset values. To access this user

interface class the NXOpenUI name space must be included.

Imports NXOpenUI

Removing Selection Stickiness

Journals record the exact events, including the selection events, that a user performs during the

recording process. What gets recorded in a journal, is not the "intent" of a selection or the series

of UI events the user performed to produce the final result. Instead, the journal records the actual

name of the selected object and specific methods invoked for those object. When replayed a

Journal will therefore only operate on the same named object. This behavior is referred to as

Selection Stickiness.

For example, if a user is recording the blanking of all the datum planes in a view, what actually

gets recorded is the exact name of each datum plane and the final method to blank the datum

planes. Replaying this journal causes the execution of the exact action on the specific objects

chosen. Selection Stickiness can sometimes cause a replay failure if the journal is executed out

of context of its original recorded events. For example, if the Journal to blank datum planes is

replayed in a different part file an error would result if the part file did not contain datum planes

with the same names.

In the QuickExtrude example Selection Stickiness was removed by first adding a sketch selection

method to the Journal file. The following is an example of code to select a sketch. This selection

function can be inserted into the end of the original Journal file just before the End Module

command.

To set up selection programmatically, the following steps are needed:

1. Define the selection scope

2. Define the selection mask

3. Use the SelectObject method on the SelectionManager class to select a specific object.

SelectObject method invokes a simple dialog to allow you to select the sketch.

To access this user interface class and the selection mask constants the following name spaces

must be included.

Imports NXOpen.UF
Imports NXOpenUI

Now, set up interactive selection (steps 1,2 and 3)

Public Function SelectSketch() As Sketch

Dim ui As UI = ui.GetUI
Dim message As String = "Select sketch"
Dim title As String = "Selection"

Dim scope As Selection.SelectionScope =
Selection.SelectionScope.WorkPart

Dim keepHighlighted As Boolean = False
Dim includeFeatures As Boolean = True

Dim selectionAction As Selection.SelectionAction =
Selection.SelectionAction.ClearAndEnableSpecific

Dim selectionMask_array(1) As Selection.MaskTriple

With selectionMask_array(0)
.Type = UFConstants.UF_sketch_type
.Subtype = 0
.SolidBodySubtype = 0

End With

Dim selectedObject As NXObject = Nothing
Dim cursor As Point3d

ui.SelectionManager.SelectObject(message, title,scope, _
selectionAction,

includeFeatures, _

keepHighlighted,selectionMask_array,_
selectedObject,

cursor)
Dim sketch As Sketch = CType(selectedObject, Sketch)

If sketch Is Nothing Then
Return Nothing

End If

Return sketch

End Function

A call to the sketch selection method may now be added to the beginning of the Journal.

Dim sketch1 As Sketch = SelectSketch()

If sketch1 Is Nothing Then
Return

End If

Replacing FindObject() calls

The body of the Journal will contain the original code used to reference a specifically named

object. In this case the object selected during Journaling was "SKETCH(4)". The following lines of

code are used to find the named object and cast the object to the appropriate feature type.

' **** Removed Code ****

'Dim sketchFeature1 As Features.SketchFeature =
CType(workPart.Features.FindObject("SKETCH(4)"),
Features.SketchFeature)
'features1(0) = sketchFeature1

Since we use interactive sketch selection, SelectSketch function will provide the user selected

sketch object. To get the actual feature:

features1(0) = sketch1.Feature

Now, we need to add the actual curves to the extrude section. In the recorded journal, this is

done using the specifically named object:

Dim arc1 As Arc = CType(sketch1.FindObject("Curve Arc1"), Arc

The selection intent during journal creation was Feature Curves, i.e. select all curves belonging to

the selected feature. Thus, we need to find one curve of the sketch feature and replace the

FindObject() call with the curve in the interactively selected sketch.

Dim geoms() As NXObject = sketch1.GetAllGeometry() 'Gets all the
geometry objects controlled by the sketch feature
Dim nXObject1 As NXObject = geoms(0) 'We just need the first curve as
selection intent will find all the other curves

Replace reference to arc1 with the nXObject1 in the AddSection method

' **** Removed Code ****
'section1.AddToSection(rules1, arc1, nullNXObject, nullNXObject,
helpPoint1, Section.Mode.Create)
'^^^^^^^^^^^^^^^^^^^^^

' **** Added Code ****
section1.AddToSection(rules1, nXObject1, nullNXObject, nullNXObject,
helpPoint1, Section.Mode.Create)

Journal Replay

After making all the above changes, replay the journal. On replay, the selection dialog will ask

you to select a sketch. On successful sketch selection, enter values start and end extend values

in "Set Start Limit" and "Set End Limit" input boxes.

At the end of journal replay, an extrude feature gets created using the sketch you selected and

the extrude extends you entered.

Deciding When to Compile and Link

The table given at the beginning of this section shows the major differences between Journal

Applications and applications that are compiled and linked.

Compiled and linked applications provide full access to the Common API and the .NET

framework. Compiled applications provide full access to NX events, NX dialogs and User Defined

Objects. An author license is required for compiled applications and is checked when applications

are loaded during the development cycle and is required to run the signing utility (see

Development Cycle Considerations and Signing Process).

Journals are limited to a single source file and have access to most but not all capabilities of the

Common API. Journals do not require an author license.

Both Journals and compiled application use feature based license checking at runtime.

Moving an application from a Journal to a compiled and linked application will therefore typically

depend on the complexity and benefit of the application.

Development Cycle Considerations

An application development cycle is defined by the following steps:

1. Edit Source

2. Compile Source into Objects

3. Link Objects into an Executable (note some languages and development environments

combine steps 2 and 3

4. Run the executable for testing purposes

5. If successful and application development is complete then proceed to step 6, otherwise

repeat steps 1-4

6. Release the application to the user base

This section discusses issues to consider during the Testing Cycle (Steps 1-5) and before

Releasing the application to the user base.
Testing Cycle (Steps 1 - 5)

Testing the application typically consist of starting NX which is then used to load and execute the

application (see Executing NX Open Automation). If the application needs to be corrected and

retested then a new executable must be created and loaded by NX. One way to do this is to

restart NX and have it load the new current version of the executable. During the development

cycle, which could require many testing cycles, restarting NX can be time consuming.

To streamline the testing process, NX Open provides Unload Options. By setting the unload

option to "Immediately", NX will unload the application when the application terminates. This will

permit you to edit, compile and link a new version of the application. You can then execute the

application again without having to restart NX. NX will load and execute the new version of the

application.

Release to Users (Step 6)

Before releasing an application to the user base the following steps should be taken.

1. If the application is being distributed to someone without an NX Open author license then

the application must be signed to prove that it was developed with a valid author license.

Descriptions of how to sign an application are found in: Signing Process.

2. If the application is being distributed to someone without an NX Open author license then

the application will perform Feature Based license checking during execution. The

application author must be aware of the features required by the application and the

features available to the user base. The features required for each Common API method

and property are given in the language specific reference manuals. More information on

Feature Based license checking can be found in: Feature Based License Checking.

3. If the application has been tested with a debug version it may be beneficial to compile and

link without the debug options to improve the applications performance.

4. It may be beneficial to change the unload option to "At Termination" (as described in

Unload Options). This will cause NX to only load the application once, regardless of the

number of times it is executed. This will increase the startup time for the application by

removing the need to reload each time it is executed.

Execution Overview

This section provides an overview of the different execution modes and methods that are

available for NX Open applications. Each execution method is covered in more detail it's own

topic.

Execution Modes

NX Open applications may be executed in three different modes: Interactive, Batch and Remote.

For more information see: Execution Modes.
Execution Methods

NX provides very flexible customization options. This requires many different customization

access points which all need different sets of information to execute the target NX Open

applications. The following table list all of the different methods available for executing NX Open

applications. The table shows which execution mode is supported by the execution method and

which NX tools must be present for the execution mode to be available. The table also shows if

the method can be used to execute a Journal and/or a fully compiled and linked program.

Method Execution Mode
(interactive/batch)

Required Tool Journal
Applications

Compiled/Linked
Application

Journal Manager Interactive Gateway Yes No
Interactive NX File→Execute→NX Open Interactive Gateway No Yes
New Menu Item (.men file) Interactive Menuscript Yes Yes
Existing Menu Item (.men file) Interactive Menuscript No Yes
Toolbar Button (.tbr file and interactive) Interactive Gateway Yes Yes
User Tools Dialog (.utd file) Interactive Gateway No Yes
Dialog from a Menu or Toolbar (.dlg file from
UI Styler)

Interactive UI Styler &
Menuscript

No Yes

Dialog from a Menu or Toolbar (.dlx file from
Block Styler)

Interactive Block Styler &
Menuscript

No Yes

Automatically at NX Startup Interactive Gateway No Yes
Automatically as an NX Application Interactive Gateway No Yes
User Exits Interactive or Batch Gateway No Yes

Command Line Batch Gateway No Yes
Remote Procedure Call Interactive or Batch Gateway &

(.NET or Java)

No Yes

Wizard defined by Process Studio (UI Styler
and Journal Play steps)

Interactive Process Studio Yes Yes

From ufmenu (option 4) Batch Gateway No Yes
From GRIP Interactive or Batch GRIP No Yes

The following table summarizes the tools list above as requirements for the different execution

methods.

Tool How Purchased Purpose

Gateway
Available with any
NX seat

Provides the foundation for all NX
capabilities

Menuscript
Available with any
NX seat

Provides a language for defining NX
menu and toolbar buttons/commands

User Interface
Styler (UI Styler)

Purchased as an
add on module

Provides an interactive tool for defining
platform independent NX dialogs

Process Studio
Purchases as an
add on module

Provides an interactive tool for defining
workflow processes

Note:

In all cases if a compiled/linked application is going to be executed by someone without an NX

Open author licenses then the executable must be signed (see Signing Process). Signing is

not required for Journals.

How NX Finds Application Files

Many execution methods require NX to automatically load different application files. This topic is

discussed in How NX Finds Application Files.

Execution Modes

NX Open applications may be executed in three different modes. The following tables defines the

differences between the execution modes.

Execution
Mode

Usage

Interactive
(a.k.a.
internal)

In this mode the application is running as part of an NX interactive
session. The NX display window, menus, toolbars and resource tabs
are active. The application may present it's own set of dialogs to the
user or the application may run behind the scenes. The application
may perform a wide range of activities from geometry generation to
design rule validation.

Batch (a.k.a.
external)

In this mode the application runs without an NX interactive user
interface. The application has full access to NX part models but no
NX display options may be executed. Any user interface has to be
provided by the application. Batch applications are typically used for

time consuming tasks that require little human interaction.

Remote

In this mode their is a client and server application. The client and
server execute as separate processes. The client and server may or
may not reside on the same machine. The client or the server may
work with NX in an interactive or batch mode. Communication
between the client and server is via remote procedure calls
(supported directly by Java and .NET) or by some other inter-
process communications (e.g. COM objects, ports). Remote
applications are useful when there is some sort of central data or
knowledge that has to be shared by multiple sites.

The execution mode will impact the libraries that must be included when the application is linked

(see Applications (Compile and Link)). The execution mode will also impact how the application is

invoked (see Executing Overview).

Note that the Remote execution mode is note mutually exclusive with the other modes. A remote

application is defined by a client and server process. Each of these processes my execute in any

combination of an Interactive or Batch mode.

Source Notes: 1. Open C reference manual (duplicates in most other programmer's guide)

How NX Finds Applications Files

Many of the methods used to execute applications require NX to automatically find and load

application files such as executables, menu files and dialog files. This topic discusses the general

methods used to specify the locations of your applications to NX.

Environment Variables
Application Root Directory

Environment Variables

NX uses the following environment variables to locate a root directory for your application.

Environment Variable Name and Default Value Environment Variable Value

UGII_CUSTOM_DIRECTORY_FILE= <NX install
directory>\UGII\MENUES\custom_dirs.dat

A full directory path to a file
containing a list of root directories
for all custom applications

UGII_USER_DIR= none (no default variable is defined) A full directory path to an
applications root directory

For released applications, using UGII_CUSTOM_DIRECTORY_FILE is highly recommended. It

has the advantage of supporting root directories for multiple applications and it makes it easy to

copy the file from release to release. While UGII_USER_DIR is useful during the development

cycle for a single application. Root directories from both the custom directory file and the

UGII_USER_DIR variable are searched by NX.

These variables are set when NX starts and are defined in: <NX install

directory>\UGII\ugii_env.dat .

Note:

In your NX installation you will also find UGII_UG_CUSTOM_DIRECTORY_FILE and

ug_custom_dirs.dat. This environment variable and directory file are for applications release

with NX. Do not modify this variable or file.

Application Root Directory

For any root directory specified by the above environment variables, NX will look for a "startup",

"application" and "udo" subdirectory.

Each subdirectory is used as follows.

Subdirectory Usage

startup Location for custom menu files, dialog files and executables to be loaded
by NX during NX initialization. Typically used for applications that
provides general functionality.

application Location for custom menu items and executables that are associated
with a new application added to the NX start menu or an existing NX

application.

udo Location for executables that register methods during NX initialization
that are used to manage User Defined Objects (see User Defined
Objects (UDO) .

When you start NX, it automatically loads the libraries and menu files contained in the startup and

udo directories. As NX loads each shared library, it immediately executes the standard entry

point (see Entry Points). The application can then initialize any event handles that are required to

respond to menu item, dialog and UDO actions.

To allow NX to start up faster, you can place the libraries into the application directory instead of

the startup directory. When you choose this strategy, NX loads the library when a user selects

the associated menu button, instead of at startup. This strategy cannot be used for applications

that are managing UDO actions. UDO applications must be loaded at startup to ensure the event

handlers are available to NX when parts are loaded.

Dynamically loaded shared libraries contained in these subdirectories must contain the proper file

extension for the operating system (e.g. .sl, .so, .dll) . If the correct extension is not used then NX

will fail to find the target file. As a result NX will display an error indicating that the application has

not been properly registered.

The topic for each execution method discusses the specific files that should be copied to these

subdirectories.

Application Root Directory

For any root directory specified by the above environment variables, NX will look for a "startup",

"application" and "udo" subdirectory.

Each subdirectory is used as follows.

Subdirectory Usage

startup Location for custom menu files, dialog files and executables to be loaded
by NX during NX initialization. Typically used for applications that
provides general functionality.

application Location for custom menu items and executables that are associated
with a new application added to the NX start menu or an existing NX
application.

udo Location for executables that register methods during NX initialization
that are used to manage User Defined Objects (see User Defined
Objects (UDO) .

When you start NX, it automatically loads the libraries and menu files contained in the startup and

udo directories. As NX loads each shared library, it immediately executes the standard entry

point (see Entry Points). The application can then initialize any event handles that are required to

respond to menu item, dialog and UDO actions.

To allow NX to start up faster, you can place the libraries into the application directory instead of

the startup directory. When you choose this strategy, NX loads the library when a user selects

the associated menu button, instead of at startup. This strategy cannot be used for applications

that are managing UDO actions. UDO applications must be loaded at startup to ensure the event

handlers are available to NX when parts are loaded.

Dynamically loaded shared libraries contained in these subdirectories must contain the proper file

extension for the operating system (e.g. .sl, .so, .dll) . If the correct extension is not used then NX

will fail to find the target file. As a result NX will display an error indicating that the application has

not been properly registered.

The topic for each execution method discusses the specific files that should be copied to these

subdirectories.

Execution Methods

Journals with the Journal Manager
Interactive NX (File → Execute → NX Open...)
Programs, Journals, or Callbacks from New Menu Items
Programs, Journals, or Callbacks from Existing Menu Items
Applications from a Toolbar Button (interactive)
Applications from a Toolbar File
Automatically at NX Start up
Adding Custom Applications to NX
User Exits
Executing Batch Applications with a Command Line
Remote Processes
Executing Applications from GRIP
UFMENU

Interactive NX (File → Execute → NX Open...)

A wide range of applications types can be executed from interactive NX using the menu

command:

File → Execute → NX Open...

This NX command displays a file selection dialog box. You can then browse to the location of the

executable file and run the application. The following types are available:

Dynamic Loadable Libraries (.dll, .sl or .so)

Executable Files (.exe)

Java Archives (.jar)

Java Class Files (.class)

Programs, Journals, or Callbacks from New Menu Items

This section contains an overview of how to execute programs, journals and callbacks from new

menu items added to NX using the menu scripting language provide by NX Menuscript. For a

complete discussion of NX Menuscript and how to customize the NX menus see the Menuscript

User's Guide.

NX changes it's menu structure based on the active NX application (e.g. modeling, drafting, ...).

This topic only discusses how to add new menus items to existing menus that are used for all

applications. Adding new applications to the NX start menu, and editing application specific

menus are covered in Adding Custom Applications to NX. Instructions for editing the behavior of

existing menu items can be found in: Executing Programs, Journals, or Callbacks from Existing

Menu Items.

This section assumes the reader is familiar with the startup folders discussed in How NX Finds

Application Files.

Quick Links
Overview
Introduction to Menu Files
Executing Programs
Executing Journals
Executing Callbacks (Menu Event Handlers)
Callback Registration for NX Open for C++
Callback Registration for NX Open for .NET
Callback Registration for NX Open for Java

Quick Links

∑ Overview

∑ Introduction to Menu Files

∑ Executing Programs

∑ Executing Journals

∑ Executing Callbacks (Menu Event Handlers)

∑ C++ Callbacks

∑ .NET Callbacks

∑ Java Callbacks

∑ Overview
∑
∑ The menu scripting language provides commands to add new menu items to NX. The

menu scripting commands are contained in a menu file with a .men suffix. In a menu file,

each menu item is defined by it's location within the NX menu structure, the display text for

the menu item, an ACTIONS text string (used to define the program, journal, or callback to

be executed), and a button name to identify the menu item in NX. At NX startup time, NX

will read all menu files in the startup directory. It will also execute all initialization entry

points in all loaded applications (see Entry Points). During this initialization process any

callbacks listed as actions in the menu files must be registered by the applications in the

startup directory. These callbacks are also referred to as menu event handlers.

∑ The MenuBarManager class (or UF_MB chapter for legacy C) defines the methods used to

register callbacks. The method AddMenuAction (C++, VB, or CSharp), addMenuAction

(JAVA), or UF_MB_add_actions (Open C) is used to register callbacks for each menu item

by referencing the ACTIONS text string found in the menu file. AddMenuAction (or it's

language specific equivalent) must be called during NX startup to register the callbacks for

each new menu item. When a menu item is selected NX will look up and execute the

associated program, journal or callback.

∑ Menu files and the programs containing the callback registration methods must be located

in the startup folder, while programs and journals listed as actions must be in the

application folder (see How NX Finds Application Files).

Introduction to Menu Files

This section shows example menu files (.men extension) for adding new menu items. The menu

files are the same regardless of which NX Open API language is being used.

To add a new menu item the following outlines the basic commands that are required in a menu

file.

VERSION 120
EDIT UG_GATEWAY_MAIN_MENUBAR
MENU <unique text used to identify an existing or new menu item>

<new menu item 1>
<new menu item 2>
<...>

END_OF_MENU

Each new menu item is defined with the following basic commands:

BUTTON <unique text used to reference this menu item within all menu
files>
LABEL <menu item display text>
ACTIONS <the name of a program or journal in the applications folder or
the text used by NX to associate the menu item to a callback>

Executing Programs

Any program may be linked to a button on the menu file. This includes applications that are

unrelated to NX such as a web browser, or custom NX applications written via the Common API.

Executing programs unrelated to NX

The following sample menu file (go_to_siemens.men) adds a button below File→Open that

launches the Siemens website via Internet Explorer. This menu file must be placed in the startup

directory to register the "Go to Siemens.com" button when NX is initializing its menus during

startup.

Menu file: go_to_siemens.men

VERSION 120
EDIT UG_GATEWAY_MAIN_MENUBAR

AFTER UG_FILE_OPEN
BUTTON SAMPLE_GO_TO_SIEMENS
LABEL Go to Siemens.com
ACTIONS "iexplore http://www.siemens.com"

END_OF_AFTER

Executing Common API Programs

If you want to run a Common API program from the button, the program must include a valid

entry point: ufusr (C or C++), Main (C# or VB), or main (Java). Once compiled the program's

library file must be placed in an "application" folder. If the program was written in C, C++, C# or

VB, you will not need to specify the file extension for the library on the ACTIONS line from the

menu file. However, you must specify the program's file extension if it is a Java class or jar file.

You can use the same menu file on non-Windows systems as you use on Windows, since the

library extensions aren't used and java extensions are the same on both platforms.

The following sample menu file (my_programs.men) adds buttons below File→Open that

executes a custom C++ program and a custom VB program.

Menu file: my_programs.men

VERSION 120
EDIT UG_GATEWAY_MAIN_MENUBAR

AFTER UG_FILE_OPEN
BUTTON SAMPLE_MY_CPP_BUTTON
LABEL Run C++ Program
ACTIONS my_cpp_program

BUTTON SAMPLE_MY_VB_BUTTON
LABEL Run VB Program
ACTIONS my_vb_program

END_OF_AFTER

Note:

VB and C# are not available on non-Windows systems so the menu file should not contain any

references to VB or C# programs if you intend to run on non-Windows systems.

Menu file: my_cpp_program.cpp

/**

**
** my_cpp_program.cpp
**
** Description:
** Contains Unigraphics entry points for the application.

**

******/
/* Include files */
#if ! defined (__hp9000s800) && ! defined (__sgi) && ! defined (
__sun)
include <strstream>
include <iostream>

using std::ostrstream;
using std::endl;
using std::ends;
using std::cerr;

#else
include <strstream.h>
include <iostream.h>
#endif
#include <uf.h>
#include (ug_session.hxx>
#include <ug_exception.hxx>
#include <uf_ui.h>
#include <uf_exit.h>
#include <ug_info_window.hxx>

static void processException(const UgException &exception);

/**

** Activation Methods

******/
/* Explicit Activation
** This entry point is used to activate the application explicitly,
as in
** "File->Execute UG/Open->User Function..." */
extern DllExport void ufusr(char *parm, int *returnCode, int rlen)
{

/* Initialize the API environment */
UgSession session(true);
try
{

/* TODO: Add your application code here */
uc1601("Welcom to My Custom C++ Program", TRUE);

}

/* Handle errors */
catch (const UgException &exception)
{

processException(exception);

}
}

/**

** Utilities

******/

/* Unload Handler
** This function specifies when to unload your application from
Unigraphics.
** If your application registers a callback (from a MenuScript
item or a
** User Defined Object for example), this function MUST return
** "UF_UNLOAD_UG_TERMINATE". */
extern int ufusr_ask_unload(void)
{

return(UF_UNLOAD_UG_TERMINATE);
}

/* processException
Prints error messages to standard error and a Unigraphics
information window. */

static void processException(const UgException &exception)
{

/* Construct a buffer to hold the text. */
ostrstream error_message;

/* Initialize the buffer with the required text. */
error_message << endl

<< "Error:" << endl
<< (exception.askErrorText()).c_str()
<< endl << endl << ends;

/* Open the UgInfoWindow */
UgInfoWindow::open ();

/* Write the message to the UgInfoWindow. The str method */
/* freezes the buffer, so it must be unfrozen afterwards. */
UgInfoWindow::write(error_message.str());

/* Write the message to standard error */
cerr << error_message.str();
error_message.rdbuf()->freeze(0);

}

Menu file: my_vb_program.vb

Option Strict Off
Imports System
Imports NXOpen

Module Module1
' Explicit Activation
' This entry point is used to activate the application

explicitly
Sub Main()

Dim theSession As Session = Session.GetSession()

MsgBox("Welcom to My Custom VB Program")

End Sub

Public Function GetUnloadOption(ByVal dummy As String) As Integer

'Unloads the image when the NX session terminates
GetUnloadOption =

NXOpen.Session.LibraryUnloadOption.AtTermination

End Function

End Module

The menu file must be placed in the "startup" folder. After compiling and linking the sample

programs (my_cpp_program.cpp and my_vb_program.vb) the executables (my_cpp_program.dll,

and my_vb_program.dll) need to be placed in the "application" folder.

Executing Journals

If you want to run a journal from a new menu item, the journal must be placed in an "application"

folder.

The following menu file registers a button called "Create Block" below the Open button on the File

menu. The journal creates a block in the current display part. If no parts are found a note is

printed to the listing window stating that no block was created.

Menu file: my_journal.men

VERSION 120
EDIT UG_GATEWAY_MAIN_MENUBAR

AFTER UG_FILE_OPEN
BUTTON MY_CREATE_BLOCK
LABEL Create Block
ACTIONS create_block.vb

END_OF_AFTER

Journal: create_block.vb

' NX 6.0.0.13
' Journal created by on Thu Nov 15 15:12:48 2007 Central Standard Time
' Edited to check for open part before creating block
'

Option Strict Off
Imports System
Imports NXOpen

Module NXJournal
Sub Main

Dim theSession As Session = Session.GetSession()
Dim workPart As Part = theSession.Parts.Work

Dim displayPart As Part = theSession.Parts.Display
Dim lw As ListingWindow = theSession.ListingWindow
lw.Open()

' --
' Don't create the block if we don't have an open part... ' -----------

If displayPart Is Nothing Then

lw.WriteLine("WARNING: Failed to find open part")
lw.WriteLine(" Skipping block creation")
lw.WriteLine(" ")

Else
' --
' Menu: Insert->Design Feature->Block...
' --
Dim markId1 As Session.UndoMarkId
markId1 = theSession.SetUndoMark(Session.MarkVisibility.Visible,

"Start")

Dim nullFeatures_Feature As Features.Feature = Nothing

Dim blockFeatureBuilder1 As Features.BlockFeatureBuilder
blockFeatureBuilder1 = workPart.Features.CreateBlockFeatureBuilder

(nullFeatures_Feature)

blockFeatureBuilder1.BooleanOption.Type =
GeometricUtilities.BooleanOperation.BooleanType.Create

Dim targetBodies1(0) As Body
Dim nullBody As Body = Nothing

targetBodies1(0) = nullBody
blockFeatureBuilder1.BooleanOption.SetTargetBodies(targetBodies1)

blockFeatureBuilder1.Type =
Features.BlockFeatureBuilder.Types.OriginAndEdgeLengths

theSession.SetUndoMarkName(markId1, "Block Command")

Dim markId2 As Session.UndoMarkId
markId2 = theSession.SetUndoMark(Session.MarkVisibility.Invisible,

"Block")

blockFeatureBuilder1.Type =
Features.BlockFeatureBuilder.Types.OriginAndEdgeLengths

Dim point1 As Point

point1 = blockFeatureBuilder1.OriginPoint

blockFeatureBuilder1.OriginPoint = point1

Dim originPoint1 As Point3d = New Point3d(0.0, 0.0, 0.0)
blockFeatureBuilder1.SetOriginAndLengths(originPoint1, "100",

"100", "100")

blockFeatureBuilder1.SetBooleanOperationAndTarget
(Features.Feature.BooleanType.Create, nullBody)

Dim feature1 As Features.Feature
feature1 = blockFeatureBuilder1.CommitFeature()

theSession.DeleteUndoMark(markId2, Nothing)

theSession.SetUndoMarkName(markId1, "Block")

blockFeatureBuilder1.Destroy()

lw.WriteLine("NOTE: A new block was created in the current display
part.")

lw.WriteLine(" ")

End If ' End check for open part

' --
' Menu: Tools->Journal->Stop
' --

End Sub
End Module

Executing Callbacks (Menu Event Handlers)

Overview

The following examples register the same 2 callbacks "my_app_hello" and "my_app_goodbye" in

different places throughout the NX menu. To run the examples, place the sample menu file in the

"startup" directory. Then use the language specific details below for instructions on registering the

callbacks with NX in your preferred language.

Example 1 - Adding Menu Items to the Tools Menu

For example , the following menu file would add menu items labeled "Hello" and "Goodbye" to the

end of the Tools menu. The text strings used by NX to reference these menu items are

"my_app_hello" and "my_app_goodbye". See the language specific examples below for how an

application would register the callbacks for the two new menu items.

Menu file: adding_menu_items_to_tools_menu.men

VERSION 120
EDIT UG_GATEWAY_MAIN_MENUBAR

MENU UG_TOOLBOX
BUTTON MY_ITEM1
LABEL Hello
ACTIONS my_app_hello

BUTTON MY_ITEM2
LABEL Goodbye
ACTIONS my_app_goodbye

END_OF_MENU

To find the unique text string used by NX to identify existing menus such as UG_TOOLBOX find

the text displayed for the button in NX. For UG_TOOLBOX the text is displayed as "Tools" . Note

that the T is underlined, which means there is an & before the T in the menu file used to define

that menu item. If you go to %UGII_ROOT_DIR%/menus and search all .men files for "LABEL

&Tools", you will find that the definition of that menu item in ug_main.men. Likewise, if you're

looking for "Information→Part→Part History..." you should search .men files in

%UGII_ROOT_DIR%/menus for "LABEL Part &History..." and again the search finds the item in

ug_main.men, and the name of the "Part History..." BUTTON is UG_INFO_PART_HISTORY.

Example 2 - Adding a New Menu Pull-down

It is also possible to add a new pull-down menu. For example, the following menu file first defines

a new menu with an internal name of "MY_MENU". The new menu contains the same menu

items as shown in Example 1. The example then shows how to add the new menu as a pull-down

to the end of the main NX menu bar with the label "My App".

The menu event handlers would be implemented exactly the same as in Example 1.

Menu file: adding_new_pulldown_menu.men

VERSION 120
EDIT UG_GATEWAY_MAIN_MENUBAR

MENU MY_MENU
BUTTON MY_ITEM1
LABEL Hello
ACTIONS my_app_hello

BUTTON MY_ITEM2
LABEL Goodbye
ACTIONS my_app_goodbye

END_OF_MENU
TOP_MENU

CASCADE_BUTTON MY_MENU
LABEL My App

END_OF_TOP_MENU

Example 3 - Adding a New Pull-down to an Existing Menu

Using commands introduced in Examples 1 and 2, it is also possible to add a new pull-down to

an existing menu. The following example menu file adds the same pull-down to the end of the

Tools menu. Again, menu event handlers are implemented the same as in all of the examples in

this section.

Menu file: adding_new_pulldown_to_existing_menu.men

VERSION 120
EDIT UG_GATEWAY_MAIN_MENUBAR

MENU MY_MENU
BUTTON MY_ITEM1
LABEL Hello
ACTIONS my_app_hello

BUTTON MY_ITEM2
LABEL Goodbye
ACTIONS my_app_goodbye

END_OF_MENU

MENU UG_TOOLBOX
CASCADE_BUTTON MY_MENU
LABEL My App

END_OF_MENU

Example 4 - Positioning New Menu Items within an Existing Menu

The above examples position the new menu items and pull-down at the end of the existing

menus. It is also possible to position new menu items within existing menus using the BEFORE

and AFTER commands in place of the MENU command. The following example menu file shows

how to add the same pull-down menu to the File menu just after: File → Utilities.

Menu file: positioning_new_items_withing_existing_menu.men

VERSION 120
EDIT UG_GATEWAY_MAIN_MENUBAR

MENU MY_MENU
BUTTON MY_ITEM1
LABEL Hello
ACTIONS my_app_hello

BUTTON MY_ITEM2
LABEL Goodbye
ACTIONS my_app_goodbye

END_OF_MENU

AFTER UG_FILE_UTILITIES_MENU
CASCADE_BUTTON MY_MENU
LABEL My App

END_OF_AFTER

Callbacks (Menu Event Handlers)

Callbacks are tied to menu buttons via the same ACTIONS command used for journals and

programs. However, the menu file does not reference the name of the callback directly (like the

name of a program or journal), it references a string that must be registered to the callback. The

callbacks are registered with their associated strings in a custom application via AddMenuAction

(C++, VB, or CSharp), addMenuAction (JAVA), or UF_MB_add_actions (Open C). For detailed

instructions and examples on registering callbacks see the language specific details below.

Callbacks (Menu Event Handlers) - Language Specific Details

NX Open for C++

NX Open for .NET

NX Open for Java

Callback Registration for NX Open for C++

The AddMenuAction method (found in MenuBarManager) is used to register a callback with NX.

The input name used in AddMenuAction must match the string used in the menu file. In the

examples above the two callbacks used as actions are titled "my_app_hello" and

"my_app_goodbye". The example below (hello_goodbye.h and hello_goodbye.cpp) registers two

callbacks in the InitializeCallbacks method. After compiling and linking this example, the

executable (hello_goodbye.dll) should be placed in the startup folder along with one of the

example menu files above.

Header file: hello_goodbye.h

//---

//
// hello_goodbye.h
//
// Description:
// Contains NX entry points for the customized menu callbacks.
//
//---

#include <isotream>
#include <uf_def.h>
#include <uf.h>

#include <NXOpen/Session.hxx>
#include <NXOpen/MenuBar_MenuBarManager.hxx>
#include <NXOpen/MenuBar_MenuButton.hxx>
#include <NXOpen/MenuBar_MenuButtonEvent.hxx>
#include <NXOpen/UI.hxx>

#include <NXOpen/Callback.hxx>
#include <NXOpen/NXEception.hxx>

using namespace std;
using namespace NXOpen;
class HelloGoodbye;
extern HelloGoodbye *theHelloGoodbye;

class HelloGoodbye
{

// class members
public:

static Session* theSession;
static UI* theUI;

static ListingWindow* lw;
static int registered;

HelloGoodbye();
~HelloGoodbye();

//------------------------- Callback Prototypes -------------------

MenuBar::MenuBarManager::CallbackStatus HelloCB(
MenuBar::MenuButtonEvent*
buttonEvent);

MenuBar::MenuBarManager::CallbackStatus GoodbyeCB(
MenuBar::MenuButtonEvent* buttonEvent);

private:
void InitializeCallbacks();

};

Source file: hello_goodbye.cpp

//---

//
// hello_goodbye.cpp
//
// Description:
// Contains NX entry points for the customized menu callbacks.
//
//---

/* Include files */
#if ! defined (__hp9000s800) && ! defined (__sgi) && ! defined (
__sun)
include <strstream>
include <iostream>

using std::ostrstream;
using std::endl;
using std::ends;
using std::cerr;
#else
include <strstream.h>
include <iostream.h>
#endif
#include "hello_goodbye.h"
#include <NXOpen/ListingWindow.hxx>
#include <uf_ui_types.h>
#include <uf_ui.h>
//---

// Initialize static variables
//---

Session *(HelloGoodbye::theSession) = NULL;
UI *(HelloGoodbye::theUI) = NULL;
int HelloGoodbye::registered = 0;
ListingWindow* HelloGoodbye::lw = NULL;

HelloGoodbye *theHelloGoodbye;

//---

// Constructor for Callback Status Test
//---

HelloGoodbye::HelloGoodbye()
{

try
{

// Initialize the NX Open C++ API environment
theSession = Session::GetSession();

// Initialize the Open C API environment
int errorCode = UF_initialize();
if(0 != errorCode)

throw NXOpen::NXException::Create(errorCode);

theUI = UI::GetUI();
lw = theSession->ListingWindow();
InitializeCallbacks();

}
catch (const NXOpen::NXException& ex)
{ std::cerr << "Caught exception" << ex.Message() <<

std::endl;
}

return;
}

//---

// Register the callbacks with NX

//---

void HelloGoodbye::InitializeCallbacks()
{

try
{

if(registered == 0)
{

theUI->MenuBarManager()-
>AddMenuAction("my_app_hello",
make_callback(this, &HelloGoodbye::HelloCB));

theUI->MenuBarManager()-
>AddMenuAction("my_app_goodbye",
make_callback(this, &HelloGoodbye::GoodbyeCB));

registered = 1;
}

}
catch (const NXOpen::NXException& ex)
{

std::cerr << "Caught exception" << ex.Message() << std::endl;
}

return;
}

//---

// Startup entrypoint for NX
//---

extern "C" DllExport void ufsta(char *param, int *retcod, int
param_len) {

theHelloGoodbye = new HelloGoodbye();
return;

}

//---

// Public method GetUnloadOption
// This method specifies how a shared image is unloaded from memory
// within NX.

//---

extern "C" DllExport int ufusr_ask_unload()
{

return (int)Session::LibraryUnloadOptionAtTermination;
}

//---

// Method: UnloadLibrary()
// You have the option of coding the cleanup routine to perform any
housekeeping
// chores that may need to be performed. If you code the cleanup
routine, it is // automatically called by NX.
//---

extern "C" DllExport void ufusr_cleanup(void)
{

// do your cleanup here if necessary
return;

}

//------------------------- Callback Functions ------------------------

//---

// Callback Name: ActionStatusTestCB
// Displays a dialog that says "Hello"
//---

MenuBar::MenuBarManager::CallbackStatus HelloGoodbye::HelloCB(
NXOpen::MenuBar::MenuButtonEvent* buttonEvent)
{

if(!UF_initialize())
{

uc1601("Hello", TRUE);
}
UF_terminate();
return MenuBar::MenuBarManager::CallbackStatusContinue;

}

//---

// Callback Name: GoodbyeCB
// Displays a dialog that says "Goodbye"
//---

MenuBar::MenuBarManager::CallbackStatus HelloGoodbye::GoodbyeCB(

NXOpen::MenuBar::MenuButtonEvent* buttonEvent)
{

if(!UF_initialize())
{

uc1601("Goodbye", TRUE);
}
UF_terminate();

return MenuBar::MenuBarManager::CallbackStatusContinue;
}

Callback Registration for NX Open for .NET

The AddMenuAction method (found in MenuBarManager) is used to register a callback with NX.

The input name used in AddMenuAction must match the string used in the menu file. In the

examples above the two callbacks used as actions are titled "my_app_hello" and

"my_app_goodbye". The example below (hello_goodbye.vb) registers two callbacks in the

Startup method. After compiling and linking this example, the executable (hello_goodbye.dll)

should be placed in the startup folder along with one of the example menu files above.

Source file: hello_goodbye.vb

Option Strict Off
Imports System
Imports NXOpen
Imports NXOpen.UI

Module Module1
' HelloCB
' Opens a message box that says "Hello"
Public Function HelloCB(ByVal buttonEvent As

NXOpen.MenuBar.MenuButtonEvent) As
NXOpen.MenuBar.MenuBarManager.CallbackStatus

MsgBox("Hello")
HelloCB = 0

End Function '

GoodbyeCB
' Opens a message box that says "Goodbye"
Public Function GoodbyeCB(ByVal buttonEvent

As NXOpen.MenuBar.MenuButtonEvent) As
NXOpen.MenuBar.MenuBarManager.CallbackStatus

MsgBox("Goodbye")
GoodbyeCB = 0

End Function

' NX Startup
' This entry point activates the application at NX startup
Function Startup(ByVal args As String()) As Integer

Dim theUI As UI = GetUI()
Dim theSession As Session = Session.GetSession

theUI.MenuBarManager.AddMenuAction("my_app_hello", AddressOf
HelloCB)

theUI.MenuBarManager.AddMenuAction("my_app_goodbye", AddressOf
GoodbyeCB)

Return 0
End Function

Public Function GetUnloadOption(ByVal dummy As String) As Integer
'Unloads the image when the NX session terminates
GetUnloadOption =

NXOpen.Session.LibraryUnloadOption.AtTermination
End Function

End Module

Callback Registration for NX Open for Java

The addMenuAction method (found in menuBarManager) is used to register a callback with NX.

The input name used in addMenuAction must match the string used in the menu file. In the

examples above the two callbacks used as actions are titled "my_app_hello" and

"my_app_goodbye". The example below (HelloGoodbye.java) registers the entire HelloGoodbye

class for both actions in the initializeCallbacks method. Two handle the two separate behaviors

(hello vs goodbye) the actionCallback method must determine which button invoked the callback,

before calling the appropriate method (helloCB or goodbyeCB) to do the real work. After

compiling and linking this example, the executable (HelloGoodbye.class) should be placed in the

startup folder along with one of the example menu files above.

Compilation Instructions (windows):

1. Copy the HelloGoodbye.java file and HelloGoodbye_Makefile_win to your computer.

2. Start the NX command prompt: Go to Start → Programs. The shortcut to launch an NX

command prompt is located in the same cluster where the shortcut to launch NX is

located.

3. Navigate the command prompt to the folder containing HelloGoodbye.java file and

HelloGoodbye_Makefile_win.

4. nmake -f Makefile_win

Compilation Instructions (non-Windows):

1. Copy the HelloGoodbye.java file and HelloGoodbye_Makefile to your computer.

2. Start the NX command prompt: Run ugmenu and select the "UGOPEN-API" option. Then

select "Non-menu activites" and then the shell type.

3. Navigate the command prompt to the folder containing HelloGoodbye.java file and

HelloGoodbye_Makefile.

4. make

Source file: HelloGoodbye.java

//---

//
// hello_goodbye.java
//
//---

import nxopen.*;
import nxopen.menubar.*;

// HelloGoodbye class used to demo a custom application with callbacks
in the java
language
public class HelloGoodbye implements
nxopen.menubar.MenuBarManager.ActionCallback
{

// class members
public static Session theSession = null;
public static ListingWindow lw = null;
public static UI theUI = null;
public static int testStatus = 0;

static HelloGoodbye theHelloGoodbye;

// Used to tell us if we've already registered our callbacks
public static int registered = 0;
static int isDisposeCalled;

// constructor
public HelloGoodbye()
{

try
{

theSession = (Session)SessionFactory.get("Session");
lw = theSession.listingWindow();
theUI = (UI)SessionFactory.get("UI");
initializeCallbacks();

}
catch(Exception ex)
{

System.out.println("Error Message");
System.out.println(ex.getMessage());

}
}
// InitializeCallbacks - registers the callbacks with NX
private void initializeCallbacks()
{

try

{
if(registered == 0)
{

theUI.menuBarManager().addMenuAction("my_app_hello",
this);

theUI.menuBarManager().addMenuAction(
"my_app_goodbye", this);

registered = 1;
}

}
catch(Exception ex)
{

System.out.println("Error Message");
System.out.println(ex.getMessage());

}
}

//--
// This entry point executes at the startup of NX.
// Used to register the application and callbacks.
//--
public static void startup (String [] args)throws NXException,

java.rmi.RemoteException
{

try
{

theHelloGoodbye = new HelloGoodbye();

}

catch(Exception ex)
{
}

}

//--
// getUnloadOption()
//
// Used to tell NX when to unload this library
//
// Available options include:
// BaseSession.LibraryUnloadOption.IMMEDIATELY
// BaseSession.LibraryUnloadOption.EXPLICITLY
// BaseSession.LibraryUnloadOption.AT_TERMINATION
//
// Any programs that register callbacks must use
// AtTermination as the unload option.
//

//--
public static int getUnloadOption()
{

return BaseSession.LibraryUnloadOption.AT_TERMINATION;
}

//---

// helloCB
// Prints "Hello" in the listing window
//---

public nxopen.menubar.MenuBarManager.CallbackStatus helloCB(

nxopen.menubar.MenuButtonEvent buttonEvent)
{

try
{

lw.open();
lw.writeLine("Hello");

}
catch(Exception ex)
{

System.out.println("Error Message");
System.out.println(ex.getMessage());

}

return nxopen.menubar.MenuBarManager.CallbackStatus.CONTINUE;
}
//---

// goodbyeCB
// Prints "Goodbye" in the listing window
//---

public nxopen.menubar.MenuBarManager.CallbackStatus goodbyeCB(

nxopen.menubar.MenuButtonEvent buttonEvent)
{

try
{

lw.open();
lw.writeLine("Goodbye");

}
catch(Exception ex)
{

System.out.println("Error Message");
System.out.println(ex.getMessage());

}

return nxopen.menubar.MenuBarManager.CallbackStatus.CONTINUE;

}

//---

// Callback Name: actionCallback
// This is a callback method associated with all of the 'Sample

Java' menu
// action buttons.
// Whenever a button is activated, we enter this function, and

determine which
// button triggered the callback, then call the specific function

for the
// given button.
//---

public nxopen.menubar.MenuBarManager.CallbackStatus actionCallback(

nxopen.menubar.MenuButtonEvent buttonEvent)
{

nxopen.menubar.MenuBarManager.CallbackStatus status =
nxopen.menubar.MenuBarManager.CallbackStatus.CONTINUE;

try
{

// First we need to determine which button's action we
need to perform

if(
buttonEvent.activeButton().buttonName().equals("MY_ITEM1"))

{
status = helloCB(buttonEvent);

} else if(
buttonEvent.activeButton().buttonName().equals("MY_ITEM2"))

{ status = goodbyeCB(buttonEvent);
} else
{

lw.open();
lw.writeLine(" ");
lw.writeLine("Inside Unknown JAVA actionCallback");

lw.writeLine("'"+buttonEvent.activeButton().buttonName()+"'");
lw.writeLine(" ");

}
}
catch(Exception ex)
{

System.out.println("Error Message");
System.out.println(ex.getMessage());

}
return status;

}
}

Make file windows: HelloGoodbye_Makefile_win

NXOPENJARDIR = $(UGII_ROOT_DIR)
CLASSPATH =
".;$(NXOPENJARDIR)NXOpen.jar;$(NXOPENJARDIR)NXOpenUI.jar;(NXOPENJARDIR)
NXOpenUF.jar"

compile: HelloGoodbye.jar

HelloGoodbye.class:
javac -classpath $(CLASSPATH) HelloGoodbye.java

HelloGoodbye.jar: HelloGoodbye.class
echo Main-Class: HelloGoodbye> manifest.txt
jar cmf manifest.txt HelloGoodbye.jar HelloGoodbye.class

run: HelloGoodbye.jar
java -classpath $(CLASSPATH) HelloGoodbye

clean_all: clean
- del *.class
- del HelloGoodbye.jar

Make file non-Windows: HelloGoodbye_Makefile

NXOPENJARDIR=$(UGII_ROOT_DIR)
CLASSPATH=".:$(NXOPENJARDIR)/NXOpen.jar:$(NXOPENJARDIR)
/NXOpenUI.jar:$(NXOPENJARDIR)/NXOpenUF.jar"

compile: HelloGoodbye.jar

HelloGoodbye.class:
javac -classpath $(CLASSPATH) HelloGoodbye.java

HelloGoodbye.jar: HelloGoodbye.class
echo Main-Class: HelloGoodbye> manifest.txt
jar cmf manifest.txt HelloGoodbye.jar HelloGoodbye.class

run: HelloGoodbye.class
$(UGII_BASE_DIR)/ugopen/run_java -classpath $(CLASSPATH)

HelloGoodbye

clean_all: clean
- rm *.class

Programs, Journals, or Callbacks from Existing Menu Items

This topic discusses methods used to customize the behavior of existing NX menu items by

executing programs, journals, or callbacks (also known as menu event handlers) either before or

after the normal NX function is executed. This topic builds on the discussion found in Executing

Programs, Journals, and Callbacks from New Menu Items and assumes that the reader is familiar

with the basics of menu files.

Quick Links
The ACTIONS Command
Example Menu File with Actions
Executing Programs
Executing Journals
Executing Callbacks (Menu Event Handlers)

Quick Links

∑ The ACTIONS Command

∑ Example Menu File with Actions

∑ Executing Programs

∑ Executing Journals

∑ Executing Callbacks (Menu Event Handlers)

∑ The ACTIONS Command
∑
∑ The section on adding new menu items introduced the ACTIONS menu script command

and showed how the command defines a text string used by NX to identify menu items that

are registered for menu event handlers. The ACTIONS command may identify one or more

actions. Multiple actions are defined by listing the program names, journal names or text

strings that are assigned to the callbacks and by using the REPLACE option to redefine the

actions for the existing menu item. Actions for an existing menu item are then defined as

follows:
∑ BUTTON <unique text used to reference this menu item within all menu

files>
∑ LABEL <menu item display text>
∑ ACTIONS/REPLACE <action 1> <action 2> ... <action n>

∑ The actions are executed in order. To make one of the actions the normal NX function use

the STANDARD key word. For instance, the following would redefine the menu item to

execute custom actions before and after the normal NX command.
∑ ACTIONS/REPLACE <pre action> STANDARD <post action>

∑ Another method of defining actions for existing menu items is to use the PRE and POST

options.

∑ For instance, the following two sets of commands are equivalent:
∑ ACTIONS/REPLACE <pre action> STANDARD

∑ - is the same as -
∑ ACTIONS/PRE <pre action>
∑
∑ ACTIONS/REPLACE STANDARD <post action>

∑ - is the same as -
∑ ACTIONS/POST <post action>

Example Menu File with Actions

The following menu file (.men extension) could be used to add pre and post actions to the NX

menu item: File → Open.

Menu file: sample.men

VERSION 120
EDIT UG_GATEWAY_MAIN_MENUBAR

AFTER UG_FILE_NEW
BUTTON UG_FILE_OPEN
LABEL Open...
ACTIONS/REPLACE my_app_hello STANDARD my_app_goodbye

END_OF_AFTER

In the example above, my_app_hello could be an entire program, the name of a journal file, or

just a callback registered via AddMenuAction (C++, VB, or CSharp), addMenuAction (JAVA), or

UF_MB_add_actions (Open C). In any case, using the above menu file would execute

my_app_hello before opening the standard NX File Open dialog, and then finally running

my_app_goodbye. For sample callback implementations of my_app_hello and my_app_goodbye

go to the language specific details section (in your preferred language) here: Executing

Programs, Journals, and Callbacks from New Menu Items

Note:

Note that the AFTER command is used to maintain the position of the Open menu item within

the File menu. If the MENU command were used then the menu file would also reposition the

Open menu item to the end of the File menu.

Executing Programs

Any program may be linked to a button on the menu file. This includes applications that are

unrelated to NX such as a web browser, or custom NX applications written via the Common API.

Executing programs unrelated to NX

The following sample menu file (go_to_siemens.men) launches the Siemens website via Internet

Explorer before displaying the Open Part dialog whenever the File→Open button is activated.

This menu file must be placed in the startup directory to register the actions when NX is intialized.

Menu file: go_to_siemens.men

VERSION 120
EDIT UG_GATEWAY_MAIN_MENUBAR

AFTER UG_FILE_OPEN
BUTTON SAMPLE_GO_TO_SIEMENS
LABEL Go to Siemens.com

ACTIONS/REPLACE "iexplore http://www.siemens.com" STANDARD
END_OF_AFTER

Executing Common API Programs

If you want to run a custom Common API program from the menu item, the program must include

a valid entry point: ufusr (C or C++), Main (C# or VB), or main (Java). Once compiled the

program's library file must be placed in an "application" folder. If the program was written in C,

C++, C# or VB, you will not need to specify the file extension for the library on the ACTIONS line

from the menu file. However, you must specify the program's file extension if it is a Java class or

jar file. You can use the same menu file on non-Windows as you use on Windows, since the

library extensions aren't used and java extensions are the same on both platforms.

The following sample menu file (my_programs.men) would invoke a custom C# program followed

by a VB program before launching the standard Open File dialog. After the Open File dialog a

C++ program and Java program would run. All of these programs are started simply by selecting

File→Open... fom the menu bar in NX.

Menu file: my_programs.men

VERSION 120
EDIT UG_GATEWAY_MAIN_MENUBAR

AFTER UG_FILE_NEW
BUTTON UG_FILE_OPEN
LABEL Open...
ACTIONS/REPLACE c_sharp_program vb_program STANDARD cpp_program

java_program
END_OF_AFTER

Note:

VB and C# are not available on non-Windows systems so the menu file should not contain any

references to VB or C# programs if you intend to run on non-Windows.

The c_sharp_program.dll, vb_program.dll, cpp_program.dll, and java_program.class files should

all be placed in the "application" folder as shown here:

Executing Journals

If you want to run a journal from the menu item, the journal must be placed in an "application"

folder.

The following menu file registers a journal to run after the standard action for the

UG_FILE_OPEN button. The journal creates a block in the current display part. If no parts are

found (i.e. you canceled out of the open part dialog) a note is printed to the listing window stating

that no block was created.

Menu file: my_journal.men

VERSION 120

EDIT UG_GATEWAY_MAIN_MENUBAR
AFTER UG_FILE_NEW

BUTTON UG_FILE_OPEN
LABEL Open...
ACTIONS/REPLACE STANDARD create_block.vb

END_OF_AFTER

Journal: create_block.vb

' NX 6.0.0.13
' Journal created by on Thu Nov 15 15:12:48 2007 Central Standard Time
' Edited to check for open part before creating block
'
Option Strict Off
Imports System
Imports NXOpen

Module NXJournal
Sub Main

Dim theSession As Session = Session.GetSession()
Dim workPart As Part = theSession.Parts.Work

Dim displayPart As Part = theSession.Parts.Display
Dim lw As ListingWindow = theSession.ListingWindow
lw.Open()

' --

' Don't create the block if we don't have an open part...
' --
If displayPart Is Nothing Then

lw.WriteLine("WARNING: Failed to find open part")
lw.WriteLine(" Skipping block creation")
lw.WriteLine(" ")

Else
' --
' Menu: Insert->Design Feature->Block...
' --
Dim markId1 As Session.UndoMarkId
markId1 = theSession.SetUndoMark(Session.MarkVisibility.Visible,

"Start")

Dim nullFeatures_Feature As Features.Feature = Nothing

Dim blockFeatureBuilder1 As Features.BlockFeatureBuilder
blockFeatureBuilder1 = workPart.Features.CreateBlockFeatureBuilder(

nullFeatures_Feature)
blockFeatureBuilder1.BooleanOption.Type =

GeometricUtilities.BooleanOperation.BooleanType.Create

Dim targetBodies1(0) As Body
Dim nullBody As Body = Nothing

targetBodies1(0) = nullBody
blockFeatureBuilder1.BooleanOption.SetTargetBodies(targetBodies1)

blockFeatureBuilder1.Type =
Features.BlockFeatureBuilder.Types.OriginAndEdgeLengths

theSession.SetUndoMarkName(markId1, "Block Command")

Dim markId2 As Session.UndoMarkId
markId2 = theSession.SetUndoMark(Session.MarkVisibility.Invisible,

"Block")

blockFeatureBuilder1.Type =
Features.BlockFeatureBuilder.Types.OriginAndEdgeLengths

Dim point1 As Point
point1 = blockFeatureBuilder1.OriginPoint

blockFeatureBuilder1.OriginPoint = point1

Dim originPoint1 As Point3d = New Point3d(0.0, 0.0, 0.0)

blockFeatureBuilder1.SetOriginAndLengths(originPoint1, "100", "100",
"100")

blockFeatureBuilder1.SetBooleanOperationAndTarget
(Features.Feature.BooleanType.Create, nullBody)

Dim feature1 As Features.Feature
feature1 = blockFeatureBuilder1.CommitFeature()

theSession.DeleteUndoMark(markId2, Nothing)

theSession.SetUndoMarkName(markId1, "Block")

blockFeatureBuilder1.Destroy()

lw.WriteLine("NOTE: A new block was created in the current display
part.")

lw.WriteLine(" ")

End If ' End check for open part

' --
' Menu: Tools->Journal->Stop
' --

End Sub
End Module

Executing Callbacks (Menu Event Handlers)

Callbacks are tied to menu buttons via the same ACTIONS command used for journals and

programs. However, there are two major differences about the execution of Callbacks.

1. The menu file does not reference the name of the callback directly (like the name of a

program or journal), it references a string that must be registered to the callback. The

callbacks are registered with their associated strings in a custom application via

AddMenuAction (C++, VB, or CSharp), addMenuAction (JAVA), or UF_MB_add_actions

(Open C).

2. Callbacks use a return value which can terminate the list of actions defined for the button.

The available return values for callbacks include:

∑ Continue - Continue performing the menu item's actions

∑ Cancel - User interaction requested inhibiting the menu item's actions

∑ Override Standard - Inhibit further actions because a pre action took the place of the

standard action for a standard NX menu item

∑ Warning - Inhibit further actions because a warning condition was raised

∑ Error - Inhibit further actions because a error condition was raised

Even though the Cancel, Override Standard, Warning, and Error return values have different

definitions, programmatically they all behave the same. Any return value other than Continue will

prevent the rest of the actions in the list from executing. The only real difference between them is

a note in the syslog stating which return value was used.

Example:

The following example displays registration of multiple callbacks for a single menu button. The

status returned from the first callback, controls whether or not the other actions will execute. To

run the test compile the supplied cb_status_test program and place the cb_status_test library in

the startup folder, along with the sample menu file. Now launch NX and go to File→Open. A

dialog will open prompting you to 'Select a return status'. If you choose Continue, the other

actions will execute. If you choose any other return value, the file open dialog will not open, and

my_end_action will not execute.

Menu file: cb_status_test.men

VERSION 120
EDIT UG_GATEWAY_MAIN_MENUBAR

AFTER UG_FILE_NEW
BUTTON UG_FILE_OPEN
LABEL Open...
ACTIONS/REPLACE my_action_status_test STANDARD my_end_action

END_OF_AFTER

Header: cb_status_test.h

//--

//
// cb_status_test.h
//
// Description:
// Contains NX entry points for the customized menu callbacks.
//
//---

#include <iostream>
#include <uf_defs.h>
#include <uf.h>

#include <NXOpen/Session.hxx>
#include <NXOpen/MenuBar_MenuBarManager.hxx>
#include <NXOpen/MenuBar_MenuButton.hxx>
#include <NXOpen/UI.hxx>
#include <NXOpen/Callback.hxx>
#include <NXOpen/NXException.hxx>

using namespace std;
using namespace NXOpen;
class CbStatusTest;

extern CbStatusTest *theCbStatusTest;

class CbStatusTest
{

// class members
public:

static Session* theSession;
static UI* theUI;

static ListingWindow* lw;
static int registered;

CbStatusTest();
~CbStatusTest();
//------------------------- Callback Prototypes -------------------

MenuBar::MenuBarManager::CallbackStatus ActionStatusTestCB(

MenuBar::MenuButtonEvent* buttonEvent);
MenuBar::MenuBarManager::CallbackStatus EndActionCB(

MenuBar::MenuButtonEvent* buttonEvent);

private:
void InitializeCallbacks();

};

Source: cb_status_test.cpp

//--

//
// cb_status_test.cpp
//
// Description:
// Contains NX entry points for the customized menu callbacks.
//
//---

#include "cb_status_test.h" #include
#include <NXOpen/ListingWindow.hxx>
#include <uf_ui_types.h>
#include <uf_ui.h>

//---

// Initialize static variables
//---

Session *(CbStatusTest::theSession) = NULL;
UI *(CbStatusTest::theUI) = NULL;
int CbStatusTest::registered = 0;
ListingWindow* CbStatusTest::lw = NULL;

CbStatusTest *theCbStatusTest;
//---

// Constructor for Callback Status Test
//---

CbStatusTest::CbStatusTest()
{

try
{

// Initialize the NX Open C++ API environment
theSession = Session::GetSession();
// Initialize the Open C API environment

int errorCode = UF_initialize();
if(0 != errorCode)

throw NXOpen::NXException::Create(errorCode);

theUI = UI::GetUI();
lw = theSession->ListingWindow();
InitializeCallbacks();

}
catch (const NXOpen::NXException& ex)
{

std::cerr << "Caught exception" << ex.Message() << std::endl;
}
return;

}

//---

// Register the callbacks with NX
//---

void CbStatusTest::InitializeCallbacks()
{

try
{

if(registered == 0)
{

theUI->MenuBarManager()->AddMenuAction
("my_action_status_test", make_callback(this,
&CbStatusTest::ActionStatusTestCB));

theUI->MenuBarManager()-
>AddMenuAction("my_end_action",
make_callback(this, &CbStatusTest::EndActionCB));

registered = 1;
}

}
catch (const NXOpen::NXException& ex)

{
std::cerr << "Caught exception" << ex.Message() << std::endl;

}
return;

}

//---

// Startup entrypoint for NX
//---

extern "C" DllExport void ufsta(char *param, int *retcod, int
param_len)
{

theCbStatusTest = new CbStatusTest();
return;

} //--

// Public method GetUnloadOption
// This method specifies how a shared image is unloaded from memory
// within NX.
//---

extern "C" DllExport int ufusr_ask_unload()
{

return (int)Session::LibraryUnloadOptionAtTermination;

}
//---

// Method: UnloadLibrary()
// You have the option of coding the cleanup routine to perform any
housekeeping
// chores that may need to be performed. If you code the cleanup
routine, it is
// automatically called by NX.
//---

extern "C" DllExport void ufusr_cleanup(void)

{
// do your cleanup here if necessary
return;

}
//------------------------- Callback Functions ------------------------

//---

// Callback Name: ActionStatusTestCB
// This is the first callback exectued when the File->Open button is
activated.
// It will let you select the status you wish to return from this
callback.
//---

MenuBar::MenuBarManager::CallbackStatus
CbStatusTest::ActionStatusTestCB(
NXOpen::MenuBar::MenuButtonEvent* buttonEvent)
{

MenuBar::MenuBarManager::CallbackStatus cb_status =
MenuBar::MenuBarManager::CallbackStatusContinue;

if(!UF_initialize())
{

char name[133] = "";
int response = 0;
int len = 0;
char items[5][38];

sprintf(items[0], "Continue");
sprintf(items[1], "Cancel");
sprintf(items[2], "Override Standard");
sprintf(items[3], "Warning");
sprintf(items[4], "Error");

lw->Open();
lw->WriteLine(" ");

lw->WriteLine("Inside Action Status Test Callback:");

// set the default button name, to the name of the button which
activated
this event

sprintf(name, "%s", buttonEvent->ActiveButton()-
>ButtonTypeName
().GetLocaleText());

UF_UI_lock_ug_access(UF_UI_FROM_CUSTOM);
response = uc1603("Select a return status", 0, items, 5);
UF_UI_unlock_ug_access(UF_UI_FROM_CUSTOM);

if (response == 1 || response == 5)
{

// Back or Continue
cb_status =

MenuBar::MenuBarManager::CallbackStatusContinue;
lw->WriteLine(" Returning CallbackStatusContinue");

}

else if(response == 2 || response == 6)
{

// cancel
cb_status =

MenuBar::MenuBarManager::CallbackStatusCancel;
lw->WriteLine(" Returning CallbackStatusCancel");

}
else if(response == 7)
{

cb_status =
MenuBar::MenuBarManager::CallbackStatusOverrideStandard;

lw->WriteLine(" Returning
CallbackStatusOverrideStandard");

}
else if(response == 8)
{

cb_status =
MenuBar::MenuBarManager::CallbackStatusWarning;

lw->WriteLine(" Returning CallbackStatusWarning");
}
else if(response == 9)
{

cb_status = MenuBar::MenuBarManager::CallbackStatusError;
lw->WriteLine(" Returning CallbackStatusError");

}
}
UF_terminate();
return cb_status;

}
//---

// Callback Name: EndActionCB
// This is the last action associated with the File-Open button.
// This will only get executed if ActionStatusTestCB
// returns CallbackStatusContinue
//---

MenuBar::MenuBarManager::CallbackStatus CbStatusTest::EndActionCB(
NXOpen::MenuBar::MenuButtonEvent* buttonEvent)
{

lw->Open();
lw->WriteLine("Inside My End Action Callback");

return MenuBar::MenuBarManager::CallbackStatusContinue;
}

Note:

Additional information about menuscript may be found in the overview of the UF_MB chapter of

the Open C Reference Guide.

Applications from a Toolbar Button (interactive)

This topics discusses executing applications from toolbar buttons that are created interactively.

To see how to execute applications from buttons defined using the toolbar files (.tbr extension)

see Toolbar File
Creating Toolbar Buttons with Interactive NX

The following steps are used to define a toolbar button with NX .

Step 1 - Create New Empty Toolbar

∑ With the mouse cursor in the main NX menu bar area, click MB3 and choose Customize.

∑ Click New on the Customize menu to display the toolbar properties dialog.

∑ Enter a name for your custom toolbar.

∑ Optionally select the NX applications. The toolbar will only be available when the selected

NX applications are active.

∑ Click OK to create an empty toolbar.

∑ Perform steps 2 and 3 for each button that you want to add to the new toolbar.

Step 2 - Add Buttons to the Tool Bar

∑ From the Customize dialog, select the Commands tab.

∑ In the Categories list, select New Button.

∑ From the Commands list, select New User Command and drag and drop it to the new toolbar

to add a button name User Command.

∑ Right click on the new User Command button and enter the desired name for the button.

∑ Right click on the new button and select the type of button you want (text, image or both).

∑ Right click on the new button and optionally select the image you want to display for the

button.

∑ By right clicking on the button change any of the other desired button properties except Edit

Action, which is covered in the next step.

Step 3 - Define a Buttons Action

∑ Right click on the button and select Edit Action to display the Button Action dialog.

∑ Select the Type of action and enter or browse to and select the appropriate object for the

action (see the following table).

∑ Enter the Button Message text - The text shows up in button tooltip

∑ Click OK to complete the button definition.

The available button action types and the object required for the action is given in the following

table.

Button
Action Type

What it Does What is Required for the Action

Journal File Runs a Journal A full path to the Journal file (.vb, .cs).

User Function Runs an NX Open
Application (also runs Open
C/C++ applications)

A full path to the executable (.exe. .dll, .sl)

System
Commands

Executes an Operating
System command script

Any command that can be executed on a system
shell e.g. "start notepad" (Windows) / "vi newtextfile"
(non-Windows)

User Tools Loads a UTD file A full path to the UTD files. For further information on
how to create/use UTD files, see
(Gateway→Customizing NX→UTD)

Macros Runs an NX Macro A full path to an NX macro (.macro) file (NOTE:
Macros are not a recommended for Automation)

Grip Runs a Grip Program A full path to a GRIP program file (.grx)

Applications from a Toolbar File

This section discusses executing applications from new buttons added to a toolbar file. You can

create a toolbar in an external ASCII configuration file with a .TBR extension. For a complete

discussion on toolbar files see Customizing NX in the Gateway (Gateway→Customizing NX) user

guide. To execute common API programs from a toolbar:

1. Create a Toolbar File

2. Associate Toolbar Button with a Menu Button

OR

1. Add Button Actions to Toolbar Buttons

2. Load the Toolbar File
Create a Toolbar File

To create a toolbar file see (Gateway→Customizing NX→Customize dialog box overview).

Associate Toolbar Button with a Menu Button

If you have custom menu files, with button actions defined, you can create a toolbar file to have

the same buttons by referencing the unique button ID of the menu buttons. The example below

shows a toolbar file which has same buttons as my_programs.men (see Executing Application

from New Menu Item)

Toolbar File: my_programs.tbr

!
!
Custom Toolbar File
!
TITLE My Custom Toolbar
VERSION 170
DOCK TOP

BUTTON SAMPLE_MY_CPP_BUTTON

BUTTON SAMPLE_MY_VB_BUTTON

The toolbar button will have the same action as the menu file button.

Add Button Actions to Toolbar Buttons

This section describes how common API programs can be executed from a button in a toolbar

file. The reader should be familiar with toolbar file format (see Gateway→Customizing NX). To

execute a NX Open program from a toolbar button, add an ACTION keyword to the the button

and specify the type of action, see example.

Toolbar File: my_programs.tbr

!
!
Custom Toolbar File
!
TITLE My Custom Toolbar
VERSION 170
DOCK TOP

BUTTON SAMPLE_MY_CPP_BUTTON
ACTION myCppProgram.dll

BUTTON SAMPLE_MY_VB_BUTTON
ACTION myNETapp.dll

When the button is activated on the toolbar, NX performs the action specified by the ACTION

keyword. Read How NX Finds Applications Files to see how NX finds the application associated

with a specific action. Alternatively, you can also provide a full path to the NX Open application.

Load a Toolbar File

There are two ways to load a toolbar file (.TBR):

1. Interactively

To load a .TBR file, go to Tools→Customize→Load. Select the appropriate TBR file.

2. Automatically at NX Startup

To load a TBR file at NX startup, place the file under the startup directory of a root

application directory. Read How NX Finds Application Files to see how NX loads custom

files and applications at startup.

Automatically at NX Start up

NX will automatically load all application libraries saved under the startup directory (see How NX

Finds Application Files) when NX is loaded. First, NX loads all internal libraries, then loads the

custom libraries contained in startup folder and then immediately executes the standard entry

point for startup applications. The unique entry point for applications loaded at startup is shown in

table below:

C/C++ VB.NET Java
int ufsta(void) Function Startup () As Integer int startup (void)

The custom code in the start up entry point should be restricted to methods on session object, for

e.g, part open, new part, registering UDO callbacks etc. In some situations, start up is the

recommended way to load/execute the application:

1. Registering dialogs to launch for menu bar/ toolbar :- User should register their custom UI

Styler or Block styler dialogs in the start up entry point in cases where customized menu

bar/toolbar files reference UI styler or Block Styler dialogs (see Dialog from Menu or

Toolbar)

2. Registering UDO callbacks: - User Defined Objects can have their own callbacks for

display, edit, update, delete etc. These callbacks are specific to a UDO class and should

be registered in the start up entry point (see User Defined Objects)

3. Registering part callbacks:- NX Open provides various callbacks on part actions (Part

Open, Part Close, Part Save, Part New etc. see Part Callbacks). These callbacks are

registered in start up function so NX can call the custom callback module when ever user

performs part actions (see Part Callbacks)

Unloading Application

Applications loaded at start up can be terminated using normal procedure. If the custom

application registers part callbacks or UDO callbacks, it must unload application only at

termination (see Unload Options).

Adding Custom Applications to NX

Applications in NX are listed in the Start menu. Depending on what application is active from the

start menu, the other menus may change. For example when in Gateway the menu option to

Insert → Design Feature → Block is not available. However once you change to the Modeling

application by selecting Modeling from the Start menu, suddenly many new items are added to

the Insert menu, including Insert → Design Feature → Block. In addition to the standard NX

applications, you may also add your own custom applications to the start menu. By assigning

callbacks to the application, you can initialize data whenever the application is entered, run a

custom program each time the application is selected from the start menu, and free application

data whenever the application is exited.

This section assumes the reader is familiar with the startup and application folders discussed in

How NX Finds Application Files.

Sample Applications are provided in each language to show exactly how to add a custom

application in your preferred language. For the majority of the document below we will reference

the C++ sample application.

The samples, which may be used as templates for your own custom applications, are located in:

∑ %UGII_BASE_DIR%/ugopen/SampleNXOpenApplications/C++/MenuBarCppApp

∑ %UGII_BASE_DIR%/ugopen/SampleNXOpenApplications/.NET/MenuBarDotNetApp

∑ %UGII_BASE_DIR%/ugopen/SampleNXOpenApplications/Java/MenuBarJavaApp

Adding Custom Applications to the Start Menu
Registering the Application in NX
Adding a Custom Menu to go with the Custom Application

Adding Custom Applications to the Start Menu

To edit any of the menus in NX, you must supply a menu file (with .men extension) to tell NX

about your changes. Adding a custom application requires a menu file that must be loaded at

startup. Therefore the menu file must be placed in the "startup" folder.

Menu file: MenuBarCppAppButton.men

VERSION 120
EDIT UG_GATEWAY_MAIN_MENUBAR
MENU UG_APPLICATION
! ***NOTE button name must match the name you registered for
! your application in the MenuBarManager()->RegisterApplication call

APPLICATION_BUTTON SAMPLE_CPP_APP
LABEL Sample CPP Application
LIBRARIES MenuBarCppApp
MENU_FILES MenuBarCppApp.men

END_OF_MENU

The APPLICATION_BUTTON must match the name registered for the application in the call to

MenuBarManager()→RegisterApplication.

The LABEL is what you see displayed in the Start menu.

The LIBRARIES command specifies the name of the library that must be executed from the

"application" folder whenever this application is activated.

The MENU_FILES command specifies the name of the name of the menu file in the "application"

folder that defines buttons specific to this application.

Registering the Application in NX

In addition to the menu file, the application must be registere" so that NX knows about it. The

MenuBarManager class contains the RegisterApplication method. The required call to

RegisterApplication must be contained in the library specified by the LIBRARIES command in the

startup menu file. That library must be placed in the "application" directory.

The RegisterApplication method takes in several arguments:

1. Name - the name of the APPLICATION_BUTTON specified in the startup menu file.

2. Initialize Callback - used to initialize the application's data. Called only when the

application is entered. If the custom application is already active when it's selected again

from the Start menu, this callback will not execute. However if the application is exited (for

example if you return to gateway), and then select the custom application from the Start

menu again, the application will be re-entered and this callback will execute to initialize the

data once again.

3. Enter Callback - used to run the guts of the custom application. Called every time the

application is selected from the pull down menu. If the custom application is not active

when selected from the pull down menu, the initialize callback will execute before this

enter callback executes. If the custom application is already active when selected from the

pull down menu, only the enter callback will execute.

4. Exit Callback - used to clean up the application's data. Called only when the application is

exited. If the custom application is active, and then the user changes applications to

something else (like Gateway) this callback will execute to free up any application specific

data.

5. Supports Drawings - logical to tell NX whether or not your application supports Drawings.

6. Supports Design in Context - logical to tell NX whether or not your application supports

working in Design in Context.

7. Supports Undo - logical to tell NX whether or not your application supports Undo.

For detailed examples in creating the different callbacks and registering them with the custom

application in NX please refer to the following language specific examples:

∑ %UGII_BASE_DIR%/ugopen/SampleNXOpenApplications/C++/MenuBarCppApp/MenuBarC

ppApp.cpp

∑ %UGII_BASE_DIR%/ugopen/SampleNXOpenApplications/.NET/MenuBarDotNetApp/MenuB

arCSharpApp.cs

∑ %UGII_BASE_DIR%/ugopen/SampleNXOpenApplications/.NET/MenuBarDotNetApp/MenuB

arVbApp.vb

∑ %UGII_BASE_DIR%/ugopen/SampleNXOpenApplications/Java/MenuBarJavaApp/MenuBar

JavaApp.java

Adding a Custom Menu to go with the Custom Application

In addition to the custom application, you can create a custom menu in NX that is only available

when the custom application is active. Creating the custom menu requires a new menu file in the

"application" directory. Each new menu item defined must have a callback registered to go with it

via the AddActions method.

Menu file: MenuBarCppApp.men

VERSION 120
EDIT UG_GATEWAY_MAIN_MENUBAR
TOP_MENU
CASCADE_BUTTON SAMPLE_CPP_APP_MENU
LABEL Sample CPP

END_OF_TOP_MENU
MENU SAMPLE_CPP_APP_MENU

BUTTON SAMPLE_CPP_APP_BUTTON1
LABEL Print Button ID
ACTIONS SAMPLE_CPP_APP__action1

BUTTON SAMPLE_CPP_APP_BUTTON2
LABEL Test Callback Returns
ACTIONS SAMPLE_CPP_APP__action2

BUTTON SAMPLE_CPP_APP_BUTTON3
LABEL Print Application ID
ACTIONS SAMPLE_CPP_APP__action3

BUTTON SAMPLE_CPP_APP_BUTTON4
LABEL Print This Button Data
ACTIONS SAMPLE_CPP_APP__action4

TOGGLE_BUTTON SAMPLE_CPP_APP_BUTTON5
LABEL Print Toggle Status
ACTIONS SAMPLE_CPP_APP__action5

END_OF_MENU

Note:

Note the name of this menu file must match the name of the MENU_FILES specified in the

startup menu file (MenuBarCppAppButton.men).

The TOP_MENU and END_OF_TOP_MENU commands indicate that the items defined between

will be at the top menu level (ie at the same level as File, Edit, Information, etc.).

CASCADE_BUTTON indicates that the item is a pull down menu, and LABEL defines the display

name for the cascading button.

Note:

Note the name used after CASCADE_BUTTON must match the name used after the MENU

command to indicate that we are defining the menu buttons for the given cascading button.

Next each button is defined as:

BUTTON (or TOGGLE_BUTTON) followed by the name of the button. The button name is most

important in java applications where it is used to determine which button triggered the callback

(see the sample java application MenuBarJavaApp.java for more details).

LABEL used to define the display name of the button.

ACTIONS must match the name of the action used as input to the AddMenuAction method.

For detailed examples in creating the different action callbacks and registering them with the

custom menu buttons please refer to the following language specific examples:

∑ %UGII_BASE_DIR%/ugopen/SampleNXOpenApplications/C++/MenuBarCppApp/MenuBarC

ppApp.cpp

∑ %UGII_BASE_DIR%/ugopen/SampleNXOpenApplications/.NET/MenuBarDotNetApp/MenuB

arCSharpApp.cs

∑ %UGII_BASE_DIR%/ugopen/SampleNXOpenApplications/.NET/MenuBarDotNetApp/MenuB

arVbApp.vb

∑ %UGII_BASE_DIR%/ugopen/SampleNXOpenApplications/Java/MenuBarJavaApp/MenuBar

JavaApp.java

User Exits

A user exit is an optional feature that allows you to run common API programs automatically at

certain predefined locations (or exits) in NX. If you go to one of these exits, NX checks to see if

you have defined a pointer to the location of your common API program. If the pointer is defined,

NX runs the common API program. The pointer is a an environment variable. The specifications

depend on the operating system that you use and the filing system. For each User Exit, you must

define an environment variable from your operating system. When NX encounters a User Exit,

the system checks for the presence of a particular environment variable that points to your

common API program. When the system finds your program it automatically executes the

Common API program, then returns to NX.

The procedure for writing an Common API program that makes use of a User Exit is as follows:

1. Write an common API Program that performs the task you desire. All user exits are

internal common API programs. Each user exit has an associated entry point name that

you use in your subroutine. You write the code for the entry point subroutine using the

specified name. For example, if you decide to use the create part user exit, the associated

entry point name is ufcre. See Entry Points for language specific entry points.

2. Define the pointer to the common API program. The pointer is an environment variable.

See the table below for the appropriate environment variable name for the desired user

exit.

3. If a User Exit uses a return value please initialize it to a valid value. See the return codes

in the table below.

User Exits

Table shows all the user exits currently supported by NX.

Function Environment Variable Description

Open Part USER_RETRIEVE The open part (retrieve) user exit is invoked after the
File→Open menu..

If no Common API program error is returned and an active
part exists, control is returned to the current module

If no active part exists, the next interactive step is
determined by the return code as follows:

Return Code/Description

1. Gateway menu

2. Choose part name file selection dialog

New Part USER_CREATE The new part user exit is invoked after the File→New
menu.

If no Common API program error is returned and an active
part exists, control is returned to the current module.

If no active part exists, the next interactive step is
determined by the return code as follows:

Return Code/Description 1 2

1. Gateway menu

2. Choose part name file selection dialog

Save Part USER_FILE The save part user exit occurs after the File→Save menu.

If no Common API program error occurs and an active
part exists, the next interactive step is to continue with the
last main menu (Gateway menu).

Return Code/Description

0 NX should go ahead and file the part

1 Gateway menu, user exit filed the part

Save Part As USER_SAVEAS The save part user exit occurs after the File→Save As...
menu.

When the mode is Design in Context and the work part to
save is not the displayed part, then for each level of the

assembly that contains the work part, the full file
specification of the current part name is passed as the
string parameter to the user exit. This enables you to
identify which part is to be "saved as"

If no Common API program error occurs and an active
part exists, the next interactive step is is determined by the
return code as follows:

Return Code/Description

1. Gateway menu. Control passes back to the
Gateway menu after going through the warnings
and clean up routines of the normal NX dialogs if
required.

2. 2 Choose part name file selection dialog with the
string (from string parameter) as the default. For
Design in Context, control passes to the normal
NX dialogs for each level of the assembly above
the work part (occurrence in an assembly tree)
but with a default string for the new part name as
specified by the string from string parameter.

File→Save As dialog with no default string. n not equal to
1 or 2. For Design in Context, control passes to the normal
NX dialogs for each level of the assembly above the work
part (occurrence in an assembly tree).

Import Part USER_MERGE The import (merge) part user exit occurs after the
File→Import→Part menu.

If an active part exists, the next interactive step is
determined by the return code as follows:

Return Code/Description

0 Import Part dialog

2 Import Part dialog

Execute
GRIP
Program

USER_GRIP The execute GRIP user exit occurs after the
File→Execute→GRIP menu.

The next interactive step is determined by the return code
as follows:

Return Code/Description

1. Runs the GRIP program

2. Disables the Execute GRIP option. The system
adminstrator has the option of making this option
(and the use of a GRIP license) unavailable.

Add Existing
Part

USER_RCOMP The add existing part (retrieve component) user exit
occurs after the Assemblies→Components→Add Existing
menu and before the select part dialog.

The next interactive step is determined by the return code
as follows:

Return Code/Description

1. Cancel current assembly operation

2. Select Part dialog

3. Component Parameters dialog

n Normal operation with no default strings. "n" is any other
return code except 1, 2 or 3.

Export Part USER_FCOMP The export part user exit occurs after the
File→Export→Part menu.

The next interactive step is determined by the return code
as follows:

Return Code/Description

1. Cancel current assembly operation

2. If the user opts to specify part from the Export
Part menu, the value returned in string parameter
will be used for the default part name.

3. Reserved for future use

n Normal operation with no default strings. "n" is any other
return code except 1, 2 or 3.

Component
Where-used

USER_WHERE_USED The component where-used user exit occurs after the
Assemblies→Reports→Where Used menu and before the
select components dialog. .

If no Common API program error is returned and no active
part exists, the file menu displays.

If an active part exists, the next interactive step is
determined by the return code as follows:

Return Code/Description

1. Assemblies→Reports→Where Used dialog with
displayed part name as default.

2. Assemblies→Reports→Where Used dialog with
the string (from string parameter) as the default
component name.

3. Assemblies→Reports→Where Used dialog with
the string (from string parameter) as the default
directory path name.

n Assemblies→Reports→Where Used dialog with no
default string. "n" is any other code exept 1, 2, or 3

Plot File USER_PLOT The plot file user exit occurs at File→Plot... menu. There is
no input or output exit string.

If an active part exists, the next interactive step is
determined by the return code as follows:

Return :

Return Code/Description

1 Gateway menu

n Plot dialog. "n" is any other code except 1.

2D Analysis
Using Curves

USER_AREAPROPCRV The 2D analysis using curve user exit occurs after the
Info→Analysis...→Area Properties - Using Curves menu.
This user exit bypasses the curve analysis routine and
substitutes your user exit program. There are no return
codes associated with this exit.

User Defined
Symbols

USER_UDSYMBOL The user defined symbols user exit occurs after the
Application→Drafting→Create→User Defined Symbols
menu. There are no return codes for this option. If the user
exit exists, your routine executes and then the User
Defined Symbol dialog displays. if the user exit does not
exist, the User Defined Symbol dialog displays.

Open CLSF USER_CLS_OPEN The CLSF open user exit occurs after the
Application→Manufacturing... menu.

If an active part exists, the next interactive step is
determined by the return code as follows:

Return Code/Description

0 No CLSF returned

1 CLSF returned, awaiting acceptance

2 CLSF returned and accepted. Select File dialog with the
string (from string parameter) as the default.

Save CLSF USER_CLS_SAVE The CLSF save exit is activated by any of the following
actions:

1. File→Save→CLSF

2. File→Save→CLSF As You use this exit in
succession with the USER_CLS_RENAME exit.

3. Tool Path Acceptance: Preferences→Autofile
CLSF Toolbox→Operation→Generate→OK

You can pass the CLSF name through the string
parameter argument.

If no Common API program error is returned and no active
part exists, the File Main menu displays.

If an active part exists, the next interactive step is
determined by the return code as follows:

Return Code/Description

-1 User Exit Error

0 User Exit does not exist.

1 Successful User Exit execution

Rename
CLSF

USER_CLS_RENAME The CLSF rename exit occurs after
Application→Manufacturing→File→Save→CLSF As.
Selecting this option executes both the
USER_CLS_RENAME and USER_CLS_SAVE exits in
succession.

You can pass the CLSF name through the string
parameter argument.

If no Common API program error is returned and no active
part exists, the File Main menu displays.

If an active part exists, the next interactive step is
determined by the return code as follows:

Return Code/Description

-1 User Exit Error

0 User Exit does not exist.

1 Successful User Exit execution

Generate
CLF

USER_CL_GEN The CLF Generate exit occurs after
Application→Manufacturing→Toolbox→ Tool
Path.→Postprocess→Generate CLF. Selecting this option
executes the USER_CL_GEN (CLF generation) exit.

You can pass the CLF name through the string parameter
argument.

If no Common API program error is returned and no active
part exists, the File Main menu displays.

If an active part exists, the next interactive step is
determined by the return code as follows:

Return Code/Description

-1 User Exit Error

0 User Exit does not exist.

1 Successful User Exit execution

Postprocess
CLSF

USER_POST The CLSF postprocess exit occurs after
Application→Manufacturing→Toolbox→ Tool
Path...→Postprocess→Postprocess. Selecting this option
executes both the USER_CL_GEN (CLF generation) and
USER_POST (CLSF postprocessing) exits in succession.

You can pass the CLSF name through the string
parameter argument.

If no Common API program error is returned and no active
part exists, the File Main menu displays.

If an active part exists, the next interactive step is
determined by the return code as follows:

Return : Return Code/Description

-1 User Exit Error

0 User Exit does not exist.

1 Successful User Exit execution

Create
Component

USER_CCOMP The create component user exit occurs after the
Assemblies→Components→Create New
Component→Add Object Methods menu and before the
select part dialog.

The next interactive step is determined by the return code

as follows:

Return Code/Description

1. Cancel current assembly operation

2. Select Part dialog with the string (from string
parameter) as the default. Note: The full
pathname must be specified in the string
parameter argument in order for this to work.

3. Reserved for future use

n Select Part dialog with no default string. "n" is any other
return code except 1, 2 or 3.

Change
Displayed
Part

USER_CDISP The change displayed part user exit occurs before the
displayed part is about to be changed explicitly from any
user interface entry point, e.g. from the Windows main
menu.

It is not possible to provide a default name for the
operation.

The next interactive step is determined by the return code
as follows: .

Return Code/Description

1 Cancel current assembly operation

3 Reserved for future use

n Select Part dialog with no default string. "n" is any other
return code except 1 or 3

Change
Work Part

USER_CWORK The change work part user exit occurs after the
Assemblies→Context Control→Set Work Part before a
Component is chosen or when the work part is about to be
changed from any other explicit user interface entry point

The next interactive step is determined by the return code
as follows:

Return Code/Description

1. Cancel current assembly operation

2. Select Component dialog with the string (from
string parameter) as the default.

3. Reserved for future use

n Normal operation with no default strings. "n" is any other
return code except 1, 2 or 3.

Remove
Component

USER_DCOMP The remove component user exit occurs after
Edit→Delete after a component has been selected. It is
not called after a Cut operation.

It is not possible to provide a default name for the
operation.

The next interactive step is determined by the return code
as follows:

Return Code/Description

1 Cancel current assembly operation

3 Reserved for future use

n Normal operation with no default strings. "n" is any other
return code except 1 or 3.

Reposition
Component

USER_MCOMP The reposition component user exit occurs after the
Assemblies→Components→Reposition Component menu
and after the component has been selected or when a
component is about to be repositioned from any other
explicit user interface entry point.

It is not possible to provide a default name for the
operation.

The next interactive step is determined by the return code
as follows:

Return Code/Description

1 Cancel current assembly operation

3 Reserved for future use

n Normal operation with no default strings. "n" is any other
return code except 1 or 3.

Substitute
Component
Out

USER_SCOMP1 Substitute Component Out The substitute component out
user exit occurs after the
Assemblies→Components→Substitute Component menu
and after the component has been selected or when a
component is about to be substituted out from any other
explicit user interface entry point. .

It is not possible to provide a default name for the
operation.

The next interactive step is determined by the return code
as follows:

Return Code/Description

1 Cancel current assembly operation

3 Reserved for future use

n Normal operation with no default strings. "n" is any other
return code except 1 or 3

Substitute
Component
In

USER_SCOMP2 The substitute component in user exit occurs after the
Assemblies→Components→Substitute Component menu.
It is called before the component that is to be substituted
in is selected. It is also called after MB3→Open
Component As has been selected from the Assemblies
Navigator.

The next interactive step is determined by the return code
as follows:

Return Code/Description

1. Cancel current assembly operation

2. Select Components dialog with the string (from
string parameter) as the default.

3. Substitute component parameters menu with the
part (from string parameter) in case of the Open
As function.

In case of the Substitute function it will behave as return
code 1.

Open
Spreadsheet

USER_SPRD_OPN The open spreadsheet user exit occurs when you activate
the spreadsheet from NX. You must be in the modeling or
gateway application with an active part and you must be
using a full licensed version of the spreadsheet. This event
occurs interactively when a spreadsheet is activated by
selecting Toolbox→Spreadsheet from menubar. Return
codes are ignored with this exit.

Close
Spreadsheet

USER_SPRD_CLO The close spreadsheet user exit occurs when you exit the
spreadsheet and return control to NX. You must be in the
modeling application and you must be using a full licensed
version of the spreadsheet. This event occurs interactively
when a spreadsheet is active by selecting either File→Exit
or Connections→Disconnect from the spreadsheet
menubar. Return codes are ignored with this exit.

Update
Spreadsheet

USER_SPRD_UPD The update spreadsheet user exit occurs at the start of
updating expressions into the NX part file. You must be in
the modeling application. First, you need to call
Tools→Spreadsheet and then, in the Spreadsheet menu
call Tools→Extract Expr in order to have some
expressions. The interactive entry point is Tools→Update
Part.

Finish
Updating
Spreadsheet

USER_SPRD_UPF The finish updating spreadsheet exit occurs at the
completion of updating expressions. You must be in the
modeling application.

Return Code/Description

1 Perform a spreadsheet recalc after returning from the
user exit.

n No spreadsheet recalc. "n" is any other return code
except 1

Replace
Reference
Set

USER_RRSET The replace reference set user exit occurs after the
Format→Reference Sets dialog has been invoked and the
"Set Current" button has been pushed or when the
Reference Set is about to be changed from any other
explicit user interface entry point.

It is not possible to provide a default name for the
operation.

The next interactive step is determined by the return code
as follows:

Return Code/Description

1 Cancel current assembly operation .

3 Reserved for future use

n Normal operation with no default strings. "n" is any other
return code except 1 or 3

Rename
Component

USER_NCOMP The rename component user exit occurs after the
Component Name has been changed on the Parameters
tab on the Component Properties dialog and the user has
pushed either OK or Apply.

It is not possible to provide a default name for the
operation.

The next interactive step is determined by the return code
as follows:

Return Code/Description

1 Cancel current assembly operation

3 Reserved for future use

n Normal operation with no default strings. "n" is any other
return code except 1 or 3.

NX Startup USER_STARTUP The NX startup user exit occurs when you invoke NX.
There are no return codes for this option. If the user exit
exists, your routine executes. if the user exit does not
exist, then NX starts as it normally would.

Access
Genius
Library
Management
System

USER_GENIUS This exit accesses the Genius Library Management
System. Genius is an external Siemens PLM product used
by the Manufacturing Module for Tool Data Management.
The Genius exit occurs after
Application→Manufacturing→Toolbox→Tool→Genius.
There are no return codes associated with this exit.

Execute
Debug GRIP

USER_GRIPDEBUG The execute Debug GRIP user exit occurs after the
File→Execute→Debug GRIP menu.

The next interactive step is determined by the return code
as follows:

Return Code/Description

1. Runs the Debug GRIP program using the string
passed from string parameter. The Motif file
dialog is not displayed.

2. Disables the Execute Debug GRIP option. The
system administrator has the option of making
this option (and the use of a GRIP license)
unavailable.

Execute NX
Open

USER_UFUNC The Execute NX Open user exit occurs after the
File→Execute→NX Open menu.

The next interactive step is determined by the return code
as follows:

Return Code/Description

1. Runs the Common API program using the string
passed from string parameter. The Execute User
Function dialog is not displayed.

2. Disables the Execute Common API option. The
system administrator has the option of making
this option (and the use of a User Function
license) unavailable.

CAM Startup USER_CAM_STARTUP The CAM startup user exit occurs after the
Application→Manufacturing. menu.

Return Code/Description

-1 User Exit Error, abort and return to Gateway

0 Successful User Exit execution, proceed normally

User Exits — Language Specific Section

NX Open for C++

NX Open for .NET
NX Open for C++

/* User Exit example for File-->Save.The related environment variable,
* "USER_FILE" should be defined to point to the .dll built from this

code */
#include <stdio.h>
#include <string.h>

#include <uf.h>
#include <uf_ui.h>
#include <uf_object_types.h>

#define UF_CALL(X) (report_error(__FILE__, __LINE__, #X, (X)))
static int report_error(char *file, int line, char *call, int irc)
{

if (irc)
{

char err[133],
msg[133];

sprintf(msg, "*** ERROR code %d at line %d in %s:\n+++ ",
irc, line, file);

UF_get_fail_message(irc, err);

UF_print_syslog(msg, FALSE);
UF_print_syslog(err, FALSE);
UF_print_syslog("\n", FALSE);
UF_print_syslog(call, FALSE);
UF_print_syslog(";\n", FALSE);

if (!UF_UI_open_listing_window())

{
UF_UI_write_listing_window(msg);
UF_UI_write_listing_window(err);
UF_UI_write_listing_window("\n");
UF_UI_write_listing_window(call);
UF_UI_write_listing_window(";\n");

}
}
return(irc);

}

#define WRITE(X) UF_UI_open_listing_window();
UF_UI_write_listing_window(X)

static void do_it(void)
{

uc1601("Running ufput user exit program.", TRUE);
}

/*ARGSUSED*/
void ufput(char *param, int *retcode, int paramLen)
{

if (UF_CALL(UF_initialize())) return;
do_it();

retcode = 1; / ==================== skip default behavior
============*/

UF_terminate();
}

int ufusr_ask_unload(void)
{

return (UF_UNLOAD_IMMEDIATELY);
}

NX Open for .NET

'
'
' The related environment variable, "USER_FILE"
' should be defined to point to the .dll built from this code
'
' Note: This will not run as a Journal, only as a .dll
'
'
Imports System
Imports System.Windows.Forms
Imports NXOpen
Imports NXOpen.uf Imports NXOpen.utilities

Module UserExit

Function ufput() As Integer
Dim s As Session = Session.GetSession()
MessageBox.Show("Saving: " & s.Parts.Work.FullPath)
ufput = 0 ' set to 1 to stop the save

End Function

Public Function GetUnloadOption(ByVal dummy As String) As Integer
Return Session.LibraryUnloadOption.Immediately

End Function
End Module

Executing Batch Applications with a Command Line

Applications can only be executed in the batch mode from a command line. This sections shows

the language and platform specific details for executing batch applications.

NX Open for C++
NX Open for .NET
NX Open for Java
Java on Windows
Java on UNIX

NX Open for C++

C++ batch applications must have the normal C/C++ entry point and the linking process must

produce a .exe file with execute permission. The standard entry point is:

int main(int argc, char* argv[])

An NX Open application .exe file can be executed directly from a command line as any other

executable. For instance, the command to execute myApplication.exe is simply: myApplication

<command line arguments>.

Note:

Note, on Windows this section only applies to unmanaged C++ applications. It does not apply

to C++ .NET applications (i.e. managed C++ applications).

NX Open for .NET

NX Open for .NET batch programs are standalone executables that you can run from the

operating system, outside of NX. Batch applications must be .exe files.

Typically .NET batch applications should have the following entry point:

∑ public static void Main(string[] args)

However, Visual Studio will allow you to set any method as the applications entry point by setting

the Entry Point property found under Project Properties → Linker → Advanced. If you used visual

studio for creating batch applications, make sure your project is created as an console

application.

Running a Batch Application

An NX Open application .exe file can be executed directly from a command line as any other

executable. Since this is a managed application, you will need to do one of the following:

∑ Copy the NX .NET libraries to your local working directory. To do so, copy all of the libraries

from the %UGII_ROOT_DIR%\managed directory to your working directory. Use standard

operating system command to execute the application.

∑ Copy your .EXE to UGII_ROOT_DIR\managed. Use standard operating system command to

execute the application.

∑ Use run_managed.exe (%UGII_ROOT_DIR%\run_managed.exe)

run_managed

run_managed is a standalone executable that runs a managed NXOpen .EXE in the correct

environment allowing it to pick up other DLLs from the install when they are not in the same

directory as the .EXE itself.

usage:

run_managed <executable-file> <arguments>

NX Open for Java

The Java Runtime Environment (JRE) includes a utility (java.exe) to execute Java .class and .jar

files. When executing a Java application you must provide the same set of NX Open Java

Libraries that were provided at compile time (see Applications (Compiling and Linking)).

If the application is being executed by someone without an NX Open author license then the Java

executable must be a signed .jar file (see Signing Process).

Java on Windows

On Windows use java.exe as follows:

java -classpath <NX Open Java Libraries> <your class name>.

<NX Open Java Libraries> - the same set of libraries included in the javac command when the

application was compiled <your class name> - the class name for the corresponding .class or .jar

file

For example, assuming UGII_ROOT_DIR is assigned to <NX install directory>\UGII\ and that the

location of java.exe is included in PATH, the following command line could be used to execute a

batch Java application that is using the UF wrappers:

java -classpath ".;%UGII_ROOT_DIR%\NXOpen.jar;%UGII_ROOT_DIR%\NXOpenUF.jar" <your

class name>

Remote Processes

Remoting allows an NX user to execute an automation program in a separate process from the

NX session. You can either connect to an NX session running in a separate process on the same

machine, or via the network to an NX session running on a remote machine. Remoting in NX is

based on following principles:

1. Uses Standard Framework: NX remoting makes use of remoting services provided by

.NET framework and RMI for Java

2. Local and remote call transparency: Once a client application has obtained a reference to

a remote session, all remote calls to the NX Open API are identical to the calls made when

running in-process. Any application that runs locally can run remotely without changes,

once a session reference has been obtained.

Models of Remote Access

The most important factor to consider when writing code for remote access is whether the NX

user interface is running or not. The following paragraphs describe each scenario.

No User Interface

In this mode, NX runs as part of a dedicated server process, and no UI is available. The server

listens for new client connections. Once it detects a client and establishes a remote session, all

commands (events) come in as messages from the client process. The system executes these

commands in sequence, and returns to the client after the execution of each command.

User Interface is Running

In this mode, NX runs in interactive mode with a full user interface. The system executes a small

piece of automation code from NX that starts to listen for client connections. Once the system

detects a client and establishes a remote session, it receives events (commands) from the client

process. It also receives user interface events from the NX UI. The system sequences and

executes these events according to the order of arrival. Expected use of this mode is integration

between NX and stand-alone interactive programs on the same machine, such as integrating NX

and a custom geometry program.

In this mode, UI events and client automation events can be mixed. There may be situations

when this leads to undefined behavior. For example, NX might be currently displaying the hole

dialog and the user selects a placement face for the hole. If the client process sends a command

to delete the entire solid, the hole dialog is left holding onto deleted data. We expect that

customers will design their integrations so this sort of interaction does not occur.

Executing Remote Processes: - Language Specific Details

NX Open for .NET

NX Open for Java
NX Open for .NET

Server Program

The following shows a sample .NET server program that uses the HTTP protocol. Compile this

and run it on the server machine.

using System;
using System.IO;
using System.Threading;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Tcp;
using System.Runtime.Remoting.Lifetime;

using System.Runtime.Remoting.Messaging;
using System.Runtime.Serialization.Formatters;

using System.Collections;

using NXOpen;

public class SimpleService
{

public static void Main()
{

Thread serverThread = new Thread(new ThreadStart(Run));
serverThread.Start();

}

public static void Run()
{

int port = 1234;

LifetimeServices.LeaseTime =
System.TimeSpan.FromDays(10000);

// Create a custom FormatterSinkProvider so that we can set
its security type

// filter to Full. This is necessary for ObjectRefs to be
deserialised

BinaryServerFormatterSinkProvider
provider = new BinaryServerFormatterSinkProvider();

provider.TypeFilterLevel = TypeFilterLevel.Full;

// Create the IDictionary to set the port on the channel
instance.

IDictionary props = new Hashtable();
props["port"] = port;

// Create a new tcp channel with the given provider and
properties

TcpChannel channel = new TcpChannel(props, null, provider);
ChannelServices.RegisterChannel(channel);

// Export the Session object
RemotingServices.Marshal(theSession, "Session");

Thread.Sleep(Timeout.Infinite);
}

}

Client Program

The following shows a sample client program. Run the client as a standalone program.

Instead of calling Session.GetSession() the startup code might be:

public static void Main(String args) {
Session theSession =
(Session)

Activator.GetObject(typeof(Session),"http://localhost:1234/Session");
...

Once a remote session has been acquired, all other calls are identical.

This sample program uses hardcoded values. In practice, this would be specified on the

command line or by using .NET configuration files.

NX Open for Java

The NX Open for Java remoting capability uses Java RMI. Remote method invocation is

transparent to the client program. Once a client application has obtained a reference to a remote

session, all remote calls to the NX Open API are identical to the calls made when running non-

remotely. Any application that runs locally can run remotely without changes, just by changing

how the NX session object is obtained. The remote server can be run either with or without the

NX user interface running. The "RemotingExample" in the Java user examples directory

illustrates the use of the NX Open for Java remoting capability.

To use remoting, perform the following steps:

1. Write code for the server

The remote server must export a remotable object to RMI from which the client can obtain

the NX session object. See the following sample:

import java.rmi.*;
import nxopen.*;
...
public static void main(String[] args) throws Exception
{

String host = args[0];
System.out.println("Starting");
theSession = (Session)SessionFactory.get("Session",

NXRemotableObject.RemotingProtocol.create());
System.out.println("Got Session");
Naming.rebind("//" + host + "/NXSession", theSession);
System.out.println("ready");

}

In this code, host is the internet address of the machine where rmiregistry will run.

2. Write code for the client

Write the client code the same way that you would if the application were run non-

remotely. Then, instead of using SessionFactory to get the NX session, use the RMI to

obtain the NX session. For example, in this code fragment, remoting is used only if args is

not empty.

public static void main(String [] args) throws Exception
{

Session theSession = null;
if (args.length > 0)
{

String host = args[0];
System.out.println("Looking up name of server");
theSession = (Session)Naming.lookup("//" + host +

"/NXSession");
}
else

theSession = (Session)SessionFactory.get("Session");
// the rest of the code written the same as it
// would be if the application did not use remoting

3. Start rmiregistry

Non- Windows

rmiregistry -J-
D$UGII_ROOT_DIR/NXOpen.jar:$UGII_ROOT_DIR/NXOpenRemote.jar:$UGII_ROO
T_DIR/NXOpenUF.jar:$UGII_ROOT_DIR/NXOpenUFRemote.jar

Windows

rmiregistry -J-
D"%UGII_ROOT_DIR%\NXOpen.jar;%UGII_ROOT_DIR%\NXOpenRemote.jar;%UGII_
ROOT_DIR%\NXOpenUF.jar;%UGII_ROOT_DIR%\NXOpenUFRemote.jar"

If your server and client use other remotable interfaces than just the NX Open interfaces,

add to the classpath the location of the class files for these interfaces and their rmic-

generated stubs.

Note:

These instructions do not use RMI dynamic class loading. Using RMI dynamic class loading

would decrease the performance of the application and is more difficult to configure. If you

want to use dynamic class loading, see Sun's documentation for RMI.

4. Start the server

The server can be run in batch or interactive mode. Run the server program using the

same instructions given previously to run an NX Open program, except when running in

batch mode, add NXOpenRemote.jar and NXOpenUFRemote.jar to your classpath.

5. Start the client

Windows

java -classpath
".;%UGII_ROOT_DIR%\NXOpen.jar;%UGII_ROOT_DIR%\NXOpenUF.jar;%UGII_ROO
T_DIR%\NXOpenRemote.jar;%UGII_ROOT_DIR%\NXOpenUFRemote.jar" <client
program name>

Non-Windows

java -classpath
.:$UGII_ROOT_DIR/NXOpen.jar:$UGII_ROOT_DIR/NXOpenUF.jar:$UGII_ROOT_D
IR/NXOpenRemote.jar:$UGII_ROOT_DIR/NXOpenUFRemote.jar <client
program name>

Unlike non-remote programs, it's not necessary to start the client from an NX command

prompt; the NX libraries do not need to be in your library path and you do not need to set

library preload. Nor do you need to set UGII_ROOT_DIR. However, if you don't set

UGII_ROOT_DIR, change UGII_ROOT_DIR to the directory where the NX Open jars are

located on the client machine.

Configurability and Security

Java RMI is highly configurable. You can use NXRemotableObject.RemotingProtocol to specify

the port and the socket factories that the client and server will use. Using this, you can configure

NX Open to use SSL sockets for remote communication. Sun Microsystem's Java RMI

documentation contains information on how to use SSL with RMI and includes a sample

application.

Executing Applications from GRIP

An interactive or batch application can be executed from a GRIP program using the second

format of the GRIP XSPAWN command.

For instance: XSPAWN/UFUN,'<application name>'[,IFERR,label:]

For more details on this command see the GRIP User Guide.

UFMENU

Ufmenu is a utility script/command file that provides you with the ability to edit, compile, link and

run your Open C API programs. This is only supported on non-Windows workstations.

Note:

The environment variable/logical UGII_USERFCN must be set to point to the directory where

the Open C API library file(s) reside before you use the link option. If the environment variable

is not set, then uflink defaults to the standard installation directory.

Ufmenu is invoked when you select the UGOPEN-API option from UGMENU. After you invoke

ufmenu the User function development environment menu option displays.

+--------------------------------------+
|USER FUNCTION DEVELOPMENT ENVIRONMENT |
+--------------------------------------+
1) Edit 5) change Directory
2) Compile 6) liSt directory
3) Link 7) Non-menu activities
4) Run (external user function) q) Quit
Enter option (1-7, q) [q]:

UFMENU Options

The following paragraphs describe the options found on ufmenu. You can select options by

entering the number of the option or by entering the capitalized letter in each option name as it

appears in the main ufmenu. For example, to list the contents of your current directory, you can

either enter option number 6 or the letter S (liSt directory).

The intent of this section of the manual is to familiarize you with the general features of the

ufmenu utility which apply to all non-Windows platforms. Compile switches vary from platform to

platform. We use "<path>" to indicate a directory path; in general, this is specific to your particular

site..

Edit

Allows you to edit a file with the currently specified operating system editor (for example, vi). The

default editor is specified by the UGII_EDITOR variable. If the file does not reside in your current

directory, enter the full file specification. You can include the file extension or use a wildcard.

Enter option (1-7,q) [q]: 1 Enter file(s) to edit (vi) [block1.c block2.c block3.c bounded_plane.c

testopen.c]: bounded_plane.c

Compile

Invokes the C or C++ compiler which converts the statements of your C or C++ source file into an

object file. You can specify a file template, such as *.c. This compiles all the files in your current

directory with the appropriate file extension. .

You must include the file extension for your programs. You can compile more than one file by

delimiting your file names with a space. The compile option automatically determines the

appropriate compile options for your platform. A list of all the files with a ".c" extension appears

within square brackets. For example:

Enter option (1-7,q) [q]: 2

Enter file(s) (separated by " ") to compile [block1.c block2.c block3.c bounded_plane.c

testopen.c]: bounded_plane.c Compiling...

bounded_plane.c

Default C compile options: -c -KPIC -Xc -I. -I<path>

Change compile options (y/n) [n]: n

bounded_plane.c compiled successfully.

Hit <RETURN> to continue.

How to Change Compile Options

The default compile option switches are for both internal and external Open C API programs. If

you wish to change any of the default options, enter y to the prompt: "Change compile options

(y/n) [n]:".

The ufmenu script prompts you for the mode (internal or external), and which compile options to

remove. It then prompts you for options to add to the compile command line. In the following

example we show how to change compile options.

Enter option (1-7,q) [q]: 2

Enter file(s) (separated by " ") to compile [block1.c block2.c block3.c bounded_plane.c

testopen.c]:

testopen.c block1.c block2.c block3.c

Compiling... testopen.c block1.c block2.c block3.c

Default C compile options: -c +Z -Aa -I. -I<path>

Change compile options (y/n) [n]: y

Compile internal/external user function (i/e) [i]: e

Remove +Z (y/n) [n]:

Remove -Aa (y/n) [n]:

Remove -I. (y/n) [n]:

Remove -I<path> (y/n) [n]:

Add new options: -g -I/user1/include

New compile options: -c -Z -Aa -I. -I<path> -g -I<path>

testopen.c compiled successfully.

block1.c compiled successfully.

block2.c compiled successfully.

block3.c compiled successfully. Hit <RETURN> to continue.

error log file

If your compile should fail, ufmenu creates an error log file in the current directory. The name of

log file is of the form "username<pid>.complog". Error messages are appended to the log file.

The script displays a message similar to the following: block1.c did not compile. Refer to

username6370.complog for error message. Link Links the object file of a primary C or C++

program with the object files of any subprograms which can be referenced. The link option calls

the uflink utility . The main object file must reside in your current directory. You can use a file

specification for your subroutines. Ufmenu automatically invokes the uflink script. The

environment variable UGII_USERFCN must be defined and point to the Open C API library;

otherwise, the script defaults to the installation directory. The following example links an external

Open C API image in debug mode.

Enter option (1-7,q) [q]: 3

Link internal/external user function (i/e) [i]: e

Link a C++ image (y/n) [n]:

Default uflink options: -m

Change uflink options (y/n) [n]: y

Remove -m (y/n) [n]:

Add new options: -d

New uflink options: -m -d

Enter program to link => testopen

Enter any subroutines => block1.o block2.o block3.o

Enter any libraries =>

uflink:WARNING - UGII_USERFCN variable not set.

Using libraries in <path> as a default.

Linking with: block1.o block2.o block3.o.

/bin/cc options: -Wl,-q,-E,-B,immediate,+s,-L,<path> -g

Linking... testopen for external execution.

uflink:link SUCCESSFUL - Wed Oct 15 10:33:07 PDT 1997

Hit <RETURN> to continue.

Run

Allows you to run an external Open C API program. The following example shows how an

argument is passed to the program.

Enter option (1-7,q) [q]: 4

Enter external user function to run [testopen]:

Run debug mode (y/n) [n]: n

Enter arguments to pass to testopen []: newbox

Hit <RETURN> to continue.

The next example shows the prompts when you run in debug mode.

Enter option (1-7,q) [q]: 4

Enter external user function to run [testopen]:

Run debug mode (y/n) [n]: y

Copyright Hewlett-Packard Co. 1985,1987-1994. All Rights Reserved.

<<<< XDB Version A.09.01 HP-UX >>>>

No core file

Procedures: 4

Files: 4

testopen.c: main: 15: int units = 2;

>

From here, you can now enter debug commands. The debugger and debugger prompt are

platform specific.

Change Directory

Allows you to change the current directory by entering a new directory pathname.

Enter option (1-7,q) [q]: 5

Current directory => /users/ali/ugopen/test

Enter new directory [.]: /users/ali/ugopen

New directory => /users/ali/ugopen

List Directory

Lists the contents of the current directory. You can specify a file template. When you choose this

option, ufmenu displays your current directory and prompts you for a template of the files to list.

The default template is to list all files. You can enter any valid wildcard specification.

Current directory => /users/ali/ufun

Enter file(s) to list [*]:

Non-menu Activities

Spawns a child process. The script prompts you for the shell type as follows:

Enter Shell Type (sh/csh/ksh) [ksh]:

The default value is the Korn shell (ksh). You can spawn a Bourne shell (sh) or a C-shell (csh) by

entering the appropriate value. For example, enter csh to spawn a C-shell

Common Object Model

Common Object Model

Common Object Model

This chapter provides a brief overview of the most important types of classes found in the NX

Open API. For more details, look at the NX Open API Reference for whichever programming

language you are using. The object model is the same in all programming languages. Classes

are organized into namespaces based on application area.

NX Open classes

TaggedObject — Base class for any class used to represent entities in the NX model, e.g. Line,

Extrude. TaggedObject is used to represent any persistent entity in the NX model, in other words,

entities that are saved when the part is saved. However, some TaggedObject classes represent

non-persistent entities. The defining characteristic of a TaggedObject is that it has a Tag that can

be used to interoperate with the UF API.

NXObject — Inherits from TaggedObject. Provides methods and properties for setting and

getting names and attributes on the entity

TransientObject — Represents something that doesn't have a Tag and is not saved when the

part is saved. The Dispose method must be called to dispose of the TransientObject. In

languages with garbage collection, Dispose is automatically called during garbage collection, but

in C++, Dispose must be explicitly called.

TaggedObjectCollection — Base class for classes representing a collection of tagged objects.

These classes also typically have methods for creating new tagged objects. For example,

CurveCollection contains methods for creating new curves. You can obtain all the objects in the

part of a particular type using the TaggedObjectCollection for that object type. For example, to

perform an operation on all curves in a part, in VB.NET you can use

Dim curve As NXOpen.Curve
For Each curve In part.Curves

...
Next

Session and UI — Serve as the "gateway" classes for the API. References to all other objects in

the API are obtained either directly or indirectly via methods and properties on these two classes.

UI can be used only when the program is run from within the NX user interface. In other words,

UI cannot be used in programs run in the Batch mode of execution.

Part — Represents an NX part. Contains many TaggedObjectCollection objects which can be

used to obtain the tagged objects in the part and to create new tagged objects. For example, Part

contains a TaggedObjectCollection named Features that contains all the features in the part and

that can be used to obtain FeatureBuilder objects which are used to create or edit features.

Builder — Features and many other entities are created and edited through a Builder class.

Builders have methods (or properties in .NET) for getting and setting the defining data for the

entity being built. These methods often correspond closely to input data on the user interface's

command for creating or editing the entity. The entity can also be queried using the Builder. In

order to create the entity or apply the edits made with the builder, you must call the Commit

method. When you are finished using the builder, you must call the Destroy method.

Browsing Classes Through an IDE

In Visual Studio, after you add a reference to NXOpen.dll or NXOpenUI.dll, you can use Visual

Studio's Object Browser to browse the NX Open classes and read their documentation.

IntelliSense also works with the NX Open classes.

Some other IDEs have similar technology. For example, in Eclipse, after you add a reference to

NXOpen.jar, you can use Eclipse to browse the NX Open classes and documentation and

Eclipse has a technology similar to IntelliSense called "content assist."

For more details, read the documentation for your IDE.

Common NX Objects

Accessing Bodies, Faces and Edges
Create and Edit Features

Accessing Bodies, Faces and Edges

Each part may contain any number of solid bodies. Each solid body is defined by a set of faces

and edges. Each face contains a reference to the body it belongs to and a list of edges that

define the face. Each edge will also contain a reference to the owning body and a list of faces

that are defined by the edge. NX Open makes it very easy to find the bodies in a part and then to

find the relationships between the faces and edges that are used to define the solid body. This

section shows examples of how the methods and properties of the body, face and edge objects

are used to access the related objects.

Typically a body will have multiple faces and an edge will be used by two faces. However, there

are exceptions. For instance, a sphere will only have a single face and no edges. Another

example a cone, which will have two faces and a single edge.

The examples show how to access the following relationships:

∑ NX session → list of parts

∑ part → list of solid bodies

∑ solid body → list of faces

solid body → list of edges

∑ face → list of associated edges

face → solid body

∑ edge → list of associated faces

edge → solid body

Bodies, Faces and Edges - Language Specific Details

NX Open for C++

NX Open for .NET

NX Open for Java
NX Open for C++

NX session → list of parts

To access all parts in an NX session, use the Parts property to access the Part Collection. Then

use the collection's iterator to access each part.

Session *NXSession = Session::GetSession();
PartCollection *partList = NXSession->Parts();
PartCollection::iterator itr;
for (itr = partList->begin(); itr != partList->end(); ++itr)
{
processPart(*itr);

}

part → list of solid bodies

To access all solid bodies in a part, use the Bodies property to access the Body Collection. Then

use the collection's iterator to access each body.

void processPart(Part *partObject)
{

BodyCollection *bodyList = partObject->Bodies();
BodyCollection::iterator itr;
for (itr = bodyList->begin(); itr != bodyList->end(); ++itr)
{
processBodyFaces(*itr);
processBodyEdges(*itr);

}
}

solid body → list of faces

To access the faces of a body use the GetFaces() method to return an array of faces.

void processBodyEdges(Body *bodyObject)
{

std::vector <Edge *> edgeArray = bodyObject->GetEdges();
for (int inx = 0; inx < (int)edgeArray.size(); ++inx)

{
processEdge(edgeArray[inx]);

}
}

solid body → list of edges

To access the edges in a body use the GetEdges() method to return an array of edges.

void processBodyEdges(Body *bodyObject)
{

std::vector <Edge *> edgeArray = bodyObject->GetEdges();
for (int inx = 0; inx < (int)edgeArray.size(); ++inx)
{
processEdge(edgeArray[inx]);
}

}

face → list of associated edges
face → solid body

To access the edges for a face use the GetEdges() method to return an array of edges. To

access the face's body use the GetBody() method.

void processFace(Face *faceObject)
{

std::vector<Edge *> edgeArray = faceObject->GetEdges();
for (int inx = 0; inx < (int)edgeArray.size(); ++inx)
{

processEdge(edgeArray[inx]);
}
Body *bodyOfFace = faceObject->GetBody();

}

edge → list of associated faces
edge → solid body

To access the faces associated with and edge use the GetFaces() method to return an array of

faces. To access the edge's body use the GetBody() method.

void processEdge(Edge *edgeObject)
{

std::vector<Face *> faceArray = edgeObject->GetFaces();
for (int inx = 0; inx < (int)faceArray.size(); ++inx)
{

processEdgeFace(faceArray[inx]);
}
Body *bodyOfEdge = edgeObject->GetBody();

}

NX Open for .NET

NX session → list of parts

To access all parts in an NX session, use the Parts property to access the Part Collection. Then

use a standard iterator method to access each part.

Dim NXSession As Session = Session.GetSession
For Each partObject As Part In NXSession.Parts()

processPart(partObject)
Next partObject

part → list of solid bodies

To access all solid bodies in a part, use the Bodies property to access the Body Collection. Then

cast the object to the generic Object class to access the face and edge methods.

Sub processPart(ByVal partObject As Part)
For Each bodyObject As DisplayableObject In partObject.Bodies

processBodyFaces(CType(bodyObject, Object))
processBodyEdges(CType(bodyObject, Object))

Next bodyObject
End Sub

solid body → list of faces

To access the faces of a body use the GetFaces() method to return an array of faces.

Sub processBodyFaces(ByVal bodyObject As Object)
For Each faceObject As Face In bodyObject.GetFaces()

processFace(faceObject)
Next faceObject

End Sub

solid body → list of edges

To access a the edges in a body use the GetEdges() method to return an array of edges.

Sub processBodyEdges(ByVal bodyObject As Object)
For Each edgeObject As Edge In bodyObject.GetEdges()

processEdge(edgeObject)
Next edgeObject

End Sub

face → list of associated edges
face → solid body

To access the edges for a face use the GetEdges() method to return an array of edges. To

access the face's body use the GetBody() method.

Sub processFace(ByVal faceObject As Face)
For Each edgeObject As Edge In faceObject.GetEdges()

processEdge(edgeObject)

Next edgeObject
Dim bodyOfFace As Body = faceObject.GetBody()

End Sub

edge → list of associated faces
edge -→ solid body

To access the edges for a face use the GetEdges() method to return an array of edges. To

access the face's body use the GetBody() method.

Sub processEdge(ByVal edgeObject As Edge)
For Each faceObject As Face In edgeObject.GetFaces()

processEdgeFace(faceObject)
Next faceObject
Dim bodyOfEdge As Body = edgeObject.GetBody()

End Sub

NX Open for Java

NX session → list of parts

To access all parts in an NX session, use the "parts" property to access the Part Collection. Then

use the collection's iterator to access each part.

NXSession = (Session) SessionFactory.get("Session");
Part partObject;

PartCollection partList = NXSession.parts();
PartCollection.Iterator itr;
for (itr = partList.iterator(); itr.hasNext();)
{

partObject = (Part) itr.next();
processPart(partObject);

}

part → list of solid bodies

To access all solid bodies in a part, use the "bodies" property to access the Body Collection.

Then use the collection's iterator to access each body.

public static void processPart(Part partObject)
{

BodyCollection bodyList = partObject.bodies();
BodyCollection.Iterator itr;
for (itr = bodyList.iterator(); itr.hasNext();)
{

Body bodyObject = (Body) itr.next();
processBodyFaces(bodyObject);
processBodyEdges(bodyObject);

}
}

solid body → list of faces

To access the faces of a body use the getFaces() method to return an array of faces.

public static void processBodyFaces(Body bodyObject)

{
Face faceArray[] = bodyObject.getFaces();
for (int inx=0; inx <(int)faceArray.size(); ++inx)

{
processFace(faceArray[inx]);

}
}

solid body → list of edges

To access a the edges in a body use the getEdges() method to return an array of edges.

public static void processBodyEdges(Body bodyObject)
{

Edge edgeArray[] = bodyObject.getEdges();

for (int inx = 0; inx < edgeArray.length; ++inx)
{

processEdge(edgeArray[inx]);
}

}

face → list of associated edges
face → solid body

To access the edges for a face use the getEdges() method to return an array of edges. To

access the face's body use the getBody() method.

public static void processFace(Face faceObject)

{

Edge edgeArray[] = faceObject.getEdges();

for (int inx=0; inx < edgeArray.length; ++inx)

{

processEdge(edgeArray[inx]);

}

Body bodyOfFace = faceObject.getBody();

}

edge → list of associated faces
edge → solid body

To access the faces associated with and edge use the getFaces() method to return an array of

faces. To access the edge's body use the getBody() method.

public static void processEdge(Edge edgeObject)
{

Face faceArray[] = edgeObject.getFaces();

for (int inx=0; inx <faceArray.length; ++inx)
{

processEdgeFace(faceArray[inx]);
}

Body bodyOfEdge = edgeObject.getBody();
}

Create and Edit Features

Most features use a builder method to create new features and to edit existing features. Features

that do not use the builder method use constructor methods that are specific to the feature. The

feature specific constructors are defined in the language reference guides. This section

discusses the general concepts of the builder method.

Builder Method

The builder method uses the following general steps.

Create a New Feature

1. Create an instance of the builder object for the desired feature type providing a null object

as input.

2. Edit the properties of the builder object to set the feature parameters and options.

3. Use the Commit method of the builder object to create an instance of the feature. The

Commit method will return the new feature object.

4. Use the Destroy method of the builder object to delete the builder object.

Edit an Existing Feature (same steps except provide an existing object)

1. Create an instance of the builder object for the desired feature type providing the object of

the feature to edit.

2. Edit the properties of the builder object to edit the feature parameters and options.

3. Use the Commit method of the builder object to edit the existing feature.

4. Use the Destroy method of the builder object to delete the builder object.

Each type of feature that uses the builder method will have a specific builder class. All builder

classes can be found in the Features name space. For instance the class for the Block Feature

builder is found in: Features.BlockFeatureBuilder.

The create a builder object, the Part Class contains a Features property that contains create

methods for each builder class. For instance, given "workPart" as an instance of a part object, the

create method for a Block Feature builder is workPart.Features.CreateBlockFeatureBuilder(), and

the create method for an Edge Blend Feature builder is

workPart.Features.CreateEdgeBlendFeatureBuilder().

Create and Edit Features - Language Specific Details

NX Open for C++

NX Open for .NET

NX Open for Java
NX Open for C++

The following examples shows how to create a feature builder for a Block Feature and then use

the feature builder to create a new Block Feature. A feature builder is then created to edit the

Block Feature.

Session *NXSession = Session::GetSession();
Part *workPart (NXSession->Parts()->Work());

Feature *nullFeature (NULL);

Point3d origin = new Point3d(0.0, 0.0, 0.0);

//***

//CREATE BLOCK

BlockFeatureBuilder *newBlock = NULL;

newBlock = workPart->Features()-
>CreateBlockFeatureBuilder(nullFeature);

newBlock->SetOriginAndLengths(origin, "50", "80", "100");

Feature *blockFeature = newBlock->CommitFeature();

newBlock->Destroy();

//***

//EDIT BLOCK

BlockFeatureBuilder *oldBlock = workPart->Features()-
>CreateBlockFeatureBuilder(blockFeature);

oldBlock->SetOriginAndLengths(origin, "100", "20", "50");

oldBlock->CommitFeature();

oldBlock->Destroy();

NX Open for .NET

The following examples shows how to create a feature builder for a Block Feature and then use

the feature builder to create a new Block Feature. A feature builder is then created to edit the

Block Feature.

Dim NXSession As Session = Session.GetSession()
Dim workPart As Part = NXSession.Parts.Work

Dim nullFeature As Feature = Nothing

Dim origin As Point3d = New Point3d(0.0, 0.0, 0.0)

'**

'CREATE BLOCK

Dim newBlock As BlockFeatureBuilder =
workPart.Features.CreateBlockFeatureBuilder(nullFeature)

newBlock.SetOriginAndLengths(origin, "50", "80", "100")

Dim blockFeature As Feature = newBlock.CommitFeature()

newBlock.Destroy()

'**

'EDIT BLOCK

Dim oldBlock As BlockFeatureBuilder =
workPart.Features.CreateBlockFeatureBuilder(blockFeature)

oldBlock.SetOriginAndLengths(origin, "100", "20", "50")

oldBlock.Commit()

oldBlock.Destroy()

NX Open for Java

The following examples shows how to create a feature builder for a Block Feature and then use

the feature builder to create a new Block Feature. A feature builder is then created to edit the

Block Feature.

Session NXSession = (Session)SessionFactory.get("Session");
Part workPart = NXSession.parts().work();

Point3d origin = new Point3d(0.0, 0.0, 0.0, 0.0);

nxopen.features.Feature nullFeature = null;

//***

//CREATE BLOCK

nxopen.features.BlockFeatureBuilder newBlock =
workPart.features().createBlockFeatureBuilder(nullFeature);

newBlock.setOriginAndLengths(origin, "50", "80", "100");

nxopen.features.Feature blockFeature = newBlock.commitFeature();

newBlock.destroy();
//***

//EDIT BLOCK

nxopen.features.BlockFeatureBuilder oldBlock =
workPart.features().createBlockFeatureBuilder(blockFeature);

oldBlock.setOriginAndLengths(origin, "100", "20", "50");

oldBlock.commitFeature();

oldBlock.destroy();

Other NX Operations

Model Update
Sketcher Interactions

Model Update

Most NX Open methods which modify the internal NX data model perform a Model Update before

returning to the calling application. A few methods are designed to be executed multiple times

without Model Update and require the programmer to explicitly invoke a Model Update when the

set of operations are complete. The language reference manual identifies which methods require

the user to explicitly invoke Model Update. Use the following commands to invoke a Model

Update.

Model Update is designed to process a list of changes in a specific order and should never be

interrupted or terminated before an update is complete. Interrupting the update process can leave

the NX session and part in an unpredictable state, including session and part corruption.

Interactive NX Commands are designed to define a set of changes and when complete to invoke

Model Update to execute the desired changes. So interrupting an interactive NX Command and

executing a Model Update can also leave the NX session and part in an unpredictable state.

To enable a wide range of customization, NX Open provides many methods that interrupt the

normal flow of NX to execute custom application code. For example, a User Defined Object can

provide an update callback that is executed during the Model Update process. Other examples

are custom selection filters or mouse tracking callbacks which are executed in response to user

actions. Also, pre/post menu item callbacks can execute just before or just after interactive NX

Commands.

When coding any event handler or callback, the programmer must take care to understand the

state of NX and must understand which NX Open methods may not be called within the context

of the event. In general no methods should be called during a Model Update which create, edit,

or delete objects which have already been processed by current model update.

Since sketches can be created interactively while creating other NX features, any Pre/Post

actions added to the interactive sketcher should be limited to model checks and reporting. No

model edits should be attempted while entering or exiting a sketch (See Sketcher Interactions).

Note:

A single call to model update may result in many changes to the NX session. The overall update

process can be successful even when some objects fail to update. For instance, a single feature

may fail to update because the parameters are no longer valid for its construction but the solid body

associated with the feature may still be in a valid state. When calling model update it is important to

process the error list and report any unexpected failure.

Update

The Update class has all the methods you need to query and control the update process. To get

an instance of this class, use the UpdateManager method/property on your session. Update class

is also used to properly delete NX objects.

Explicit Update —You can update the NX session explicitly by calling the DoUpdate() method.

You can specify an undo mark the system rolls back to in case it encounters errors.

theSession->UpdateManager()->DoUpdate(myUndoMark);

Interpart Update — You can choose to limit update only to work part by setting the interpart

delay flag. If the flag is turned on, then update is only limited to the current work part. If you

choose to update all the parts in the session then, 1) Turn off the interpart delay flag and then call
DoUpdate() or 2) Directly call the DoInterPartUpdate()

Deleting Objects — A proper way to delete NX objects is to add them to the delete list. There is

a global delete list which keeps track of all objects added to the delete list. When a model goes

through update, all objects in the delete list (and the child objects dependent on it) are deleted.

You can add object to the delete list using AddToDeleteList(). When you add an object to delete

list, all the child objects dependent on it are notified and the child objects decide whether they too

should be deleted. For example, if you delete the block feature and you have a hole on the block

feature then the hole feature is also added to the delete list.

You can query all the objects in the delete list at any give time using GetDeleteList(). To remove

a particular object from the delete list use RemoveFromDeleteList(). Be careful while removing

objects from delete list. Only add and remove objects from the delete list that your application

creates.

Update Errors — If there are any errors during the model update, then they are added to the

update errorlist. You can access this list using theSession->UpdateManager()->ErrorList()-

>GetLength() theSession->UpdateManager()->ErrorList()->GetErrorInfo(3) //Gets the third error

in the list

Sketcher Interactions

Sketching is a fundamental core behavior of NX which is widely used by many NX Commands

and works in various contexts. When considering impacting any behavior of interactive NX

Sketching the risks versus reward need to be strongly considered. Also, thorough testing in all

contexts is required to ensure that no undesirable behaviors have been introduced.

NX Open has been designed to enable the programmatic creation of new sketches, the

programmatic editing of existing sketches and limited customization of core NX interactive

sketching. When customizing the behavior of core NX interactive sketching the process of

entering or exiting a sketch should not be modified. It is possible to add custom command

buttons to the core NX sketch environment but the programmer should limit the NX Open method

calls to those found in the sketch classes. For instance, to create geometry the programmer

should use one of the Sketch.AddGeometry() methods and to do a model update the

programmer should use Sketch.Update().

Sketches can be imbedded within NX Features. This can be done on the fly as part of the

Feature Command. Therefore, adding a Pre/Post operation to the interactive NX sketcher is not

recommended since the pre/post operation would take place during the middle of an interactive

NX Feature Command. Placing custom code that may execute a Model Update within an

interactive NX Command can lead to unpredictable results including NX session and part

corruption, as discussed in Section 4.0 Model Update.

Since sketches can be created interactively while creating other NX features, any Pre/Post

actions added to the interactive sketcher should be limited to model checks and reporting. No

model edits should be attempted.

Interoperation between the Common API and Open C

Interoperation between Open C and common API
Wrappers
Mapping Open C to NX Open Common API

Interoperation between Open C and common API

Interoperability is the ability to access constructs written in one programming language from

another. NX Open for common API programs contain built-in support for interoperability with

Open C APIs by providing .NET and Java wrappers for Open C APIs.

In cases where you want to make calls to constructs in your custom C program from a NXOpen

common API program, .NET framework and JNI (Java Native Interface) both allow interoperability

between Common API and legacy C applications. Just like NXOpen wrappers for Open C API,

you will create wrappers for your legacy APIs and use .NET or JNI for interoperability. See

Calling Legacy Open C from Common API Applications for examples.

Wrappers

Open C API is developed over many years, contains thousands of functions and as such

provides a wide range of coverage. Common API ensures access to this coverage by generating

.NET and Java wrappers for all the functions in the Open C API.

Modules in Open C map to classes in common API and the functions within the modules map to

methods on the common API classes (See Naming Conventions). While common API wrappers

(both .NET and Java) for Open C API can be called anytime, the only issue is the basic object

model. Common API represents objects as classic object-oriented objects, while Open C

represents them as tags. Examples below explain how to switch between objects and tags.

Some simple concepts to understand before using the wrappers:

UFSession

.NET and Java wrapped common API classes are defined in nxopen.uf namespace (nxopen.uf

package in case of Java). To access the wrapped class you should first get an instance of the

UFSession. Wrapper classes (corresponding to Open C module) are defined as methods on the

UFSession class. For example curve() method on UFSession class returns an instance of

UFCurve class.

TaggedObjectManager and NXObjectManager

TaggedObjectManager is an interface class defined in the nxopen package. Use the get()

method on this class to obtain the NX Open object corresponding to a tag.

NXObjectManager is .NET equivalent of TaggedObjectManager. Use the Get() method on this

class to obtain the NX Open object corresponding to a tag.

Tag Property

All NX Open objects have a property Tag() (tag() method in Java). This property/method returns

the tag of NX Open object to use with wrapped methods.

Wrappers - Language Specific Examples

NX Open for .NET NX Open for Java
NX Open for .NET

The following example creates an arc using the Open C API and then queries the arc data using

the NX Open API for .NET

Dim theSession As Session = Session.GetSession()
Dim theUFSession As UFSession = UFSession.GetUFSession()

' Create an ARC using the Open API

Tag arc;
Dim arc_coords As UFCurve.Arc
arc_coords.radius = 1.0
arc_coords.arc_center = New Double(){1.0, 1.0, 0.0}
arc_coords.start_angle = 0.0
arc_coords.end_angle = Math.PI
arc_coords.matrix_tag =
theSession.Parts.Display.WCS.CoordinateSystem.Orientation.Tag
theUFSession.Curve.CreateArc(arc_coords, arc)

' Get the Arc Object to use with NX Open
NXOpen.Arc nxArc= CType(NXOpen.Utilities.NXObjectManager.Get(arc),
NXOpen.Arc)

'Get the Arc parameters using NX Open APIs
Dim start_angle As Double = nxArc.StartAngle
Dim end_angle As Double = nxArc.EndAngle
Dim arc_center As NXOpen.Point3d = nxArc.CenterPoint

NX Open for Java

The following example creates an arc using the Open C API and then queries the arc data using

the NX Open API for Java

Session theSession = (Session)SessionFactory.get("Session");
UFSession theUFSession = (UFSession)SessionFactory.get("UFSession");

/* Create Arc using Open C API wrapper */
UFCurve ufCurve = theUFSession.curve();
UFCurve.Arc ufArc = new UFCurve.Arc();
UFCsys ufCsys = theUFSession.csys();

/* Fill out the data structure */
ufArc.startAngle = 0.0;
ufArc.endAngle = 3.0;
ufArc.arcCenter=new double[3];
ufArc.arcCenter[0] = 0.0;
ufArc.arcCenter[1] = 0.0;
ufArc.arcCenter[2] = 1.0;
ufArc.radius = 2.0;

/* Create Arc */

Tag wcsData = ufCsys.askWcs();
ufArc.matrixTag = ufCsys.askMatrixOfObject(wcsData);
Tag arcTag = ufCurve.createArc(ufArc);

/* Get the Arc Object to use with NX Open*/
Arc arc = (Arc)theSession.taggedObjectManager().get(arc2Tag);

/* Get arc parameters using NX Open Java APIs */
double start_angle = arc.startAngle();

Mapping Open C to NX Open Common API

This section explains how you can map Open C functions and arguments to NX Open .NET

methods and NX Open Java methods.

Naming Conventins
Function Pointers
Data Type Mapping Tables
Calling C functions from Common API Applications
Calling Common API from Legacy Open C Applications

Naming Conventins

What are the NX Open Common API classes?

Each module in the Open C API maps to an NX Open .NET class and Java Class.

Corresponding Java class may be an interface class

Open Module Name NX Open .NET Class Name

NX
Open
Java
Class
Name

UF_PART UFPart UFPart

UF_CURVE UFCurve UFCurve

UF_UDOBJ UFUDobj UFUdobj

How do NX Open methods, structures and enums get their names?

Functions

Functions in C API map to methods in common API

.NET

Open Function Name NX Open .NET Class Name

NX Open
.NET
Method
Name

UF_CURVE_create_arc() UFCurve CreateArc()

JAVA

Open Function Name NX Open Java Class Name

NX Open
Java
Method
Name

UF_CURVE_create_arc() UFCurve createArc()

Structures

.NET

Structures in C API map to .NET structure as follows:

Open Structure Name NX Open .NET Class Name

NX
Open
.NET
Structure
Name

UF_CURVE_spline UFCurve Spline

JAVA

There are no structures in Java. Open C API structures are mapped to Java classes

Open Structure Name NX Open Java Interface Class Name

NX
Open
Java
Class
for Open
C
structure

UF_CURVE_spline UFCurve Spline

Enums

.NET

Open C API enums map to .NET enums as follows:

Open Enum Name NX Open .NET Class Name

NX
Open
.NET
Enum
Name

UF_CURVE_direction_e UFCurve Direction

JAVA

There are no enums in Java. Enums are mapped to a Java class and the enum values map to

constant field integer value.

Open Structure Name NX Open Java Interface Class Name
NX
Open
Java

Class
Name
for Open
C enum

UF_CURVE_direction_e UFCurve Direction

Function Pointers

Function Pointers in C are used in variety of situations, like passing operations to a generic

algorithm based on the types being used in the algorithm (for example qsort()). .NET has direct

equivalent of function pointers in form of delegates and Java supports similar functionality

through reflection.

Note:

Open C API uses function pointer mechanism for callbacks (see UF_add_callback_function in

Open C Reference Guide) and NX Open common API has wrapped methods for NX callback

mechanism (see AddCallbackFunction in .NET reference guide).

Function Pointers - Language Specific Details

NX Open for .NET NX Open for Java
NX Open for .NET

In the .NET Framework, delegates serve the role of function pointers. A delegate is a class that

can hold a reference to a method and is equivalent to a type-safe function pointer or a callback

function. To use delegates, one first declares a delegate that has the return type and accepts the

same number of parameters as the methods one will want to invoke as callback functions.

Secondly one needs to define a method that accepts an instance of the delegate as a parameter.

Once this is done, a method that has the same signature as the delegate (i.e. accepts same

parameters and returns the same type) can be created and used to initialize an instance of the

delegate which can then be passed to the method that accepts that delegate as a parameter.

Note that the same delegate can refer to static and instance methods, even at the same time,

since delegates are multicast.

Example

This example demonstrates how to pass delegates to an unmanaged function expecting function

pointers. In this example delegate refers to a static method.

Consider the following TestCallBack() function in TestLib.dll:

typedef void (* fn_t)(const char *, int);
extern "C" __declspec(dllexport) TestCallBack (fn_t ptr_to_func, int i)
{

ptr_to_func("The result is: ", i+1);
}

Here, "fn_t" is a function pointer.

The following mapping shows that:

∑ the fn_t function pointer is mapped as delegate, FnT

∑ the Application class contains a prototype for the TestCallBack method. This method passes

a delegate where an expected parameter is a callback function.

C# Equivalent

using System;
using System.Runtime.InteropServices;
class Application
{

//Mapping function pointer in the C world to delegate in the .Net
world

public delegate void FnT(string s, int j);

[DllImport("TestLib.dll",CallingConvention=CallingConvention.Cdecl)]
private static extern void TestCallBack (FnT Delegatefn, int i);

}

Client application

A client implements a function, which has the same signature as that of the delegate. For

example, the following implements the DoSomething() function which has the same signature as

the delegate, FnT. The sample instantiates the delegate before passing it to TestCallBack.

class ClientApp
{

private static void DoSomething(string s, int j)
{

Console.WriteLine(s + j.ToString());
}
public static void Main(String []args)
{

FnT Delegatefn = new Application.FnT (DoSomething);
TestCallBack (Delegatefn, 99);

}
}

Output

The result is 100.

NX Open for Java

In Java, reflection can be used to achieve similar results as a function pointer but there is no

equivalent to .NET delegates in Java and consequently no straightforward way to pass a Java

method to a C function expecting a function pointer.

Data Type Mapping Tables

Use the following mapping tables to map from C data types to .NET data types:

Basic Types

Pointer Types

Fixed Length Array Types

Variable Length Array Types
Basic Types

.NET

C Data Type .NET Data Type Remarks

char byte An 8-bit unsigned integer

signed char sbyte An 8-bit signed integer

short short A 16-bit signed integer

int Int A 32-bit signed integer

float Float A single-precision (32-bit) floating-point number

double double A double-precision (64-bit) floating-point number

JAVA

C Data Type Java Data Type Remarks

char char An 16-unicode character

short short A 16-bit signed integer

int int A 32-bit signed integer

float float A single-precision (32-bit) floating-point number

double double A double-precision (64-bit) floating-point number

bool boolean

Pointer Types

.NET

C Data Type Corresponding .NET Data Type

Argument Mapping

enum*

Input ref enum

Output out enum

Input/Output ref enum

Structure member enum[]

enum** Output to be freed out enum[]

char*

Input string

Output out string

Input/Output ref string

Return string

Structure member string

char**

Input string[]

Output out string

Output to be freed out string

Structure member string[]/ byte[][]

void*

Input IntPtr

Output out IntPtr

Input/Output ref IntPtr

Return IntPtr

Structure member IntPtr

void**

Input IntPtr

Input/Output ref IntPtr

Output to be freed out IntPtr

void*** Output IntPtr

struct*

Input ref struct

Output out struct

Input/Output ref struct

Output to be freed out struct

Structure member struct

bool* Input ref bool

Output out bool

Java

Since there is no pointer concept in Java, NX Open Java wrappers create class and adds all the

output parameters as member of the class. Input pointers for int/float/double are treated as

arrays.

C Data Type Corresponding Java Data Type

Argument Mapping

enum* Input/Output Class with constant field values

char* Input/Output string

char** Input/Output string[]

void* Currently no mapping available

struct* Input/Output Class with struct members as class members

Example: Following example shows mapping of output parameters from Open C to NX Open

Java API

Open C API:

int UF_CURVE_ask_feature_curves
(
tag_t curve_feature_id
int * num_curves
tag_t ** feature_curves

)

To map this function to Java, NX Open creates a Java class UFCurve.AskFeatureCurvesData

and the output parameter of Open C API are members of the class

public class AskFeatureCurvesData
{

public int numCurves;
public nxopen.Tag[] featureCurves;

}

Consequently the Java method corresponding to the Open C API is:

UFCurve.AskFeatureCurvesData askFeatureCurves(Tag curveFeatureId)
throws NXException,

RemoteException

Fixed Length Arrays

.NET

C Data Type Corresponding .NET Data Type

Argument Type Mapping

ctype[] (int, float, double,
tag_t)

Input ctype[]

Output ctype[]

Output to be freed ctype[]

ctype[][] (int, float, double,
tag_t)

Input ctype[,]

Output ctype[,]

Output to be freed ctype[,]

ctype[][][] (int, float, double,
tag_t)

Input ctype[,,]

Output ctype[,,]

Output to be freed ctype[,,]

char[]

Input string

Output out string

Input/Output ref string

Structure member string

char[][]
Input string[]

Output string[]

struct[]
Input struct[]

Output struct[]

bool[] Input bool[]

Java

C Data Type Corresponding Java Data Type

Argument Type Mapping

ctype[] (int, float, double,
tag_t)

Input ctype[]

Output ctype[]

Output to be freed ctype[]

ctype[][] (int, float, double,
tag_t)

Input ctype[,]

Output ctype[,]

Output to be freed ctype[,]

ctype[][][] (int, float,
double, tag_t)

Input ctype[,,]

Output ctype[,,]

Output to be freed ctype[,,]

char[] Input/Output string

char[][] Input/Output string[]

struct[] Input/Output Class representating the C structure

bool[] Input/Output boolean[]

Note:

Ctype represents a basic C language type such as int, double, or float.

Variable Length Array Types

.NET

C Data Type Corresponding .NET Data Type

Argument Type Mapping

ctype* (int, float, double,
tag_t)

Input ctype[]

Structure member ctype[]

cytpe*** (int, float, double,
tag_t)

Output to be Freed out ctype[][]

enum* Input enum[]

Char*** Output to be freed out string[]

Struct*
Input Struct[]

Structure member Struct[]

Struct**

Input Struct[]

Input/Output Struct[]

Output to be freed Out struct[]

Struct*** Output to be freed Out struct[]

Bool* Input Bool[]

Calling C functions from Common API Applications

In some cases it may preferable to call API of a custom Open C application from NX Open

common API application. The following examples show how to call C functions from .NET or Java

based application. The example uses standard .NET or JNI (Java Native Interface) functionality

to make these calls.

Calling C function from Common API Applications - Language Specific Examples

We will use the following Open C source file as an example application and show how .NET and

Java can make calls to functions in this example application.

UFApp - Example Open C file

//***
*
// UFapp.cpp
//
// Sample code showing interactions with a .NET applications (VBapp)
//
// 1. Shows how to use dllexport to publish functions for call from
.NET

#include <stdio.h>

#include <uf.h>
#include <uf_ui.h>
#include <uf_mb.h>
#include <uf_exit.h>

//***

// Two local functions to be called via wrappers from .NET
static int myFunction1(void)
{

UF_initialize();

UF_print_syslog("BEGIN myFunction1\n",0);

UF_print_syslog("END myFunction1\n",0);

return(77);
}
//***

static int myFunction2(int value, char *string)
{

int ret1,ret2;
char message[MAX_STRING_SIZE] = "";

ret1 = ret2 = 0;

sprintf_s(message,"value:%d string:%s\n",value,string);

UF_initialize();
UF_print_syslog("BEGIN myFunction2\n",0);
UF_print_syslog(message,0);

UF_print_syslog("END myFunction2\n",0);

return(value+1);
}

//***

// Wrappers for local functions to be called from .NET

extern "C" __declspec(dllexport) int UFappFunction1(void)
{

return(myFunction1());
}

//***

// Another local function to be called from .NET

extern "C" __declspec(dllexport) int UFappFunction2(int value, char
*string)
{

return (myFunction2(value,string));

}

//***

// ufsta() - this is only for testing purposes, normally this DLL will
loaded by the .NET DLL
// using the dllImport construct as shown below.
//
// Note: If this DLL needs to be unloaded before NX exists then the
.NET DLL will need
// to do it when it unloads.

extern void ufsta (char *param, int *retcode, int rlen)
{

UF_initialize();
UF_print_syslog("BEGIN UGapp (Running from File-

>Execute)\n",0);
myFunction1();
myFunction2(22,"Testing from File->Execute");
UF_print_syslog("END UGapp\n",0);

}

//***

//END

LANGUAGE SPECIFIC SECTIONS

NX Open for .NET

NX Open for Java
Example - Calling C function from .NET Application

The example below shows how VB .NET makes calls to unmanaged C. See the example C file

we will use for this - UFapp.cpp

The calling conventions for the C functions is _cdecl while VB .NET uses _stdcall convention. So,

you cannot directly call the C functions without "wrapping" them. To call functions

UFappFunction1 and UFappFunction2 from NX Open for .NET application:

1. Make sure that the C functions are decorated with "dllexport" and the calling convention

"_declspec" as the example shows above.

2. Create a wrapper class and add methods which wrap the C functions you wish to call.

Example VB source file (wrappers.vb) below shows the wrapper class and methods. The

methods must have same parameters as the function.

3. In the client VB application (see example VB source, VBApp.vb) called the wrapped

methods from step 2.

Example source - wrappers.vb

'**

' wrappers to UFapp

Imports System
Imports System.Runtime.InteropServices

Public Class wrappers

'Use the path to your UFapp.dll
Const UFAPP_DLLNAME As String = "C:\local\UFapp"

'**

' Hookup to a function in UFapp

<DllImport(UFAPP_DLLNAME, EntryPoint:="UFappFunction1", _
CallingConvention:=CallingConvention.Cdecl)>
Shared Function UFappFunction1() As Integer
End Function

'**

' Hookup to another function in UFapp

<DllImport(UFAPP_DLLNAME, EntryPoint:="UFappFunction2", _
CallingConvention:=CallingConvention.Cdecl)>
Shared Function UFappFunction2(ByVal value As Integer, ByVal str As
String) As Integer
End Function

End Class

Example source - VBapp.vb

'**

' VB application

Imports System
Imports System.IO
Imports System.Windows.Forms
Imports NXOpen
Imports NXOpen.UF
Imports VBapp.wrappers

' Standard Entry Points called from NX

Module VBapp
Public theNXsession As Session
Public theUFsession As UFSession

Public Sub Main()
Dim value As Integer = 88

Dim ret1 As Integer = 0
Dim ret2 As Integer = 0

theNXsession = Session.GetSession
theUFsession = UFSession.GetUFSession

theNXsession.LogFile.WriteLine("BEGIN VBapp (Running from File-
>Execute)")

' Call Functions in UFapp

ret1 = UFappFunction1()
ret2 = UFappFunction2(88, "This string is from VBapp")

theNXsession.LogFile.WriteLine("funtions1:" & ret1.ToString & "
" & _

"function2:" & ret2.ToString)

theNXsession.LogFile.WriteLine("END VBapp")
End Sub

Public Function GetUnloadOption(ByVal arg As String) As Integer
Return Session.LibraryUnloadOption.Immediately

End Function

Public Function UnloadLibrary(ByVal arg As String) As Integer
Session.GetSession().LogFile.WriteLine("VBapp: UnloadLibrary")
Return 0

End Function
End Module

Example - Calling C function from Java Application

We will use the same example C application (UFApp.cpp). To call the C functions from Java we

need to use JNI framework. To create a JNI program one performs the following steps:

1. Create a Java program that contains the declaration of the native method(s) marked with
the native keyword.

2. Write a main method that loads the library created in step 6 and uses the native

method(s).

3. Compile the class containing the declaration of the native method(s) and the main with the
javac compiler.

4. Use the javah compiler with the jni compiler option to generate a header file for the

native method(s).

5. Write the native method in your language of choice (currently C, C++ or assembly).

6. Compile the header file and native source file into a shared library (i.e. a .dll on Windows

or a .so file on non-Windows).

Example Java File

import java.util.*;
import nxopen.*;
class JavaApp {

//Native method declarations
private native int nativeUFappFunction1();
private native int nativeUFappFunction2(int value, String name);
//Load the native library, the library should be in your

environment
//path
//On non-Windows - LD_LIBRARY_PATH, on windows PATH
static {

System.loadLibrary("UFapp");
}
// Accessor methods used by our other Java classes . By hiding
// the actual calls to the native methods, we can change the
// implementation without affecting the classes calling in.

public int UFappFunction1()
{

return(this.nativeUFappFunction1());
}

public int UFappFunction2(int value, String name)
{

return(this.nativeUFappFunction2(value, name));
}
//Main functions
public static void main (String args[]) {

try
{

Session theSession = (Session)SessionFactory.get("Session");
theSession.logfile().WriteLine("BEGIN Java app (Running from

File->Execute)");
//Create class instance
JavaApp app = new JavaApp();
//Call native methods
int ret1 = app.UFappFunction1();
int ret2 = app.UFappFunction2(88, "This is string from Java");
//Now we are back in Java
theSession.logFile().writeLine("function1:" +

Integer.toString(ret1));
}
catch (Exception ex)
{

System.out.println("Failed");
}

}

public static int getUnloadOption() {
return BaseSession.LibraryUnloadOption.EXPLICITLY;

}
}

Generate the Header File

Generate the header file using: javah -jni JavaApp

The generated header file is shown below.

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>

/* Header for class JavaApp */
#ifndef _Included_JavaApp
#define _Included_JavaApp
#ifdef __cplusplus
extern "C" {
#endif
/*
* Class: JavaApp
* Method: nativeUFappFunction1
* Signature: ()I
*/

JNIEXPORT jint JNICALL Java_JavaApp_nativeUFappFunction1
(JNIEnv *, jobject);

/*
* Class: JavaApp
* Method: nativeUFappFunction2
* Signature: (ILjava/lang/String;)I
*/

JNIEXPORT jint JNICALL Java_JavaApp_nativeUFappFunction2
(JNIEnv *, jobject, jint, jstring);

#ifdef __cplusplus
}
#endif
#endif

Modify the UFapp.c file to add JNI functions

Revisited UFapp.c

//***
*
// UFapp.cpp
//
// Sample code showing interactions with a Java applications
//
//1. Add the JNI generated header to list of includes
//2. Implement the JNI functions - JNI functions directly call

// local functions
//

#include <stdio.h>

#include <uf.h>
#include <uf_ui.h>
#include <uf_mb.h>
#include <uf_exit.h>
#include "JavaApp.h"

//***

// Two local functions to be called via Java JNI functions
static int myFunction1(void)
{

UF_initialize();
UF_print_syslog("BEGIN myFunction1\n",0);

UF_print_syslog("END myFunction1\n",0);

return(77);
}
//***

static int myFunction2(int value, char *string)
{

int ret1,ret2;
char message[MAX_STRING_SIZE] = "";

ret1 = ret2 = 0;

sprintf_s(message,"value:%d string:%s\n",value,string);

UF_initialize();
UF_print_syslog("BEGIN myFunction2\n",0);
UF_print_syslog(message,0);

UF_print_syslog("END myFunction2\n",0);

return(value+1);
}

//***

// Java functions

JNIEXPORT jint JNICALL Java_JavaApp_nativeUFappFunction1(JNIEnv *env,
jobject obj)

{ // Call the local functions
int ret = myFunctions1();
return(ret);

}
JNIEXPORT jint JNICALL Java_JavaApp_nativeUFappFunction2(JNIEnv *env,
jobject obj, jint a, jstring name)

{
// Get the characters from the jstring
char *str = env->GetStringUTFChars(string, 0);
// Call the local function
int ret = myFunctions2((int)a, str);
// Release memory (required or else memory leaks)
env->ReleaseStringUTFChars(string, str);
return ret;

}

//***

//

extern "C" __declspec(dllexport) int UFappFunction1(void)
{

int ret1,ret2;
char message[MAX_STRING_SIZE] = "";

// Get the characters from the jstring
char *str = env->GetStringUTFChars(name, 0);

}

//***

//

extern "C" __declspec(dllexport) int UFappFunction2(int value, char
*string)
{

return (myFunction2(value,string));
}

//***

// ufsta() - this is only for testing purposes, normally this DLL will
loaded by the .NET DLL
// using the dllImport construct as shown below.
//
// Note: If this DLL needs to be unloaded before NX exists then the
.NET DLL will need
// to do it when it unloads.

extern void ufsta (char *param, int *retcode, int rlen)
{

UF_initialize();
UF_print_syslog("BEGIN UGapp (Running from File->Execute)\n",0);
myFunction1();
myFunction2(22,"Testing from File->Execute");
UF_print_syslog("END UGapp\n",0);

}

//***

//END

Calling Common API from Legacy Open C Applications

This section shows how to call a common API method from a legacy C application. The example

shows calling a NX Open .NET method from a legacy C application. JNI framework can be used

to achieve similar functionality for NX Open Java API.

To call common API .NET methods from unmanaged C application:

1. Define the method signatures for calling into .NET. This are basically function pointers with

_stdcall calling convention in the open C application.

2. Decorate functions in C application with "dllexport" so .NET can call those functions

3. Define delegates in .NET application which C application can call. The signatures should

match those defined in step 1.

4. Define wrapper functions in .NET for the functions exported from C application (see step

2).

5. Define a function in the C application which registers the three signatures (step 1). Export

it so .NET can register corresponding .NET methods (step 3).

6. Import the three C functions (see step 2 and step 5) in .NET application.

In short, .NET calls C functions which in turn call the registered .NET methods. This is the

recommended way to call .NET methods from unmanaged code.

Example C file

//***
*
// UFapp.cpp
//

// Sample code showing interactions with a .NET applications (VBapp)
//
//
// Shows how to capture a method/function pointers for calling into
.NET

#include <stdio.h>

#include <uf.h>
#include <uf_ui.h>
#include <uf_mb.h>
#include <uf_exit.h>

#include "reportError.h"

//***

// Define 3 different method signatures for callng into .NET

typedef void (__stdcall *method1Def) (void);
typedef int (__stdcall *functionADef) (int parm1);
typedef int (__stdcall *functionBDef) (char *parm1);

static method1Def VBmethod1 = NULL;
static functionADef VBfunctionA = NULL;
static functionBDef VBfunctionB = NULL;

//***

// A function to be called from .NET to register functions using
// the three signatures given above

extern "C" __declspec(dllexport) void UFappRegister(method1Def method1,
functionADef functionA, functionBDef functionB)

{
UF_initialize();
UF_print_syslog("\nBEGIN UFappRegister\n",0);
VBmethod1 = method1;
VBfunctionA = functionA;
VBfunctionB = functionB;
UF_print_syslog("END UFappRegister\n",0);

}

//***

// Two local functions to be called via wrappers from .NET
static int myFunction1(void)
{

UF_initialize();
UF_print_syslog("BEGIN myFunction1\n",0);

//If registered callback into VBapp
if (VBmethod1 != NULL) VBmethod1();

UF_print_syslog("END myFunction1\n",0);

return(77);
}
//***

static int myFunction2(int value, char *string)
{

int ret1,ret2;
char message[MAX_STRING_SIZE] = "";

ret1 = ret2 = 0;

sprintf_s(message,"value:%d string:%s\n",value,string);

UF_initialize();
UF_print_syslog("BEGIN myFunction2\n",0);
UF_print_syslog(message,0);

//If registered callback into VBapp
if (VBfunctionA != NULL) ret1 = VBfunctionA(value);
if (VBfunctionB != NULL) ret2 = VBfunctionB(string);

sprintf_s(message,"ret1:%d ret2:%d\n",ret1,ret2);
UF_print_syslog(message,0);

UF_print_syslog("END myFunction2\n",0);

return(value+1);
}

//***

// ufsta() - this is only for testing purposes,
// normally this DLL will loaded by the .NET DLL using the dllImport
construct
//
// Note: If this DLL needs to be unloaded before NX exists then the
.NET DLL will need
// to do it when it unloads.

extern void ufsta (char *param, int *retcode, int rlen)
{

UF_initialize();
UF_print_syslog("BEGIN UGapp (Running from File->Execute)\n",0);
myFunction1();
myFunction2(22,"Testing from File->Execute");
UF_print_syslog("END UGapp\n",0);

}
//***

//END

Wrapper Class: Defines .NET signatures for VB methods to be called by UFapp

'**

' wrappers to UFapp

Imports System
Imports System.Runtime.InteropServices

Public Class wrappers
Const UFAPP_DLLNAME As String = "C:\local\UFapp"

'**

' signature definitions for the VB methods to be called by UFapp

Public Delegate Sub method1_signature()
Public Delegate Function functionA_signature(ByVal value As

Integer) As Integer
Public Delegate Function functionB_signature(ByVal str As String)

As Integer

'**

' UFapp function, records methods/functions in VBapp to be called
from UFapp

<DllImport(UFAPP_DLLNAME, EntryPoint:="UFappRegister", _

CallingConvention:=CallingConvention.Cdecl)> _
Shared Sub UFappRegister(ByVal method1 As method1_signature, _

ByVal function1 As functionA_signature, _

ByVal function2 As functionB_signature)
End Sub

'**

' Hookup to a function in UFapp

<DllImport(UFAPP_DLLNAME, EntryPoint:="UFappFunction1", _
CallingConvention:=CallingConvention.Cdecl)> _

Shared Function UFappFunction1() As Integer

End Function

'**

' Hookup to another function in UFapp

<DllImport(UFAPP_DLLNAME, EntryPoint:="UFappFunction2", _
CallingConvention:=CallingConvention.Cdecl)> _

Shared Function UFappFunction2(ByVal value As Integer,
ByVal str As String) As Integer

End Function
End Class

End Class

.NET

Imports System
Imports System.IO
Imports System.Windows.Forms
Imports NXOpen Imports NXOpen.UF
Imports VBapp.wrappers

'**

' Methods/Functions to be called by UFapp
Class callbacks

Public Shared Sub method1()
theNXsession.LogFile.WriteLine("BEGIN method1")
MessageBox.Show("hello from method1")
theNXsession.LogFile.WriteLine("END method1")

End Sub

Public Shared Function functionA(ByVal value As Integer) As Integer
theNXsession.LogFile.WriteLine("BEGIN functionA")
theNXsession.LogFile.WriteLine(value.ToString)
theNXsession.LogFile.WriteLine("END functionA")
Return value + 1

End Function

Public Shared Function functionB(ByVal str As String) As Integer
theNXsession.LogFile.WriteLine("BEGIN functionB")

theNXsession.LogFile.WriteLine(str)
theNXsession.LogFile.WriteLine("END functionB")
Return 101

End Function
End Class

'**

' Standard Entry Points called from NX

Module VBapp
Public theNXsession As Session
Public theUFsession As UFSession

Public Sub Main()
Dim value As Integer = 88
Dim ret1 As Integer = 0
Dim ret2 As Integer = 0

theNXsession = Session.GetSession
theUFsession = UFSession.GetUFSession

theNXsession.LogFile.WriteLine("BEGIN VBapp (Running from
File->Execute)")

'Register VBapp callbacks that are used by UFapp
UFappRegister(AddressOf callbacks.method1, _

AddressOf callbacks.functionA, _
AddressOf callbacks.functionB)

' Call Functions in UFapp which will callback to VBapp

ret1 = UFappFunction1()
ret2 = UFappFunction2(88, "This string is from VBapp")

theNXsession.LogFile.WriteLine("funtions1:" & ret1.ToString
& " " & _

"function2:" & ret2.ToString)
theNXsession.LogFile.WriteLine("END VBapp")

End Sub

Public Function GetUnloadOption(ByVal arg As String) As Integer
Return Session.LibraryUnloadOption.Immediately

End Function

Public Function UnloadLibrary(ByVal arg As String) As Integer
Session.GetSession().LogFile.WriteLine("VBapp:

UnloadLibrary")
Return 0

End Function

End Module

User Interactions

Block Styler
UI Styler
Microsoft Windows Forms

Block Styler

Block Styler Automation
Launching Block Styler Dialogs from NX
Block Styler Memory and Callbacks
Dialog and Block Properties
Block Styler Selection Blocks
Block Styler Update Callback

Block Styler Automation

The Block Styler is an interactive tool for designing NX dialogs. Previous to the Block Styler, NX

provided the User Interface Styler (UI Styler) for dialog creation. The Block Styler enhances the

capabilities of the UI Styler by using the same set of reusable blocks currently used by internal

NX applications. Using Blocks as the basic dialog building units ensures that NX has consistent

behavior across all applications. By using the Block Styler your custom applications will share the

same user interactions as used throughout NX. Furthermore, the Block Styler provides platform

independent dialogs.

Note:

The UI Styler is still provided to support legacy user interfaces. However, it is recommended that

the Block Styler should be used for all new user interfaces or major changes to existing dialogs.

Why Use Blocks

The UI Styler defines dialogs composed of individual controls such as push buttons and input

fields. The predefined behaviors of these controls are very basic and can be used to implement

any number of actions within NX. The Block Styler defines dialogs composed of Blocks of

controls. Although there is a full set of basic blocks, there are also sets of blocks that provide

standard NX behaviours for actions that are common in graphical CAD/CAM/CAE applications.

For instance, there is a Specify Vector block that is composed of a label, a standard NX vector

constructor button, a pull down list for standard inferred vector options and a reverse direction

toggle. This block is used throughout NX to let the user select or interactively define a vector. By

using this block within your dialogs you save time by not having to implement the various options

and you ensure that your application behaves as other NX applications.

Prerequisites

Before reading this section the reader is expected to already be familiar with building and running

NX Open Journals and applications.

The reader is expected to understand how to use the Block Styler to create NX dialogs and how

to save and edit dialogs that have been saved to .dlx files. Before attempting to connect a Block

Dialog to an NX Open application the user is expected to understand how the block properties

are used to control the dialog display and behavior options. Also, the user is expect to know how

to generate automation template code for their target NX Open language.

To learn more about the Block Styler and how to use it to create NX dialogs and template code

see the Block Styler user guide in the Automation section of the NX Help Library.

Fundamentals

When you are done creating your dialog using the Block Styler and you save your work the Block

Styler creates the following two files.

1. The Block Dialog File

This file has an extension of ".dlx". This manual will refer to this file as the DLX file. The

DLX file contains all of the information that NX needs to be able to reproduce the dialog at

runtime. The file will be input by NX and therefore must be placed in a standard location.

For more information see the topic on launching dialogs from NX.

2. Template Code

This file contains the template source code for the program that will be used to interact

with the dialog at runtime. You will modify this file to provide the unique interactions

required for your application. This code will contain the methods used to read and load the

DLX file and all of the methods that will react to user and system events.

The Block Styler provides various options to customize the template code. The details of

how these options are used is discussed throughout this section. See the Block Styler

users guide for a summary of the code generation options. One of the fundamental options

is the selection of your target language. The Block Styler is capable of generating template

code for all NX Open languages. .

Note:

This file is recreated each time you save your dialog. Once you modify the template code you

should copy the working version to a new location to prevent your edits from being overwritten.

The template code will create a class using the name given to the DLX file. For examples

if theDLX file name is "testBlockDialog.dlx", the template code will create a class named

"testBlockDialog " and the self referencing object name will be "thetestBlockDialog"

What You Will Learn Here

The purpose of this section is to show how NX Open is used to interact at runtime with Block

Styler dialogs. This section shows examples of how to modify the template code generated by

the Block Styler for inclusion in your NX Open applications.

This section provides examples for the following topics.

Launching Block Styler Dialogs from NX - This topic shows the three different methods for

loading and displaying a Block dialog from NX. It shows the standard entry points used to launch

Block dialogs.

Block Styler Memory and Callbacks - This topic discusses the various callback methods that can

be included in the template code. It discusses how the various callback methods are used to

access dialog values and how dialog values interact with internal dialog memory. Examples of

the callback methods can be found in the remaining sections.

Dialog and Block Properties - This topic discusses how to access properties that are used to

control the display and behavior of the dialog. It shows examples of accessing typical block

properties. It does not include a description of all block properties. Those descriptions can be

found in the Block Dialog user guide.

Block Styler Update Callback - This topic focuses on the update callback. It shows examples of

getting and setting typical Block properties that are used to interact with the user.

Block Styler Selection Blocks - This topic focuses on the specific types of Blocks that are used to

implement selection. It shows examples of typical selection options and how to process a

selection list.

Launching Block Styler Dialogs from NX

Launching an application that uses one or more Block dialogs is almost identical to launching any

other Interactive NX Open application.The only difference is that your application will need to find

the DLX file at runtime.

Note:

A Batch or Remote application would never be able to launch a Block dialog.

Finding the DLX File at Runtime

The template code comments include a section on launching the dialog. This section contains

comments to remind you where to place the DLX for NX to be able to locate the file at runtime.

Finding DLX files is also covered in How NX Finds Application Files. You have the following two

options.
1. Place the DLX file in an application folder that is contained in a folder that is referenced

by one of the search options discussed in How NX Finds Application Files. This is the

recommended method and should definitely be used when distributing your application to

multiple users.

2. Hard code the full path name in the source. The constructor method will contain a string

constant that contains the DLX file name. By default the constant only contains the name

of the file and the path is located using the standard NX search methods. If you change

this constant to reference a specific path then the given path will be used. This method is

only recommended during testing and is not recommended for production application.

Entry Point Options

When generating template code for your dialog you have the following two fundamental choices.

1. The template code can include a standard User Exit entry point which NX will call directly.

This is the easiest method to use if your application is structured such that each

executable only uses one dialog. The Block Styler gives you two options for generating

User Exit template code: Menu and User Exit. These options are discussed below.

2. Or the template code can include a unique entry point that you will call from a larger

application. This is most likely the method that you will use if your executable uses more

than one dialog. The Block Styler provides the Callback Entry Point Option for this type of

template code.

The Block Styler Code Generation options provide the following three Entry Point options.

Note:

You can chose to include any combination of these entry point options in the template code.

However, if more than one option is selected, all options will be commented out. In this case you

will need to uncomment the method that you want to use.

Note:

All code examples in this section are based on a dialog named: testBlockDialog

1. User Exit

This option generates a standard User Exit entry point for the selected language. The
default entry point generated in the template code is the entry point tied to the File-

>Execute→NX Open action. It is possible to change the entry point to another type of

User Exit but not all User Exits will permit the display of a dialog. See User Exits for more

information about the available User Exits and the appropriate entry points for each type of

User Exit.

Use this method if you want to launch your dialog using File→Execute→NX Open.

Note:

If the target language supports Journal playback you can also execute the template code as a

Journal without having to create an executable using Tools→Journal→Play.

User Exit Option - Language Specific Details

NX Open for C++

NX Open for .NET

NX Open for Java

2. Menu

This option generates the same User Exit entry point as above but comments are included

to show how to define a menu button to execute the dialog code. For more information see

Executing applications from existing menus and Executing applications from new menu

items.

For language specific details see the User Exit Options above.

3. Callback

This option provides an entry point that you can call from a larger application.

Callback Option - Language Specific Details

NX Open for C++

NX Open for .NET

NX Open for Java
NX Open for C++ - User Exit Entry Point Option

The standard User Exit entry point and dialog initialization for C++ is:

extern "C" DllExport void ufusr(char *param, int *retcod, int
param_len)
{

try
{

thetestBlockDialog = new testBlockDialog();
// The following method shows the dialog immediately
thetestBlockDialog->Show();

}
catch(exception & ex)
{

//---- Enter your exception handling code here -----
testBlockDialog::theUI->NXMessageBox()->Show("Block Styler",

NXOpen::NXMessageBox::DialogTypeError, ex.what());
}
delete thetestBlockDialog;

}

The call to the show method will display the dialog and control will not return until the user closes

the dialog or hits the Ok or Cancel buttons. All of your interaction with the dialog will be via the

callback methods discussed in Block Styler Callbacks and Block Styler Update.

You can add code to this function but it is not necessary. A specific initialize callback is provided

for dialog startup and a standard destructor method is provided for dialog shutdown and cleanup.

This entry point is used when you want to execute your dialog using File→Execute→NX Open or

with a Menu Button.

NX Open for .NET - User Exit Entry Point Option

The standard User Exit entry point and dialog initialization for Visual Basic .NET is:

Public Shared Sub Main()
Try

thetestBlockDialog = New testBlockDialog()
' The following method shows the dialog immediately
thetestBlockDialog.Show()

Catch ex As Exception
'---- Enter your exception handling code here -----
theUI.NXMessageBox.Show("Block Styler",

NXMessageBox.DialogType.Error, ex.ToString)
Finally

thetestBlockDialog.Dispose()
End Try

End Sub

The call to the show method will display the dialog and control will not return until the user closes

the dialog or hits the Ok or Cancel buttons. All of your interaction with the dialog will be via the

callback methods discussed in Block Styler Callbacks and Block Styler Update.

You can add code to this subroutine but it is not necessary. A specific initialize callback is

provided for dialog startup and a standard dispose method is provided for dialog shutdown and

cleanup.

This entry point is used when you want to execute your dialog using File→Execute→NX Open or

with a Menu Button or with Tools → Journal → Play.

NX Open for Java - User Exit Entry Point Option

The standard User Exit entry point and dialog initialization for Jave is:

public static void main(String [] argv) throws Exception
{

try
{

thetestBlockDialog = new testBlockDialog();
// The following method shows the dialog immediately
thetestBlockDialog.show();

}
catch(Exception ex)
{

//---- Enter your exception handling code here -----
theUI.nxmessageBox().show("Block Styler",

nxopen.NXMessageBox.DialogType.INFORMATION, ex.getMessage());

}
finally
{

thetestBlockDialog.dispose();
}

}

The call to the show method will display the dialog and control will not return until the user closes

the dialog or hits the Ok or Cancel buttons. All of your interaction with the dialog will be via the

callback methods discussed in Block Styler Callbacks and Block Styler Update.

You can add code to this function but it is not necessary. A specific initialize callback is provided

for dialog startup and a standard dispose method is provided for dialog shutdown and cleanup.

This entry point is used when you want to execute your dialog using File→Execute→NX Open or

with a Menu Button.

NX Open for C++ - Callback Entry Point Option

The callback entry point and dialog initialization in C++ is:

void testBlockDialog::Show_testBlockDialog()
{

try
{

thetestBlockDialog = new testBlockDialog();
// The following method shows the dialog immediately
thetestBlockDialog->Show();

}
catch(exception& ex)

{
//---- Enter your exception handling code here -----
testBlockDialog::theUI->NXMessageBox()->Show("Block Styler",

NXOpen::NXMessageBox::DialogTypeError, ex.what());
}
delete thetestBlockDialog;

}

The call to the show method will display the dialog and control will not return until the user closes

the dialog or hits the Ok or Cancel buttons. All of your interaction with the dialog will be via the

callback methods discussed in Block Styler Callbacks and Block Styler Update.

You can add code to this function but it is not necessary. A specific initialize callback is provided

for dialog startup and a standard destructor method is provided for dialog shutdown and cleanup.

This entry point is used when you want to call the dialog directly from a larger application. This is

typically done when multiple dialogs are required for the application. The Show_testBlockDialog()

method is declared as a static function in the .hpp file so that it may be called directly without

having to create a testBlockDialog object.

NX Open for .NET - Callback Entry Point Option

The callback entry point and dialog initialization in Visual Basic .NET is:

Public Shared Sub Show_testBlockDialog()
Try

thetestBlockDialog = New testBlockDialog()
' The following method shows the dialog immediately
thetestBlockDialog.Show()

Catch ex As Exception
'---- Enter your exception handling code here -----
theUI.NXMessageBox.Show("Block Styler",

NXMessageBox.DialogType.Error, ex.ToString)
Finally

thetestBlockDialog.Dispose()
End Try

End Sub

The call to the show method will display the dialog and control will not return until the user closes

the dialog or hits the Ok or Cancel buttons. All of your interaction with the dialog will be via the

callback methods discussed in Block Styler Callbacks and Block Styler Update.

You can add code to this subroutine but it is not necessary. A specific initialize callback is

provided for dialog startup and a standard dispose method is provided for dialog shutdown and

cleanup.

This entry point is used when you want to call the dialog directly from a larger application. This is

typically done when multiple dialogs are required for the application. The Show_testBlockDialog()

method is declared as a Shared function so that it may be called directly without having to create

a testBlockDialog object.

NX Open for Java - Callback Entry Point Option

The syntax to reserve and release the solid modeling license in Java is:

public static void show_testBlockDialog() throws NXException,
RemoteException
{

try
{

thetestBlockDialog = new testBlockDialog();
// The following method shows the dialog immediately
thetestBlockDialog.show();

}
catch(Exception ex)
{

//---- Enter your exception handling code here -----
theUI.nxmessageBox().show("Block Styler",

nxopen.NXMessageBox.DialogType.INFORMATION, ex.getMessage());
}
finally
{

thetestBlockDialog.dispose();
}

}

The call to the show method will display the dialog and control will not return until the user closes

the dialog or hits the Ok or Cancel buttons. All of your interaction with the dialog will be via the

callback methods discussed in Block Styler Callbacks and Block Styler Update.

You can add code to this function but it is not necessary. A specific initialize callback is provided

for dialog startup and a standard dispose method is provided for dialog shutdown and cleanup.

This entry point is used when you want to call the dialog directly from a larger application. This is

typically done when multiple dialogs are required for the application. The show_testBlockDialog()

method is declared as a static function so that it may be called directly without having to create a

testBlockDialog object.

Block Styler Memory and Callbacks

Before generating template code you have the option to select the set of callback methods that

you want to include in your application (see Code Generation in the Block Styler User Guide). A

callback method is a method that is designed to handle specific types of dialog events. When the

dialog is created at runtime the callback methods are registered with NX. While processing user

interactions NX then knows to call your custom methods for the dialog. By adding code to the

callback methods, you can implement the dialog behaviors which are required by your

application.

This section defines the set of available callback methods and what events are used to invoke

each method. Note that all dialogs must provide an Apply and Initialize method. All other callback

methods are optional.

Your callback methods will access the current dialog values and may update the dialog values.

Block Styler dialogs also have an internal memory. It is important to understand how dialog

memory works, especially when trying to set initial dialog values. This section discusses dialog

memory and how your callbacks interact with the dialog values.

Standard Navigator Buttons
Dialog Memory
Dialog Values
Callbacks
Dialog Value Example

Standard Navigator Buttons

Regardless of which callbacks are defined for a dialog all standard NX dialogs have an Ok, Apply

and Cancel button. The standard behavior of these buttons are:

Ok - Execute an Apply action using the current dialog values and exit the dialog.

Apply - Execute the dialog actions using the current dialog values then reinitialize the dialog for a

new edit or create.

Cancel - Exit the dialog without taking any further actions.

To ensure standard behavior the Apply callback is required. Furthermore, the template code for

the Ok callback will include a call to the Apply callback.

Note:

If you do not generate an Ok callback then NX will execute your Apply callback automatically

when the Ok button is hit.

Dialog Memory

Standard NX behavior is for all dialogs to remember the last values entered by the user and to

initialize a dialog with those values when the dialog is used again. The only exception is if the

dialog is being used to edit an existing NX object. In the case of an edit, the values used to create

the object should be used to initialize the dialog values.

For Block Dialogs, dialog memory is automatically maintained and enforced by NX. The sections

below describe when dialog memory values are set and when the memory values are used to

initialize the current dialog values.

When a dialog is launched in the edit mode it is the NX Open programmer's responsibility to

obtain the values from the object being edited and then use those values to establish the current

dialog values.

Dialog Values

The following sections include a discussion of how the dialog values are maintained by the

different callbacks. The following terms are used to describe the various values used to maintain

the dialog values.

Current Dialog Values - These are the values that are shown to the user in the dialog. The user

will modify these values and then hit the Ok or Apply button to use the values to create NX

objects.

Default Values Given in the DLX File - These are the values that are defined when the dialog is

created with Block Styler. Unless overridden at runtime by the NX Open programmer or by dialog

memory values the DLX values will be the default dialog values.

Default Values Set by the Initialize Callback - These are values set by the NX Open programmer

in the Initialize Callback. These values will override any DLX values. These values will be

overridden by Dialog Memory values when the dialog is in Create mode. When the dialog is in

edit mode the NX Open programmer should use the Initialize Callback to set the values of the

objects that are being edited.

Dialog Memory Values - When the dialog is in Create mode these values are maintained

automatically by NX. While in Create mode the dialog memory values are set equal to the current

dialog values just after execution of the Ok or Apply callback. The current dialog values are set

equal to the dialog memory values at the end of the dialog initiation process (just after the

Initialize Callback). When the dialog is in Edit modes the dialog memory values are not changed

and are not used to initialize the current dialog values.

Callbacks

Filter - This method is called whenever the user is selecting NX objects. It is used to let you filter

out objects that you do not want to pre-select. To see an example of using the Filter callback see

Block Styler Selection Blocks.

Update - This method is called to respond to most events from every block. For instance, if the

user enters a text string into a String block and hits the Enter key, the Update method will be

called. The code in this method can then determine which block generated the event and can

react to the event. For instance, in the String example, the value of the string could be examined

for proper format. For a complete description of the Update method and examples of typical

usage see Block Styler Update Callback.

Ok - This method is called to respond to the user hitting the standard Ok navigator button. The

standard behavior is for your application to execute an Apply using the current dialog values and

then to exit the dialog. The template code will already contain a call to the Apply method, so

examples of adding code to this callback are not given.

When the dialog is in Create mode the dialog memory values are set equal to the current dialog

values just after the execution of the Ok callback.

Apply - This is a required callback. The Apply method is called to respond to the user hitting the

standard Apply navigator button. The standard behavior is for your application to perform the

designed actions (such as creating geometry) using the current dialog values but to leave the

dialog open. The user is then able to enter new values and perform another Apply without exiting

the dialog. An examples of this callback is given in: Block Styler Selection Blocks.

When the dialog is in Create mode the dialog memory values are set equal to the current dialog

values just after the execution of the Apply callback.

Note:

After the Apply callback is executed the dialog is actually reinitialized. Therefore, the Initialize

callback will be called after the Apply callback executes.

Cancel - This method is called to respond to the user hitting the standard Cancel navigator

button. It is also called if the dialog closes for any other reasons such as the user hitting the

Close button in the dialog Rail Clip. The standard behavior is for your application to exit the

dialog without making any further modifications to the NX data model. That is, an Apply should

not be done but any previous Applies will not be undone.

DialogShown - This method is called just before the dialog is displayed (If you are transitioning

from UI Styler - DialogShown() is similar to post constructor callback). Dialog values set in this

callback replace dialog memory values for this instance of the dialog. Remember, dialog values

set in the callback do not overwrite the dialog memory values unless you click OK or Apply on the

dialog.

Initialize - This is a required callback. The Initialize method is called whenever the dialog is

initialized, which is in the following three cases:

1. Just after the dialog is first constructed

2. After an Apply callback to reinitialize the dialog for the next create or edit

3. When the user hits the standard Reset button found on the dialog Rail Clip

How the current dialog values are initialized depends on the dialog edit/create mode and how the

Initialize callback is invoked. The current dialog values will be set equal to the dialog memory

values or to the default values defined in the DLX file and possibly overridden by the NX Open

programmer at runtime. The following table shows how the current dialog values are set.

When Initialize Callback is
Called

Create Mode Action
Edit

Mode
Action

After First Dialog
Construction

All Current Dialog Values = Dialog Memory Values Same
as
Reset
Button

After Apply Callback All Current Dialog Values = Dialog Memory Values Same
as
Reset
Button

When Reset Button is Hit All Current Dialog Values = Default DLX File Values Specific Current
Dialog Values = Default Values Set by the Initialize Callback

The template code for the Initialize callback contains code to establish references to all blocks

within the dialog. See the examples in Dialog and Block Properties to see how to use the block

references to get and set current dialog values.

Dialog Value Example

As an example of how dialog memory and your callbacks are used to define the current dialog

values consider the following example.

Consider a dialog with two string blocks named S1 and S2. Assume the following initial

assignments are made to those string blocks.

String Block Default Value Given in DLX File Values Assigned by the Initialize Callback
S1 "dlx s1" nothing - no SetString is made for S1
S2 "dlx s2" "initial s2"

Now consider the following user actions.

1. When the dialog is first displayed S1="dlx s1" and S2="initial s2".

2. While in create mode the user changes S1 to "abc" and S2 to "xyz". The the user hits Ok

which executes the Apply callback.

3. The next time the dialog is displayed in create mode S1="abc" and S2="xyz".

4. The next time the dialog is displayed in edit mode S1="dlx s1" and S2="initial s2". Note,

the Initialize callback is really expected to query the object that is being edited and set S1

and S2 equal to the object's values. So really S1 and S2 will be whatever is assigned by

the Initialize callback. But in this case S1 is not assigned so the DLX value is maintained

and S1 is simply set to a constant.

5. While in edit mode the user changes the values to S1="123" and S2="456". The the user

hits Ok which executes the Apply callback.

6. The next time the dialog is displayed in create mode the dialog will display S1="abc" and

S2="xyz". Note, dialog memory is NOT changed when the dialog is in edit mode. In edit

mode the object being edited is expected to contain the values required to initialize the

dialog values.

7. The user hits the reset button on the dialog rail clip. The dialog will display S1="dlx s1" and

S2="initial s2".

Sequence of Callbacks

Dialog callbacks are called in the following sequence:

1. Read the dlx file. Instantiate the UI blocks specified in the dlx file. Apply the settings

contained in the dlx file to the UI blocks.

2. Call the Initialize callback

3. Apply the settings stored in dialog memory to the UI blocks

4. Call the DialogShown callback

When the dialog is shown using Edit mode, we do not do step 3.

Dialog and Block Properties

Every dialog and every block within a dialog have a set of properties which are used to customize

and control the block's look and behavior at runtime. In the Block Styler the main dialog shows a

tree in the "Blocks" window. The root of the tree references the Dialog. Expanding down from the

root are all of the blocks that are in the dialog. Below the "Blocks" window is the "Properties"

window. The Properties window shows all of the properties for the item that is selected in the

tree. To display the Dialog properties, pick the root of the tree. To display the properties for a

specific block, pick that block in the tree.

Every property is defined by it's Name, Value and value Type. For instance, a Dialog has a

property named "Cue" which has a value of type String. The value of the Cue property is

displayed in the NX Cue line when the dialog is active. The Name, Value and Type of each

property is shown in the Properties window of the main Block Styler dialog.

To learn how the property values impact the look and behavior of a block see the complete list of

properties in the Block Styler user's guide. This list also shows which properties are only

available at dialog design time and cannot be accessed by NX Open. For the properties that can

be accessed at runtime the list also shows the properties that are read only and those whose

values can also be changed using NX Open.

Dialog and Block Object References

The following sections show how to use the dialog and block object references to access specific

property values at runtime using NX Open. The template code includes variables that reference

the dialog and block objects.

In the template code the dialog object is referenced by the variable named: "theDialog".

The references to all block objects are established in the Initialize callback. The text string used

to identify the block is shown in the "Blocks" window of the main Block Styler dialog. The names

are used to identify the nodes in the tree that is used to display and edit the structure of the

dialog. By default these names are constructed from the type of block and a count, such as

"button01" or "toggle04". Using these default names the following lines of pseudo code would

then be included in the Initialize callback to establish a reference to the button and toggle block

objects.

button01 = theDialog.TopBlock.FindBlock("button01")

toggle04 = theDialog.TopBlock.FindBlock("toggle04")

The variables named button01 and toggle04 will now reference their respective block objects.

To make these variable names more meaningful for your application change the names in the

Block Styler before generating the template code. For instance, if you changed the name of the

above toggle block to "blendOption" then the initialization line of code would be:

blendOption = theDialog.TopBlock.FindBlock("blendOption")

Property List

To access property values you first need to obtain a reference to the list of properties for the

dialog or block. The GetProperties() method returns the current property list as follows:

dialogPropertyList = theDialog.TopBlock.GetProperties()

blockPropertyList = blockObject.GetProperties()

Warning:

Warning: the property list is dynamically generated and is only valid for the current dialog values. If

the user changes the current dialog values then you must refresh the property list by again calling

GetProperties(). To prevent memory leaks remember to free the memory used for the previous

property list by using the dispose or delete methods (see language specific examples found in

Block Styler Update Callback).
Get and Set Property Value Methods

To access and set property values at runtime you need to know the property's Name and it's

value Type. Specific Get and Set methods are provided for each value type. The general form of

the Get/Set methods are:

value = propertyList.Get<type>(<property name>)

propertyList.Set<type>(<property name>, ...)

For instance, to Get/Set a Dialog's Cue property you would use the methods:

dialogPropertyList = theDialog.TopBlock.GetProperties()

text = dialogPropertyList.GetString("Cue")

dialogPropertyList.SetString("Cue", "this is the text to display in the
cue line")

Another example would be to Get/Set the current state of the above toggle block that has been

renamed to blendOption. The current state of a toggle block is contained in the property named

"Value". The following code would Get/Set the Value property:

togglePropertyList = blendOption.GetProperties()

togglePropertyList.SetLogical("Value", True)

toggleValue = togglePropertyList.GetLogical("Value")

Dialog and Block Properties - Language Specific Details

The following language specific code examples show how to access and set the following

properties.

Dialog - Cue Line

String Block - Label

String Block - Current Value

String Block - Enable/Disable

Integer Block - Current Value

Additional examples of interacting with Dialog and Block Properties can be found in: Block Styler

Update and Block Styler Selection.

NX Open for C++

NX Open for .NET

NX Open for Java
NX Open for C++ - Dialog and Block Properties

//Template code to establish block object references
sourceString = theDialog->TopBlock()->FindBlock("sourceString");
targetString = theDialog->TopBlock()->FindBlock("targetString");
integer02 = theDialog->TopBlock()->FindBlock("integer02");

//Obtain reference to the dialog properties
PropertyList *dialogProp = theDialog->TopBlock()->GetProperties();

//Set the dialogs cue line
dialogProp->SetString("Cue", "this is the cue line");

//Obtain reference to the String and Integer block properties
PropertyList *sourceStringProp = sourceString->GetProperties();
PropertyList *targetStringProp = targetString->GetProperties();
PropertyList *integerProp = integer02->GetProperties();

//Get the value and lable of the source string block
NXOpen::NXString sourceText = sourceStringProp->GetString("Value");
NXOpen::NXString sourceLabel = sourceStringProp-

>GetString("Label");

//Set the value and label of the target string
targetStringProp->SetString("Label", sourceText);
targetStringProp->SetString("Value", sourceLabel);

//Set the current value of the Integer block and then
// use the current value to set source string value
integerProp->SetInteger("Value", 5);

char textBuff[25];
sprintf_s(textBuff,"%d",integerProp->GetInteger("Value"));
sourceStringProp->SetString("Value", textBuff);

//Disable the target string block
targetStringProp->SetLogical("Enable", false);

//Cleanup memory
delete sourceStringProp;
delete targetStringProp;
delete integerProp;
delete dialogProp;

Note:

If a property list reference returned by GetProperties() is not delete then the memory used for the

list will be lost until the dialog is closed.

NX Open for .NET - Dialog and Block Properties

'Template code to establish block object references
sourceString = theDialog.TopBlock.FindBlock("sourceString")
targetString = theDialog.TopBlock.FindBlock("targetString")
integer02 = theDialog.TopBlock.FindBlock("integer02")

'Obtain reference to the dialog properties
Dim dialogProp As PropertyList = theDialog.TopBlock.GetProperties()

'Set the dialogs cue line
dialogProp.SetString("Cue", "this is the cue line")

'Obtain reference to the String and Integer block properties
Dim sourceStringProp As PropertyList = sourceString.GetProperties()
Dim targetStringProp As PropertyList = targetString.GetProperties()
Dim integerProp As PropertyList = integer02.GetProperties()

'Get the value and lable of the source string block
Dim sourceText As String = sourceStringProp.GetString("Value")
Dim sourceLabel As String = sourceStringProp.GetString("Label")

'Set the value and label of the target string
targetStringProp.SetString("Label", sourceText)
targetStringProp.SetString("Value", sourceLabel)

'Set the current value of the Integer block and then
' use the current value to set source string value
integerProp.SetInteger("Value", 5)
sourceStringProp.SetString("Value",

integerProp.GetInteger("Value").ToString)

'Disable the target string block
targetStringProp.SetLogical("Enable", False)

NX Open for Java - Dialog and Block Properties

//Template code to establish block object references
sourceString = theDialog.topBlock().findBlock("sourceString");
targetString = theDialog.topBlock().findBlock("targetString");
integer02 = theDialog.topBlock().findBlock("integer02");

//Obtain reference to the dialog properties
PropertyList dialogProp = theDialog.topBlock().getProperties();

//Set the dialogs cue line
dialogProp.setString("Cue", "this is the cue line");

//Obtain reference to the String and Integer block properties
PropertyList sourceStringProp = sourceString.getProperties();
PropertyList targetStringProp = targetString.getProperties();
PropertyList integerProp = integer02.getProperties();

//Get the value and lable of the source string block
String sourceText = sourceStringProp.getString("Value");

String sourceLabel = sourceStringProp.getString("Label");

//Set the value and label of the target string
targetStringProp.setString("Label", sourceText);
targetStringProp.setString("Value", sourceLabel);

//Set the current value of the Integer block and then
// use the current value to set source string value

integerProp.setInteger("Value", 5);

String numberText = "" + integerProp.getInteger("Value");
sourceStringProp.setString("Value",numberText);

//Disable the target string block
targetStringProp.setLogical("Enable", false);

//Cleanup memory
sourceStringProp.dispose();
targetStringProp.dispose();
integerProp.dispose();
dialogProp.dispose();

Block Styler Selection Blocks

Selection blocks define a consistent set of Block Styler Blocks that are used to enable interactive

selection of many different kinds of common NX objects. The blocks simplify the selection

process by providing predefined filters for common NX objects and consistent selection behavior.

For instance, blocks exist to specifically select Faces, Curves/Edges, Features, Blend Faces or

any general NX object. Common behaviors include the management of multiple selection lists,

pre-selection, unselect, selection highlighting/unhighlighting, selection intent, object filtering,

management of the Apply button for required object selections, interaction with the Model

Navigator and access to the quick pick tool to resolve ambiguous selections.

Although many of the behaviors are providing automatically by the selection blocks, you are still

able to programmatically refine the selection filter and to manage the selection list. This section

discusses the common methods that are provided for all selection blocks.

Ok and Apply Button Management

If a dialog requires the user to select NX objects before the dialog action can be taken then the

Ok and Apply buttons should not be active until the user has selected the required objects. Block

Styler dialogs have the option to automatically manage the activation of the Ok and Apply

buttons.

By default every selection block is considered to be a required user input. The Ok and Apply

button will remain inactive until NX objects have been selected for all selection blocks. If a

selection block is not required then when the dialog is designed with the Block Styler, set the

"StepStatus" property to "Optional".

Selection List

Each selection block maintains it's own selection list. To access the selection list use the same

methods discussed in Block Styler Properties. In this case the common property name for all

selection blocks is "SelectedObjects" and the property type is a TaggedObjectVector. So in

general the following method is used to obtain the list of currently selected objects for a given

selection block:
<list of selected objects> =

propertyList.GetTaggedObjectVector("SelectedObjects")

As with other properties you can use the corresponding Set method to programmatically set the

currently selected objects for a given block.

propertyList.SetTaggedObjectVector("SelectedObjects", <list of
selected objects>)

To clear the selected objects, just pass in an empty list to the Set method.

Note:

The "SelectedObjects" property will not be seen in the Block Styler properties window because the

value cannot be set at dialog design time.

Examples of accessing the selection list for multiple selection blocks on a single dialog are given

in this section.

Update Callback

As will other blocks any time a selection is made using a selection block a call is made to the

Update callback and the reference of the selection block used to make the selection is passed to

the Update callback. For more information and example of Update callbacks see Block Styler

Update Callbacks.
Selection Filter Callback

Optionally you can have the Block Styler generate a selection filter callback. This callback

permits you to filter out objects that you do not want selection intent to pre-highlight.

The selection filter callback will receive the block reference for the selection block that is currently

being used by the user and a reference to the specific NX object that is being considered for pre-

selection highlighting. Use the selection block reference to select the code to handle different

filtering required for your different selection blocks. Use the NX object to determine if you want

the user to be able to select that specific object. Any objects rejected by your selection filter

callback will not pre-highlight for selection and cannot be selected by the user.

Examples of handling selection filters for multiple selection blocks on a single dialog are given in

this section.

Other Selection Filters

It is also possible to set the same selection filters that are available using the Session's selection

manager. The same options that are available to the SetSelectionMask() method found in the

Selection class are available for selection blocks using the following method and property.

<property list object>.SetSelectionFilter("SelectionFilter",
<selection action option>, <selection mask array>)

The possible selection actions are:

Selection Action Option Action

Enable All all selectable NX objects are enabled for selection (the mask array is
not used and should be null)

Enable Specific all object types listed in the mask array are added to the selection
type filter (i.e. enabled for selection)

Disable Specific all object types listed in the mask array are removed from the
selection type filter (i.e. disabled for selection)

Clear And Enable Specific the selection type filter is cleared and than all object types listed in
the mask array are added to the selection type filter

All And Disable Specific all objects are added to the selection type filter except those listed in
the mask array

Each entry in the selection mask array defines the object type, subtype and solid body subtype of

an object to either be enabled or disabled for selection.

Selection Blocks - Language Specific Details

The following language specific code examples show how to add code to the Block Styler

template source for the following dialog.

This dialog contains two selection blocks and options for controlling selection filtering for those

blocks.

The first selection block is used to select a set of edges which will be used during the Apply

callback to create a chamfer feature. Associated with that block is a toggle. When the toggle is

ON the selection filter callback will reject edges that do not belong to the same face. Also

associated with the first selection block is an entry field used to set the angle for the chamfer

features.

The second selection block is used to select existing features. The filter callback will only accept

chamfer features. These features will be removed during the Apply callback. Associated with the

second selection block is a toggle. When this toggle is ON the selection filter will only accept

chamfers which have the angle given in a second input field that is enabled when the toggle is

ON.

Also, when a selection filter toggle is turned ON then the associated selection list is cleared.

The following examples show how to implement the Update, Apply and Selection Filter callbacks

to define the dialog actions defined above.

NX Open for C++

NX Open for .NET

NX Open for Java
NX Open for C++ - Selection Blocks

The following code was added to the standard source template generated by the Block Styler for

the example dialog shown above.

Additional Include Files Added to the .hpp File

#include <NXOpen/Part.hxx>
#include <NXOpen/Face.hxx>
#include <NXOpen/Edge.hxx>
#include <NXOpen/EdgeTangentRule.hxx>
#include <NXOpen/Features_Chamfer.hxx>
#include <NXOpen/Features_FeatureBuilder.hxx>
#include <NXOpen/Features_ChamferBuilder.hxx>
#include <NXOpen/PartCollection.hxx>
#include <NXOpen/Features_FeatureCollection.hxx>
#include <NXOpen/ScCollector.hxx>
#include <NXOpen/ScCollectorCollection.hxx>
#include <NXOpen/ScRuleFactory.hxx>

New Property and Methods added to Class Definition in the .hpp File

Face *limitingFace; //face to limit edge selection

int faceFilter(Edge *selectedEdge);
int angleFilter(Chamfer *chamferFeature);
Face *sharedFace(Edge *edge1, Edge *edge2) ;

void addChamfer(Edge *selectedEdge, double angle);
void deleteObject(NXObject *selectedObject);

Additional Namespace

using namespace NXOpen::Features;

Initialize Callback - added property initialization

//Faced used to limit edge selection
limitingFace = NULL;

Apply Callback - used to add and remove chamfers

//---

//Callback Name: apply_cb
//---

int SelectionExample::apply_cb()
{

try

{
//Access the required property lists
PropertyList *angleProp = angleDouble->GetProperties();
PropertyList *edgeListProp = edgeSelect->GetProperties();
PropertyList *chamferListProp = chamferSelect->GetProperties();

//***

// Add Chamfers to Selected Edges
//Get the chamfer angle and edge selection list from the dialog
double creationAngle = angleProp->GetDouble("Value");
std::vector<TaggedObject *> edges = edgeListProp-

>GetTaggedObjectVector("SelectedObjects");
// Add a chamfer to each selected edge
for (int inx = 0; inx < (int)edges.size(); ++inx)
{

addChamfer((Edge *)edges[inx], creationAngle);
}

//***

// Remove Selected Chamfers
// Get the selected chamfers from the dialog
std::vector<TaggedObject *> chamfers = chamferListProp-

>GetTaggedObjectVector("SelectedObjects");
//Set an undo mark for update
Session::UndoMarkId undoMark = theSession-

>SetUndoMark(Session::MarkVisibilityVisible, "Remove Chamfers");
// Add the selected chamfers to the delete list
for (int inx = 0; inx < (int)chamfers.size(); ++inx)
{

deleteObject((Features::Chamfer *) chamfers[inx]);
}
//Update the model to delete the chamfers
int nErrs = theSession->UpdateManager()->DoUpdate(undoMark);
// Report any errors - normally the error list should be scanned

and each error processed
if (nErrs > 0)
{

char errMsg[25];
sprintf_s(errMsg,"nErrs = %d",nErrs);
SelectionExample::theUI->NXMessageBox()->Show("Update

Errors",NXMessageBox::DialogTypeError,errMsg);
}
//Cleanup memory
delete angleProp;
delete edgeListProp;
delete chamferListProp;

}

catch(exception& ex)
{

//---- Enter your exception handling code here -----
SelectionExample::theUI->NXMessageBox()->Show("Block Styler",

NXOpen::NXMessageBox::DialogTypeError, ex.what());
}
return 0;

}

Update Callback

//---

//Callback Name: update_cb
//---

int SelectionExample::update_cb(NXOpen::BlockStyler::UIBlock* block)
{

try
{

if(block == edgeSelect)
{
PropertyList *faceToggleProp = faceToggle->GetProperties();
//When face filtering is on, establish a limiting face after two

edges are selected
if (faceToggleProp->GetLogical("Value"))
{

PropertyList *edgeListProp = edgeSelect->GetProperties();
std::vector<TaggedObject *> edges = edgeListProp-

>GetTaggedObjectVector("SelectedObjects");
if (edges.size() == 2)
{
limitingFace = sharedFace((Edge *)edges[0],(Edge *)edges[1]);

}
delete edgeListProp;

}
delete faceToggleProp;

}
else if(block == faceToggle)
{
PropertyList *faceToggleProp = faceToggle->GetProperties();
//When the face filter is turned on...
// Clear the current edge selection list
if (faceToggleProp->GetLogical("Value"))
{

PropertyList *edgeListProp = edgeSelect->GetProperties();
std::vector<TaggedObject *> edges;
edgeListProp->SetTaggedObjectVector("SelectedObjects",edges);
limitingFace = NULL;
delete edgeListProp;

}

delete faceToggleProp;
}
else if(block == angleDouble)
{
//---------Enter your code here-----------

}
else if(block == chamferSelect)
{
//---------Enter your code here-----------

}
else if(block == angleToggle)
{

PropertyList *angleToggleProp = faceToggle->GetProperties();
PropertyList *angleLimitProp = angleLimitDouble-

>GetProperties();
//When the angle fileter is turned on...
// 1. Clear the current chamfer selection list
// 2. Also, enable/disable the angle limit entry field
if (angleToggleProp->GetLogical("Value"))
{

PropertyList *chamferListProp = chamferSelect-
>GetProperties();

std::vector<TaggedObject *> chamfers;
chamferListProp-

>SetTaggedObjectVector("SelectedObjects",chamfers);
angleLimitProp->SetLogical("Enable", TRUE);
delete chamferListProp;

}
else
{

angleLimitProp->SetLogical("Enable", FALSE);
}
delete angleToggleProp;
delete angleLimitProp;

}
else if(block == angleLimitDouble)
{
// When the angle limit value changes...
// Clear the current chamfer selection list
PropertyList *chamferListProp = chamferSelect->GetProperties();
std::vector<TaggedObject *> chamfers;
chamferListProp-

>SetTaggedObjectVector("SelectedObjects",chamfers);
delete chamferListProp;

}
}
catch(exception& ex)
{

//---- Enter your exception handling code here -----

SelectionExample::theUI->NXMessageBox()->Show("Block Styler",
NXOpen::NXMessageBox::DialogTypeError, ex.what());

}
return 0;

}

Filter Callback

//---

//Callback Name: filter_cb
//---

int SelectionExample::filter_cb(NXOpen::BlockStyler::UIBlock* block,

NXOpen::TaggedObject* selectedObject)
{
int accept = UF_UI_SEL_ACCEPT;
if (block == edgeSelect)
{
PropertyList *faceToggleProp = faceToggle->GetProperties();
//Edge Select Filter
if (faceToggleProp->GetLogical("Value"))
{

accept = faceFilter((Edge *)selectedObject);

}
delete faceToggleProp;

}
else if (block == chamferSelect)
{
//Feature Selection Filter - limit selection to chamfer features
Feature *featureObject = (Feature *)selectedObject;
if (strcmp(featureObject->FeatureType().GetText(),"CHAMFER") == 0)
{

accept = angleFilter((Chamfer *)featureObject);
}
else
{

accept = UF_UI_SEL_REJECT;
}

}
return accept;

}

New Methods - added to support filtering and feature create/delete

//***

//FACE FILTER
int SelectionExample::faceFilter(Edge *selectedEdge)
{

int accept = UF_UI_SEL_REJECT;
//If a limiting face has not been established...

// then use the first two selected edges to establish the limiting
face

// otherwise use the limiting face
if (limitingFace == NULL)
{
//Limit faces to those of the first selected edge
PropertyList *edgeListProp = edgeSelect->GetProperties();
std::vector<TaggedObject *> edges = edgeListProp-

>GetTaggedObjectVector("SelectedObjects");
if (edges.size() < 1)
{

accept = UF_UI_SEL_ACCEPT;
}
else if (edges.size() == 1)
{

if (sharedFace((Edge *)edges[0],selectedEdge) != NULL) accept =
UF_UI_SEL_ACCEPT;

}
delete edgeListProp;

}
else
{
//Limit the edges to just those of the limiting face
std::vector<Face *> faceArray = selectedEdge->GetFaces();
for (int inx = 0; inx < (int)faceArray.size(); ++inx)
{
if (faceArray[inx] == limitingFace)
{

accept = UF_UI_SEL_ACCEPT;
break;

}
}

}
return accept;

}

//***

//ANGLE FILTER
int SelectionExample::angleFilter(Chamfer *chamferFeature)
{
int accept = UF_UI_SEL_ACCEPT;
PropertyList * angleToggleProp = angleToggle->GetProperties();
//If the angle filter toggle is ON...
// then only accept chamfers of the limiting angle
if (angleToggleProp->GetLogical("Value"))
{
PropertyList *angleLimitProp = angleLimitDouble->GetProperties();
Part *workPart = theSession->Parts()->Work();

ChamferBuilder *chamferBuilder;
chamferBuilder = workPart->Features()-

>CreateChamferBuilder(chamferFeature);
if (chamferBuilder->AngleExp()->Value() != angleLimitProp-

>GetDouble("Value"))
{

accept = UF_UI_SEL_REJECT;
}
chamferBuilder->Destroy();
delete angleLimitProp;

}
delete angleToggleProp;
return accept;

}

//***

//SHARED FACE - return face shared between two edges
Face *SelectionExample::sharedFace(Edge *edge1, Edge *edge2)
{
Face *foundFace = NULL;
std::vector<Face *> faceArray1 = edge1->GetFaces();
std::vector<Face *> faceArray2 = edge2->GetFaces();
for (int inx1 = 0; inx1 < (int)faceArray1.size(); ++inx1)
{
for (int inx2 = 0; inx2 < (int)faceArray2.size(); ++inx2)
{
if (faceArray1[inx1] == faceArray2[inx2])
{

foundFace = faceArray1[inx1];
break;

}
}
if (foundFace != NULL) break;

}
return foundFace;

}

//***

// ADD CHAMFER FEATURE of given angle to given edge
void SelectionExample::addChamfer(Edge *selectedEdge, double angle)

{
try
{

Part *workPart = theSession->Parts()->Work();
Features::Feature *nullFeature = NULL;
Features::ChamferBuilder *chamferBuilder1;

chamferBuilder1 = workPart->Features()-
>CreateChamferBuilder(nullFeature);

chamferBuilder1-
>SetOption(ChamferBuilder::ChamferOptionOffsetAndAngle);

chamferBuilder1-
>SetMethod(ChamferBuilder::OffsetMethodEdgesAlongFaces);

chamferBuilder1->SetFirstOffset("20");
chamferBuilder1->SetSecondOffset("20");
char angleText[25];
sprintf_s(angleText,"%lf",angle);
chamferBuilder1->SetAngle(angleText);
Edge *nullEdge = NULL;
EdgeTangentRule *edgeTangentRule1;
edgeTangentRule1 = workPart->ScRuleFactory()-

>CreateRuleEdgeTangent(selectedEdge, nullEdge, false, 0.5, false);
std::vector<SelectionIntentRule *> rules1(1);
rules1[0] = edgeTangentRule1;
ScCollector *scCollector1;
scCollector1 = workPart->ScCollectors()->CreateCollector();
scCollector1->ReplaceRules(rules1, false);
chamferBuilder1->SetSmartCollector(scCollector1);
Features::Feature *feature1;
feature1 = chamferBuilder1->CommitFeature();
chamferBuilder1->Destroy();

}
catch(exception& ex)
{
SelectionExample::theUI->NXMessageBox()->Show("Error Adding

Chamfer", NXOpen::NXMessageBox::DialogTypeError, ex.what());
}

}

//***

// DELETE OBJECT - add the given object to the delete list
void SelectionExample::deleteObject(NXObject *selectedObject)
{
try
{

std::vector<NXObject *> obj(1);
obj[0] = selectedObject;
int nErrs = theSession->UpdateManager()->AddToDeleteList(obj);
//Report any errors - normally the error list should be scanned

and each error processed
if (nErrs > 0)
{

char errMsg[25];
sprintf_s(errMsg,"nErrs = %d",nErrs);

SelectionExample::theUI->NXMessageBox()->Show("Error Adding To
Delete List",NXMessageBox::DialogTypeError,errMsg);

}
}
catch(exception& ex)
{
SelectionExample::theUI->NXMessageBox()->Show("Error Removing

Chamfers", NXOpen::NXMessageBox::DialogTypeError, ex.what());
}

}

Note:

If a property list reference returned by GetProperties() is not delete then the memory used for the

list will be lost until the dialog is closed.

NX Open for .NET - Selection Blocks

The following code was added to the standard source template generated by the Block Styler for

the example dialog shown above.

Additional Name Space

Imports NXOpen.Features

New Object Properties

Private limitingFace As Face = Nothing 'face to limit edge selection

Initialize Callback - added property initialization

limitingFace = Nothing

Apply Callback - used to add and remove chamfers

'--

'Callback Name: apply_cb
'--

Public Function apply_cb() As Integer

Try

'**

'Add Chamfers to Selected Edges
'Get the chamfer angle and edge selection list from the dialog
Dim creationAngle =

angleDouble.GetProperties().GetDouble("Value")
Dim edges() As TaggedObject =

edgeSelect.GetProperties.GetTaggedObjectVector("SelectedObjects")
'Add a chamfer to each selected edge
For Each selectedEdge As TaggedObject In edges

addChamfer(CType(selectedEdge, Edge), creationAngle)
Next selectedEdge

'**

'Remove Selected Chamfers
'Get the selected chamfers from the dialog
Dim chamfers() As TaggedObject =

chamferSelect.GetProperties.GetTaggedObjectVector("SelectedObjects")
'Set an undo mark for update
Dim undoMark As Session.UndoMarkId
undoMark = theSession.SetUndoMark(Session.MarkVisibility.Visible,

"Remove Chamfers")
'Add the selected chamfers to the delete list
For Each chamferObject As TaggedObject In chamfers

deleteObject(CType(chamferObject, Features.Chamfer))
Next chamferObject
'Update the model to delete the chamfers
Dim nErrs As Integer =

theSession.UpdateManager.DoUpdate(undoMark)
'Report any errors - normally the error list should be scanned

and each error processed
If nErrs > 0 Then

theUI.NXMessageBox.Show("Update Errors",
NXMessageBox.DialogType.Error, "nErrs = " & nErrs.ToString)

End If
Catch ex As Exception

'---- Enter your exception handling code here -----
theUI.NXMessageBox.Show("Apply Error",

NXMessageBox.DialogType.Error, ex.ToString)
End Try
apply_cb = 0

End Function

Update Callback

'--

'Callback Name: update_cb
'--

Public Function update_cb(ByVal block As NXOpen.BlockStyler.UIBlock)

As Integer
Try

If block Is edgeSelect Then
'When face filtering is on, establish a limiting face after

two edges are selected
If faceToggle.GetProperties().GetLogical("Value") Then

Dim edges() As TaggedObject =
edgeSelect.GetProperties.GetTaggedObjectVector("SelectedObjects")

If (edges.Length = 2) Then
limitingFace = sharedFace(CType(edges(0), Edge),

CType(edges(1), Edge))

End If
End If

ElseIf block Is faceToggle Then
'When the face filter is turned on...
' Clear the current edge selection list
If faceToggle.GetProperties().GetLogical("Value") Then

Dim edges(-1) As TaggedObject

edgeSelect.GetProperties().SetTaggedObjectVector("SelectedObjects",
edges)

limitingFace = Nothing
End If

ElseIf block Is angleDouble Then
'---- Enter your code here -----

ElseIf block Is chamferSelect Then
'---- Enter your code here -----

ElseIf block Is angleToggle Then
'When the angle fileter is turned on...
' 1. Clear the current chamfer selection list
' 2. Also, enable/disable the angle limit entry field
If angleToggle.GetProperties().GetLogical("Value") Then

Dim chamfers(-1) As TaggedObject

chamferSelect.GetProperties().SetTaggedObjectVector("SelectedObjects",
chamfers)

angleLimitDouble.GetProperties().SetLogical("Enable", True)
Else

angleLimitDouble.GetProperties().SetLogical("Enable", False)
End If

ElseIf block Is angleLimitDouble Then
' When the angle limit value changes...
' Clear the current chamfer selection list
Dim chamfers(-1) As TaggedObject

chamferSelect.GetProperties().SetTaggedObjectVector("SelectedObjects",
chamfers)

End If
Catch ex As Exception

'---- Enter your exception handling code here -----
theUI.NXMessageBox.Show("Block Styler",

NXMessageBox.DialogType.Error, ex.ToString)
End Try
update_cb = 0

End Function

Filter Callback

'--

'Callback Name: filter_cb

'--

Public Function filter_cb(ByVal block As NXOpen.BlockStyler.UIBlock,
ByVal selectedObject As NXOpen.TaggedObject) As Integer

Dim accept As Integer = NXOpen.UF.UFConstants.UF_UI_SEL_ACCEPT
If block Is edgeSelect Then

'Edge Select Filter
If faceToggle.GetProperties().GetLogical("Value") Then

accept = faceFilter(CType(selectedObject, Edge))
End If

ElseIf block Is chamferSelect Then
'Feature Selection Filter - limit selection to chamfer features
Dim featureObject As Feature = CType(selectedObject, Feature)
If featureObject.FeatureType = "CHAMFER" Then

accept = angleFilter(CType(featureObject, Features.Chamfer))
Else

accept = NXOpen.UF.UFConstants.UF_UI_SEL_REJECT
End If

End If
filter_cb = accept

End Function

New Methods - added to support filtering and feature create/delete

'**

'FACE FILTER
Function faceFilter(ByVal selectedEdge As Edge) As Integer

Dim accept As Integer = NXOpen.UF.UFConstants.UF_UI_SEL_REJECT
'If a limiting face has not been established...
' then use the first two selected edges to establish the limiting

face
' otherwise use the limiting face
If limitingFace Is Nothing Then

'Limit faces to those of the first selected edge
Dim edges() As TaggedObject =

edgeSelect.GetProperties.GetTaggedObjectVector("SelectedObjects")
If edges.Length < 1 Then

accept = NXOpen.UF.UFConstants.UF_UI_SEL_ACCEPT
ElseIf edges.Length = 1 Then

If sharedFace(CType(edges(0), Edge), selectedEdge) IsNot
Nothing Then

accept = NXOpen.UF.UFConstants.UF_UI_SEL_ACCEPT
End If

End If
Else

'Limit the edges to just those of the limiting face
For Each faceObject As Face In selectedEdge.GetFaces()

If faceObject Is limitingFace Then
accept = NXOpen.UF.UFConstants.UF_UI_SEL_ACCEPT
Exit For

End If
Next faceObject

End If
faceFilter = accept

End Function

'**

'ANGLE FILTER
Function angleFilter(ByVal chamferFeature As Features.Chamfer) As

Integer
Dim accept As Integer = NXOpen.UF.UFConstants.UF_UI_SEL_ACCEPT
'If the angle filter toggle is ON...
' then only accept chamfers of the limiting angle
If angleToggle.GetProperties().GetLogical("Value") Then

Dim workPart As Part = theSession.Parts.Work
Dim chamferBuilder As Features.ChamferBuilder
chamferBuilder =

workPart.Features.CreateChamferBuilder(chamferFeature)
If chamferBuilder.AngleExp.Value <>

angleLimitDouble.GetProperties().GetDouble("Value") Then
accept = NXOpen.UF.UFConstants.UF_UI_SEL_REJECT

End If
chamferBuilder.Destroy()

End If
angleFilter = accept

End Function
'**

'SHARED FACE - return face shared between two edges
Function sharedFace(ByVal edge1 As Edge, ByVal edge2 As Edge) As Face

Dim foundFace As Face = Nothing
For Each face1 As Face In edge1.GetFaces()

For Each face2 As Face In edge2.GetFaces()
If face1 Is face2 Then

foundFace = face1
Exit For

End If
Next face2
If foundFace IsNot Nothing Then Exit For

Next face1
Return foundFace

End Function
'**

'ADD CHAMFER FEATURE of given angle to given edge
Sub addChamfer(ByVal selectedEdge As Edge, ByVal angle As Double)

Try
Dim workPart As Part = theSession.Parts.Work

Dim nullFeatures_Feature As Features.Feature = Nothing
Dim chamferBuilder1 As Features.ChamferBuilder
chamferBuilder1 =

workPart.Features.CreateChamferBuilder(nullFeatures_Feature)
chamferBuilder1.Option =

Features.ChamferBuilder.ChamferOption.OffsetAndAngle
chamferBuilder1.Method =

Features.ChamferBuilder.OffsetMethod.EdgesAlongFaces
chamferBuilder1.FirstOffset = "20"
chamferBuilder1.SecondOffset = "20"
chamferBuilder1.Angle = angle.ToString
Dim nullEdge As Edge = Nothing
Dim edgeTangentRule1 As EdgeTangentRule
edgeTangentRule1 =

workPart.ScRuleFactory.CreateRuleEdgeTangent(selectedEdge, nullEdge,
False, 0.5, False) Dim rules1(0) As SelectionIntentRule

rules1(0) = edgeTangentRule1
Dim scCollector1 As ScCollector
scCollector1 = workPart.ScCollectors.CreateCollector()
scCollector1.ReplaceRules(rules1, False)
chamferBuilder1.SmartCollector = scCollector1
Dim feature1 As Features.Feature
feature1 = chamferBuilder1.CommitFeature()
chamferBuilder1.Destroy()

Catch ex As Exception
theUI.NXMessageBox.Show("Error Adding Chamfer",

NXMessageBox.DialogType.Error, ex.ToString)
End Try

End Sub

'**

'DELETE OBJECT - add the given object to the delete list
Private Sub deleteObject(ByVal selectedObject As NXObject)

Try
Dim obj(0) As NXObject
obj(0) = selectedObject
Dim nErrs As Integer =

theSession.UpdateManager.AddToDeleteList(obj)
'Report any errors - normally the error list should be scanned

and each error processed
If nErrs > 0 Then

theUI.NXMessageBox.Show("Add To Delete Errors",
NXMessageBox.DialogType.Error, "nErrs = " & nErrs.ToString)

End If
Catch ex As Exception

theUI.NXMessageBox.Show("Error Removing Chamfer",
NXMessageBox.DialogType.Error, ex.ToString)

End Try

End Sub

NX Open for Java - Selection Blocks

The following code was added to the standard source template generated by the Block Styler for

the example dialog shown above.

Additional Imports

import nxopen.features.*;

New Property

private Face limitingFace; //face to limit edge selection

Initialize Callback - added property initialization

//Faced used to limit edge selection
limitingFace = null;

Apply Callback - used to add and remove chamfers

//---

//Callback Name: apply
//Following callback is associated with the "theDialog" Block.
//---

public int apply() throws NXException, RemoteException
{

try
{

//Access the required property lists
PropertyList angleProp = angleDouble.getProperties();
PropertyList edgeListProp = edgeSelect.getProperties();
PropertyList chamferListProp = chamferSelect.getProperties();

//***

// Add Chamfers to Selected Edges
//Get the chamfer angle and edge selection list from the dialog

double creationAngle = angleProp.getDouble("Value");
TaggedObject[] edges =

edgeListProp.getTaggedObjectVector("SelectedObjects");
// Add a chamfer to each selected edge
for (int inx = 0; inx < edges.length; ++inx)
{

addChamfer((Edge)edges[inx], creationAngle);
}

//***

// Remove Selected Chamfers
// Get the selected chamfers from the dialog

TaggedObject[] chamfers =
chamferListProp.getTaggedObjectVector("SelectedObjects");

//Set an undo mark for update
int undoMark =

theSession.setUndoMark(Session.MarkVisibility.VISIBLE, "Remove
Chamfers");

// Add the selected chamfers to the delete list
for (int inx = 0; inx < chamfers.length; ++inx)
{

deleteObject((Chamfer) chamfers[inx]);
}
//Update the model to delete the chamfers
int nErrs = theSession.updateManager().doUpdate(undoMark);
// Report any errors - normally the error list should be scanned

and each error processed
if (nErrs > 0)
{

String errMsg = "nErrs = " + nErrs;
theUI.nxmessageBox().show("Update

Errors",nxopen.NXMessageBox.DialogType.INFORMATION,errMsg);
}
//Cleanup memory
angleProp.dispose();
edgeListProp.dispose();
chamferListProp.dispose();

}
catch(Exception ex)
{

//---- Enter your exception handling code here -----
theUI.nxmessageBox().show("Block Styler",

nxopen.NXMessageBox.DialogType.INFORMATION, ex.getMessage());
}
return 0;

}

Update Callback

//---

//Callback Name: update
//Following callback is associated with the "theDialog" Block.
//---

public int update(nxopen.blockstyler.UIBlock block) throws

NXException, RemoteException
{

try
{

if(block == edgeSelect)
{

PropertyList faceToggleProp = faceToggle.getProperties();

//When face filtering is on, establish a limiting face after
two edges are selected

if (faceToggleProp.getLogical("Value"))
{

PropertyList edgeListProp = edgeSelect.getProperties();
TaggedObject[] edges =

edgeListProp.getTaggedObjectVector("SelectedObjects");
if (edges.length == 2)
{

limitingFace = sharedFace((Edge)edges[0],(Edge)edges[1]);
}
edgeListProp.dispose();

}
faceToggleProp.dispose();

}
else if(block == faceToggle)
{

PropertyList faceToggleProp = faceToggle.getProperties();
//When the face filter is turned on...
// Clear the current edge selection list
if (faceToggleProp.getLogical("Value"))
{

PropertyList edgeListProp = edgeSelect.getProperties();
TaggedObject[] edges = new TaggedObject[0];

edgeListProp.setTaggedObjectVector("SelectedObjects",edges);
limitingFace = null;
edgeListProp.dispose();

}
faceToggleProp.dispose();

}
else if(block == angleDouble)
{

//---------Enter your code here-----------
}
else if(block == chamferSelect)
{

//---------Enter your code here-----------
}
else if(block == angleToggle)
{

PropertyList angleToggleProp = angleToggle.getProperties();
PropertyList angleLimitProp =

angleLimitDouble.getProperties();
//When the angle filter is turned on...
// 1. Clear the current chamfer selection list
// 2. Also, enable/disable the angle limit entry field
if (angleToggleProp.getLogical("Value"))
{

PropertyList chamferListProp =
chamferSelect.getProperties();

TaggedObject[] chamfers = new TaggedObject[0];

chamferListProp.setTaggedObjectVector("SelectedObjects",chamfers);
angleLimitProp.setLogical("Enable",true);
chamferListProp.dispose();

}
else
{

angleLimitProp.setLogical("Enable", false);
}
angleToggleProp.dispose();
angleLimitProp.dispose();

}
else if(block == angleLimitDouble)
{

// When the angle limit value changes...
// Clear the current chamfer selection list
PropertyList chamferListProp = chamferSelect.getProperties();

TaggedObject[] chamfers = new TaggedObject[0];

chamferListProp.setTaggedObjectVector("SelectedObjects",chamfers);
chamferListProp.dispose();

}
}
catch(Exception ex)
{

//---- Enter your exception handling code here -----
theUI.nxmessageBox().show("Block Styler",

nxopen.NXMessageBox.DialogType.INFORMATION, ex.getMessage());
}
return 0;

}

Filter Callback

//---

//Callback Name: filter
//Following callback is associated with the "theDialog" Block.
//---

public int filter(nxopen.blockstyler.UIBlock block,

nxopen.TaggedObject selectedObject) throws NXException, RemoteException
{

int accept = nxopen.uf.UFConstants.UF_UI_SEL_ACCEPT;
if (block == edgeSelect)
{
PropertyList faceToggleProp = faceToggle.getProperties();
//Edge Select Filter

if (faceToggleProp.getLogical("Value"))
{
accept = faceFilter((Edge)selectedObject);

}
faceToggleProp.dispose();

}
else if (block == chamferSelect)
{

//Feature Selection Filter - limit selection to chamfer features
Feature featureObject = (Feature)selectedObject;
if (featureObject.featureType().equals("CHAMFER"))
{
accept = angleFilter((Chamfer)featureObject);

}
else
{
accept = nxopen.uf.UFConstants.UF_UI_SEL_REJECT;

}
}
return accept;

}

New Methods - added to support filtering and feature create/delete

//***

//FACE FILTER
private int faceFilter(Edge selectedEdge) throws NXException,

RemoteException
{

int accept = nxopen.uf.UFConstants.UF_UI_SEL_REJECT;
//If a limiting face has not been established...
// then use the first two selected edges to establish the limiting

face
// otherwise use the limiting face
if (limitingFace == null)
{

//Limit faces to those of the first selected edge
PropertyList edgeListProp = edgeSelect.getProperties();
TaggedObject edges[] =

edgeListProp.getTaggedObjectVector("SelectedObjects");
if (edges.length < 1)
{

accept = nxopen.uf.UFConstants.UF_UI_SEL_ACCEPT;
}
else if (edges.length == 1)
{
if (sharedFace((Edge)edges[0],selectedEdge) != null) accept =

nxopen.uf.UFConstants.UF_UI_SEL_ACCEPT;
}

edgeListProp.dispose();
}
else
{

//Limit the edges to just those of the limiting face
Face faceArray[] = selectedEdge.getFaces();
for (int inx = 0; inx < faceArray.length; ++inx)
{

if (faceArray[inx] == limitingFace)
{

accept = nxopen.uf.UFConstants.UF_UI_SEL_ACCEPT;
break;

}
}

}
return accept;

}

//***

//ANGLE FILTER
private int angleFilter(Chamfer chamferFeature) throws NXException,

RemoteException
{

int accept = nxopen.uf.UFConstants.UF_UI_SEL_ACCEPT;
PropertyList angleToggleProp = angleToggle.getProperties();
//If the angle filter toggle is ON...
// then only accept chamfers of the limiting angle
if (angleToggleProp.getLogical("Value"))
{

PropertyList angleLimitProp = angleLimitDouble.getProperties();
Part workPart = theSession.parts().work();
ChamferBuilder chamferBuilder;
chamferBuilder =

workPart.features().createChamferBuilder(chamferFeature);
if (Double.compare(chamferBuilder.angleExp().value(),

angleLimitProp.getDouble("Value")) !=0)
{

accept = nxopen.uf.UFConstants.UF_UI_SEL_REJECT;
}
chamferBuilder.destroy();
angleLimitProp.dispose();

}
angleToggleProp.dispose();
return accept;

}

//***

//SHARED FACE - return face shared between two edges
private Face sharedFace(Edge edge1, Edge edge2) throws NXException,

RemoteException
{

Face foundFace = null;
Face faceArray1[] = edge1.getFaces();
Face faceArray2[] = edge2.getFaces();
for (int inx1 = 0; inx1 < faceArray1.length; ++inx1)
{

for (int inx2 = 0; inx2 < faceArray2.length; ++inx2)
{

if (faceArray1[inx1] == faceArray2[inx2])
{

foundFace = faceArray1[inx1];
break;

}
}
if (foundFace != null) break;

}
return foundFace;

}
//***

//ADD CHAMFER FEATURE of given angle to given edge
private void addChamfer(Edge selectedEdge, double angle) throws

NXException, RemoteException
{

try
{

Part workPart = theSession.parts().work();
Feature nullFeature = null;
ChamferBuilder chamferBuilder1;
chamferBuilder1 =

workPart.features().createChamferBuilder(nullFeature);

chamferBuilder1.setOption(ChamferBuilder.ChamferOption.OFFSET_AND_ANGLE
);

chamferBuilder1.setMethod(ChamferBuilder.OffsetMethod.EDGES_ALONG_FACES
);

chamferBuilder1.setFirstOffset("20");
chamferBuilder1.setSecondOffset("20");
String angleText = "" + angle;
chamferBuilder1.setAngle(angleText);
Edge nullEdge = null;
EdgeTangentRule edgeTangentRule1;
edgeTangentRule1 =

workPart.scRuleFactory().createRuleEdgeTangent(selectedEdge, nullEdge,
false, 0.5, false);

SelectionIntentRule[] rules1 = new SelectionIntentRule[1];
rules1[0] = edgeTangentRule1;
ScCollector scCollector1;
scCollector1 = workPart.scCollectors().createCollector();
scCollector1.replaceRules(rules1, false);
chamferBuilder1.setSmartCollector(scCollector1);
Feature feature1;
feature1 = chamferBuilder1.commitFeature();
chamferBuilder1.destroy();

}
catch(Exception ex)
{

theUI.nxmessageBox().show("Error Adding Chamfer",
nxopen.NXMessageBox.DialogType.INFORMATION, ex.getMessage());

}
}

//***

//DELETE OBJECT - add the given object to the delete list
private void deleteObject(NXObject selectedObject) throws

NXException, RemoteException
{

try
{

NXObject[] obj = new NXObject[1];
obj[0] = selectedObject;
int nErrs = theSession.updateManager().addToDeleteList(obj);
//Report any errors - normally the error list should be scanned

and each error processed
if (nErrs > 0)
{

String errMsg = "nErrs = " + nErrs;
theUI.nxmessageBox().show("Error Adding To Delete

List",nxopen.NXMessageBox.DialogType.INFORMATION,errMsg);
}

}
catch(Exception ex)
{

theUI.nxmessageBox().show("Error Removing Chamfer",
nxopen.NXMessageBox.DialogType.INFORMATION, ex.getMessage());

}
}

Note:

If a property list reference returned by getProperties() is not disposed then the memory used for the

list will be lost until the dialog is closed.

Block Styler Update Callback

The Update callback is called anytime the user changes the value of any dialog block. By adding

your own code to this callback you can customize the runtime behavior of your dialog. This

section shows how to determine which block triggered the call to the Update callback and shows

examples of how to access and set property values during the update callback. Other update

examples can be found in Block Styler Selection Blocks.

The Update callback is an optional callback. Many dialogs simply collect values and options from

a user and do not require the NX Open program to actively respond to specific user inputs. In

these cases the Apply callback will simply access the current dialog property values to determine

the desired actions.

Note:

To reduce the amount of coding required to manage a dialog and to enforce consistent behavior

throughout NX, many interaction between the user and a dialog are handled automatically by NX

and do not generate calls to the Update callback.

Determining Which Block Called the Update Callback

The Update callback is passed a reference to the block that was changed and thus produced the

update event. To determine which block caused the even, just compare the block object that is

passed as input to the Update callback to the block object that is established in the Initialize

callback (see Dialog and Block Properties for a discussion of the block objects).

If an Update callback is requested when the dialog is saved then the template code for the

Update callback will include an IF-THEN-ELSE block that is doing the necessary compares to

determine which block causes the update event. To customize the dialogs actions just add your

desired code to the block within the IF-THEN-ELSE that matches the block actions you are

customizing.

Update Callback - Language Specific Details

The following language specific code examples show an Update callback that has been

customized to manage the following dialog.

This dialog is used to build a string that is shown in the middle of the dialog in the string block

labeled "Output String". The output string is a result of concatenating the input string with a

number set by a slider bar. The number is optionally included in the output string depending on

the state of the "Include Number" toggle block.

The Update callback shown in the examples has added code the IF-THEN-ELSE block that was

contained in the original template code generated by the Block Styler. The IF-THEN-ELSE block

contains a section to handle events from all of the blocks in the dialog. Each section will perform

the following operation. Note that a method (updateOutputString) has been added by the

programmer to perform the operation of building the output string and updating the output string

block in the dialog. This method is also shown in the examples.

Block Update Event Action

Input String Call updateOutputString()

Include Number Toggle Call updateOutputString()

Number Call updateOutputString()

Output String Nothing (this block is disabled and is only used for
display)

Lock Input String
Toggle

Enable or disable the input string block

Lock Number Toggle Enable or disable the number block

NX Open for C++

NX Open for .NET

NX Open for Java
NX Open for C++ - Dialog and Block Properties

//--

// updateOutputString() - copies the input string to the output string
and
// optionally concatenates the number to the output string
//--

void updateExample::updateOutputString()
{
try
{
//Obtain the block's property lists
NXOpen::BlockStyler::PropertyList *inputStringProp = inputString-

>GetProperties();
NXOpen::BlockStyler::PropertyList *outputStringProp = outputString-

>GetProperties();

NXOpen::BlockStyler::PropertyList *includeNumberProp = includeNumber-
>GetProperties();

NXOpen::BlockStyler::PropertyList *numberProp = number-
>GetProperties();

//Get the input string and establish an empty number string
NXOpen::NXString inputText = inputStringProp->GetString("Value");
NXOpen::NXString numberText = "";
//If the include number toggle is ON (true)
// then get the number and create a string for it
if (includeNumberProp->GetLogical("Value"))
{
int numberValue = numberProp->GetInteger("Value");
char textBuff[25];
sprintf_s(textBuff,"%d",numberValue);
numberText += " - ";
numberText += textBuff;

}
//Set the output string to the concatenated input string and optional

number string
outputStringProp->SetString("Value", inputText + numberText);
//Clean up memory
delete inputStringProp;
delete outputStringProp;
delete includeNumberProp;
delete numberProp;

}
catch (exception &ex)
{
updateExample::theUI->NXMessageBox()->Show("Error Updating Output

String", NXOpen::NXMessageBox::DialogTypeError, ex.what());
}

}
//--

//Callback Name: update_cb
//--

int updateExample::update_cb(NXOpen::BlockStyler::UIBlock* block)
{
try
{
//Get the block's property lists
NXOpen::BlockStyler::PropertyList *inputStringProp = inputString-

>GetProperties();
NXOpen::BlockStyler::PropertyList *numberProp = number-

>GetProperties();
NXOpen::BlockStyler::PropertyList *lockStringProp = lockString-

>GetProperties();

NXOpen::BlockStyler::PropertyList *lockNumberProp = lockNumber-
>GetProperties();

//Any changes to the input string, number, or the include number
toggle

// could result in a new output string
if (block == inputString)
{
updateOutputString();

}
else if (block == includeNumber)
{
updateOutputString();

}
else if (block == number)
{
updateOutputString();

}
else if (block == outputString)
{
//The output string block is disabled and only used for display

}
else if (block == lockString)
{
//Enable or disable the input string block based on the state
//of the string lock toggle block
inputStringProp->SetLogical("Enable", !lockStringProp-

>GetLogical("Value"));
}
else if (block == lockNumber)
{
//Enable or disable the number block based on the state
//of the number lock toggle block
numberProp->SetLogical("Enable", !lockNumberProp-

>GetLogical("Value"));
}
//Free memory
delete inputStringProp;
delete numberProp;
delete lockStringProp;
delete lockNumberProp;

}
catch (exception &ex)
{
//---- Enter your exception handling code here -----
updateExample::theUI->NXMessageBox()->Show("Block Styler",

NXOpen::NXMessageBox::DialogTypeError, ex.what());
}
return 0;

}

Note:

If the property list reference returned by GetProperties() is not delete then the memory used for the

list will be lost until the dialog is closed.

NX Open for .NET - Dialog and Block Properties

'--

' updateOutputString() - copies the input string to the output
string and

' optionally concatenates the number to the
output string

'--

Public Sub updateOutputString()
Try

'Get the input string and establish an empty number string
Dim inputText As String =

inputString.GetProperties().GetString("Value")
Dim numberText As String = ""
'If the include number toggle is ON (true)
' then get the number and create a string for it
If includeNumber.GetProperties().GetLogical("Value") Then

Dim numberValue As Integer =
number.GetProperties().GetInteger("Value")

numberText = " - " & numberValue.ToString
End If
'Set the output string to the concatenated input string and

optional number string
outputString.GetProperties().SetString("Value", inputText &

numberText)
Catch ex As Exception

theUI.NXMessageBox.Show("Error Updating Output String",
NXMessageBox.DialogType.Error, ex.ToString)

End Try
End Sub
'--

'Callback Name: update_cb
'--

Public Function update_cb(ByVal block As

NXOpen.BlockStyler.UIBlock) As Integer
Try

'Any changes to the input string, number, or the include
number toggle

' could result in a new output string
If block Is inputString Then

updateOutputString()
ElseIf block Is includeNumber Then

updateOutputString()
ElseIf block Is number Then

updateOutputString()
ElseIf block Is outputString Then

'The output string block is disabled and only used for
display

ElseIf block Is lockString Then
'Enable or disable the input string block based on the

state
'of the string lock toggle block
inputString.GetProperties().SetLogical("Enable", _

Not
lockString.GetProperties().GetLogical("Value"))

ElseIf block Is lockNumber Then
'Enable or disable the number block based on the state
'of the number lock toggle block
number.GetProperties().SetLogical("Enable", _

Not
lockNumber.GetProperties().GetLogical("Value"))

End If
Catch ex As Exception

'---- Enter your exception handling code here -----
theUI.NXMessageBox.Show("Block Styler",

NXMessageBox.DialogType.Error, ex.ToString)
End Try
update_cb = 0

End Function

Note:

.NET automatically handles memory management required for the property lists returned by

GetProperties().

NX Open for Java - Dialog and Block Properties

//---

//updateOutputString() - copies the input string to the output string
and

//optionally concatenates the number to the output string
//---

void updateOutputString() throws NXException, RemoteException
{

try
{

//Obtain the block's property lists
PropertyList inputStringProp = inputString.getProperties();
PropertyList outputStringProp = outputString.getProperties();
PropertyList includeNumberProp = includeNumber.getProperties();
PropertyList numberProp = number.getProperties();
//Get the input string and establish an empty number string

String inputText = inputStringProp.getString("Value");
String numberText = "";
//If the include number toggle is ON (true)
// then get the number and create a string for it
if (includeNumberProp.getLogical("Value"))
{

int numberValue = numberProp.getInteger("Value");
numberText = " - " + numberValue;

}
//Set the output string to the concatenated input string and

optional number string
outputStringProp.setString("Value", inputText + numberText);
//Clean up memory
inputStringProp.dispose();
outputStringProp.dispose();
includeNumberProp.dispose();
numberProp.dispose();

}
catch (Exception ex)
{

theUI.nxmessageBox().show("Error Updating Output String",
nxopen.NXMessageBox.DialogType.INFORMATION, ex.getMessage()); }

}
//---

//Callback Name: update
//---

public int update(nxopen.blockstyler.UIBlock block) throws

NXException, RemoteException
{

try
{

//Get the block's property lists
PropertyList inputStringProp = inputString.getProperties();
PropertyList numberProp = number.getProperties();
PropertyList lockStringProp = lockString.getProperties();
PropertyList lockNumberProp = lockNumber.getProperties();

//Any changes to the input string, number, or the include number
toggle

// could result in a new output string
if (block == inputString)
{

updateOutputString();
}
else if (block == includeNumber)
{

updateOutputString();
}

else if (block == number)
{

updateOutputString();
}
else if (block == outputString)
{

//The output string block is disabled and only used for display
}
else if (block == lockString)
{

//Enable or disable the input string block based on the state
//of the string lock toggle block
inputStringProp.setLogical("Enable",

!lockStringProp.getLogical("Value"));
}
else if (block == lockNumber)
{

//Enable or disable the number block based on the state
//of the number lock toggle block
numberProp.setLogical("Enable",

!lockNumberProp.getLogical("Value"));
}
//Free memory
inputStringProp.dispose();
numberProp.dispose();
lockStringProp.dispose();
lockNumberProp.dispose();

}
catch(Exception ex)
{

theUI.nxmessageBox().show("Block Styler",
nxopen.NXMessageBox.DialogType.INFORMATION, ex.getMessage());

}
return 0;

}

UI Styler

The UI styler is a tool to design NX dialogs interactively. Starting NX6, Block Styler with many

added capabilities is available for third-party developers interested in designing NX style dialogs.

UI styler guide explains step by step details on how to create a dialog using the User Interface

Styler application. File→Save on the dialog also saves automatically generated code to interact

with the dialog in the desired automation language.

Overview

This sections lists the steps one should follow to embed a UI styler dialog in an interactive

application. For detailed information each step, refer the UI styler guide.

1. Create the dialog with UI Styler interactive tools - See Building a Dialog chapter in the UI

styler guide

2. Associate dialog items with callback - Callbacks are added to dialog at design time

interactively in UI styler. Callbacks depend on type of dialog item, a push button item will

have a activate callback, a radio box will have a value changed callback. Give your own

callback name, this callback will be registered with the dialog and the code generation will

create a place holder where you add your own logic for the callback.

3. Save the dialog - This also saves the template code in the desired language

4. Copy the dialog file to appropriate location - see How NX finds application files

5. Add your code to all dialog item callbacks.

6. Add your code to dialog callbacks like apply, OK, cancel, post constructor

7. Associate the dialog with a menu button or define a user exit for dialog execution - If the

dialog is invoked directly through the menu button, then register the dialog first with menu

file using RegisterWithUiMenu() method on the dialog.

8. Compile and link your application

9. Invoke the dialog through a menu button or perform the interactive NX action which will

invoke the user exit

Selection in UI Styler

You can enable selection for your UI styler dialog by setting up selection filters and callbacks in

the dialog constructor callback. All UI styler dialogs provide access to a selection handle. You

can set up filter to allow selection of only certain types of objects and then register a selection

callback to collect all valid selected objects and act on them.

When a UI styler dialog is active and the user moves the cursor over any displayable object on

screen, the filter callback registered with the dialog is called. The filter callback uses the selection

mask you set up in the constructor and provides the possible selectable object for processing.

You can decide if the object is valid for your application and accept it or reject it. If you accept the

object, then the registered selection callback is invoked for further processing.

The code snippet below sets up a selection mask to allow edges. The filter callback filters out

non-linear edges and only accepts linear edges as valid objects.

Also see the example code in

UGII_BASE_DR\ugopen\NXOpenSampleApplications\<language>\Selection_UIStyler

Selection Code Snippet - Language Specific details

VB .NET

C#

Java

C++
VB .NET

'Get the selection Handle for this dialog
selectH = changeDialog.GetSelectionHandle()

'Set up Selection Mask - Allow only solid edges

Dim selectionMask_array(0) As NXOpen.Selection.MaskTriple
With selectionMask_array(0)

.Type = NXOpen.UF.UFConstants.UF_solid_type

.Subtype = NXOpen.UF.UFConstants.UF_solid_edge_subtype

.SolidBodySubtype =
NXOpen.UF.UFConstants.UF_UI_SEL_FEATURE_ANY_EDGE
End With

'Following sets the Selection mask for Edge
UI.GetUI().SelectionManager.SetSelectionMask(selectH,
NXOpen.Selection.SelectionAction.ClearAndEnableSpecific,
selectionMask_array)

'Following sets the Selection and Filter callbacks which are invoked
during selection
UI.GetUI().SelectionManager.SetSelectionCallbacks(selectH, AddressOf
filter_cb, AddressOf sel_cb)

'Filter callback to filter out non-linear edges and select only linear
ones
Public Function filter_cb(ByVal selectedObject As NXOpen.NXObject,
ByVal selectionMask_array As NXOpen.Selection.MaskTriple, ByVal
selectHandle As SelectionHandle) As Integer

Try
If (edge.SolidEdgeType=Edge.EdgeType.Linear)

Then filter_cb = NXOpen.UF.UFConstants.UF_UI_SEL_ACCEPT
Else

filter_cb =
NXOpen.UF.UFConstants.UF_UI_SEL_REJECT

End If
Catch ex As NXException

' ---- Enter your exception handling code
here -----

MsgBox(ex.Message)
End Try

End Function

'Following is Selection Callback
Public Function sel_cb(ByVal selectedObjects As NXObject(),

ByVal deselectedObjects() As NXObject, ByVal selectHandle As
SelectionHandle) As Integer

Try
For Each selObj As NXObject In

selectedObjects
'----do something----
Next
For Each deselObj As NXObject In

deselectedObjects
'-----do something-----

Next

Catch ex As NXException
' ---- Enter your exception handling code

here -----
MsgBox(ex.Message)

End Try
'Continue the dialog
sel_cb = NXOpen.UIStyler.DialogState.ContinueDialog

End Function

C#

//Get the selection Handle for this dialog
selectH = changeDialog.GetSelectionHandle();

//Set up Selection Mask - Allow only solid edges
NXOpen.Selection.MaskTriple[] selectionMask_array = new
NXOpen.Selection.MaskTriple[1];
{

selectionMask_array(0).Type =
NXOpen.UF.UFConstants.UF_solid_type;

selectionMask_array(0).Subtype =
NXOpen.UF.UFConstants.UF_solid_edge_subtype;

selectionMask_array(0).SolidBodySubtype =
NXOpen.UF.UFConstants.UF_UI_SEL_FEATURE_ANY_EDGE;
}

//Following sets the Selection mask for Edge
UI.GetUI().SelectionManager.SetSelectionMask(selectH,
NXOpen.Selection.SelectionAction.ClearAndEnableSpecific,
selectionMask_array);

//Following sets the Selection and Filter callbacks which are invoked
during selection
UI.GetUI().SelectionManager.SetSelectionCallbacks(selectH, filter_cb,
sel_cb);

//Filter callback to filter out non-linear edges and select
only linear ones

public int filter_cb(NXOpen.NXObject selectedObject,
NXOpen.Selection.MaskTriple selectionMask_array, SelectionHandle
selectHandle)

{
int functionReturnValue = 0;
try {

if ((edge.SolidEdgeType ==
Edge.EdgeType.Linear)) {

functionReturnValue =
NXOpen.UF.UFConstants.UF_UI_SEL_ACCEPT;

}

else {
functionReturnValue =

NXOpen.UF.UFConstants.UF_UI_SEL_REJECT;
}

}
catch (NXException ex) {

// ---- Enter your exception handling code
here -----

}
return functionReturnValue;

}
//Following is Selection Callback

public int sel_cb(NXObject[] selectedObjects, NXObject[]
deselectedObjects, SelectionHandle selectHandle)

{
try {

foreach (NXObject selObj in selectedObjects)
{

//----do something----
}
foreach (NXObject deselObj in

deselectedObjects) {
//-----do something-----

}
}

catch (NXException ex) {
// ---- Enter your exception handling code

here -----
}
return NXOpen.UIStyler.DialogState.ContinueDialog;
//Continue the dialog

}

Java

SelectionHandle selectH=CHANGEDialog.getSelectionHandle();
Selection.MaskTriple selection_MaskArray[]=new Selection.MaskTriple[1];

selection_MaskArray[0] = new Selection.MaskTriple();

selection_MaskArray[0].type=UFConstants.UF_solid_type;

selection_MaskArray[0].subtype=UFConstants.UF_solid_body_subtype;

selection_MaskArray[0].solidBodySubtype=UFConstants.UF_UI_SEL_FEATU
RE_ANY_EDGE;

// Following sets the Selection mask for Edge
theUI.selectionManager().setSelectionMask(selectH,Selection.SelectionAc
tion.CLEAR_AND_ENABLE_SPECIFIC,selection_MaskArray);

// Following sets the Selection and Filter callbacks which are invoked
during selection
theUI.selectionManager().setSelectionCallbacks(selectH,this,this);

public int selectionCallback(NXObject[] selectedObjects, NXObject[]
deSelectedObjects, SelectionHandle selectH) throws NXException,
RemoteException
{

try{

if(selectedObjects!=null)
{

for(int
i=0;i<selectedObjects.length;i++)

{
//do something

}
}
if(deSelectedObjects!=null)
{

for(int
j=0;j<deSelectedObjects.length;j++)

{
//do something

}
}

}
catch(NXException ex)
{

// ---- Enter your exception handling
code here -----

theUI.nxmessageBox().show("UI
Styler", nxopen.NXMessageBox.DialogType.ERROR, ex.getMessage());

}
return 0;

}
// Following is Filter Callback - This function gets invoked during
selection.
// Here, we can put a logic to accept or reject the selected entities

public int filterCallback(NXObject selectedObject, MaskTriple
selectionMask, SelectionHandle arg2) throws NXException,
RemoteException
{

Edge edge = (Edge)SelectedObject;
if(edge.solidEdgeType==Edge.edgeType.LINEAR)
{

return UFConstants.UF_UI_SEL_ACCEPT;
}
else
{ return UFConstants.UF_UI_SEL_REJECT;
}

}

C++

// Get the selection handle
NXOpen::SelectionHandle *selectH = changeDialog-

>GetSelectionHandle();

//Setup the Selection Mask
std::vector<NXOpen::Selection::MaskTriple> selectionMask_array;
NXOpen::Selection::MaskTriple
selectionMask_arrayElem;
selectionMask_arrayElem.Type = UF_solid_type;
selectionMask_arrayElem.Subtype = UF_solid_edge_subtype;
selectionMask_arrayElem.SolidBodySubtype =

UF_UI_SEL_FEATURE_ANY_EDGE;
selectionMask_array.push_back(selectionMask_arrayElem);

//Set the Selection Mask in the SelectionManager

UI::GetUI()->SelectionManager()->SetSelectionMask(selectH,
NXOpen::Selection::SelectionActionClearAndEnableSpecific,
selectionMask_array);

//Set the Selection callbacks in the SelectionManager
UI::GetUI()->SelectionManager()->SetSelectionCallbacks(selectH,

make_callback(&filter_cb), make_callback(&sel_cb));
//---

//------------------------- UIStyler Callback Functions ---------------

//---

//---

// Callback Name: sel_cb
// Following callback is associated with the "changeDialog" Styler
item.
// Input:
// 1. selectedObject - vector of selected object
// 2. deselectedObjects - vector of deselected object
// 3. selectHandle SelectionHandle
//---

int sel_cb(std::vector<NXOpen::NXObject *> selectedObject,
std::vector<NXOpen::NXObject *> deselectedObjects,
NXOpen::SelectionHandle* selectHandle)
{

try
{

std::vector<NXOpen::NXObject *>::iterator selIter;
for (selIter = selectedObject.begin(); selIter !=

selectedObject.end(); selIter++)
{

//do something
}
for (selIter = deselectedObjects.begin(); selIter !=

deselectedObjects.end(); selIter++)
{

//do something
}

}
catch (const NXOpen::NXException& ex)
{

// ---- Enter your exception handling code here -----
UIStylerSelectionExample::theUI->NXMessageBox()->Show("UI

Styler", NXOpen::NXMessageBox::DialogTypeError, ex.Message());
}
// Callback acknowledged, do not terminate dialog
// A return value of NXOpen::UIStyler::DialogStateExitDialog will

not be accepted
// for this callback type. You must respond to your apply button.
return NXOpen::UIStyler::DialogStateContinueDialog;

}
//---

// Callback Name: filter_cb
// Input:
// 1. selectedObject - pointer to NXOpen::NXObject object
// 2. selectionMask_array - NXOpen::Selection::MaskTriple object
// 3. selectHandle SelectionHandle
//---

int filter_cb(NXOpen::NXObject *selectedObject,
NXOpen::Selection::MaskTriple* selectionMask_array,
NXOpen::SelectionHandle* selectHandle)
{

try
{

Edge edge = (Edge)SelectedObject;
if(edge.SolidEdgeType==Edge.EdgeTypeLinear)

return UF_UI_SEL_REJECT;
else

return UF_UI_SEL_ACCEPT;
}
catch (const NXOpen::NXException& ex)
{

// ---- Enter your exception handling code here -----
UIStylerSelectionExample::theUI->NXMessageBox()->Show("UI

Styler", NXOpen::NXMessageBox::DialogTypeError, ex.Message());
}
// Callback acknowledged, do not terminate dialog
// A return value of NXOpen::UIStyler::DialogStateExitDialog will

not be accepted
// for this callback type. You must respond to your apply button.
return NXOpen::UIStyler::DialogStateContinueDialog;

}

Microsoft Windows Forms

Using Winforms with NX

To write traditional GUI applications using Microsoft .NET you'll use Windows Forms. Windows

Forms are a style of application built around classes in the .NET Framework. They have a

programming model all their own that is cleaner, more robust, and more consistent than models

based on the Win32 API or MFC, and they run in the managed environment of the .NET

Common Language Runtime (CLR).

NX Open .NET applications can use WinForms to create the UI which works with NX but should

heed to following suggestions:

.NET programming allows for two different type of form methods

.Show() which is modeless and ShowDialog() which is modal.

Care should be taken when selecting the method to use.

form.Show() Everything in NX is still running.

form.ShowDialog()
Will not return to NX unless application triggers to do so since this is modal dialog
behavior.

Unload Options

If the application is using Show() method to display a winform, then it should NOT use

UnloadImmediately to unload the application. For more information on unload options, see

Unloading NX Open Applications

User Defined Objects

UDO Overview
Sample Code
UDO Name
Free Form Data
Convertible Data
Links to NX Objects
UDO Owning Link
Events for UDOs
Display
Selection
Update
Delete
Edit
Information
UDO Status
Automatic Loading at Startup
UDO Features

UDO Overview

User Defined Objects (UDOs) allow you to add your own custom objects inside of NX to

maximize your productivity. You use a UDO when you need an object that does not already exist

in NX. You define the data stored in the UDO, and you define it's behavior in NX.

Warning:

It is important to ensure that the required libraries containing the UDO's class and defined

behaviors (ie callbacks, and properties) are present in the NX Session before opening a part that

contains a UDO. By default NX will not issue any warning or notification about such missing

libraries. The required libraries can be automatically loaded into NX during system initialization.
UDOs contain customized data including:

∑ UDO Name - A UDO class name specifier.

∑ Free Form Data - May consist of integers, doubles, and strings.

∑ Convertible Data - May consist of lengths, areas, and volumes.

∑ Links to NX Objects - There are five different types of links.
UDO behavior inside NX is customized by implementing the following callback
methods:

∑ Display- draws the UDO on the screen via primitive shapes like points, lines, arcs, curves,

and facets. If you don't implement this callback - the UDO will be invisible.

∑ Attention Point - defines the attention point of the UDO (ie where we place temporary notes

about the object - such as the numbers drawn on objects after using Information→Object). It

is recommended that you use the same method for attention point as used for display. See

display section below for more details.

∑ Fit - defines the boundaries of the UDO. The boundaries of each object in the part (including

UDOs) are evaluated when you select View→Operation→Fit. It is recommended that you

used the same method for fit as used for display. See display section below for more details.

∑ Selection - defines regions of space on the screen used to select the UDO. Note: the

selection method should be the same method used for display, so that the set of points

drawn for the UDO are also the same points that the mouse must hover over to select the

UDO. If you implement a different method, you could theoretically have invisible points on

the screen that allow you to select the UDO - this is not recommended. Also note that you

can add and remove the UDO class from the Type list of the class selection dialog, so simply

implementing this method does not mean your UDO is selectable.

∑ Update - allows the UDO to update whenever the UDO's linked object(s) goes through

update (note execution of this method is dependent on the link type used).

∑ Delete - allows the UDO to do cleanup whenever the UDO's linked object(s) have been

deleted (note execution of this method is dependent on the link type used).

∑ Edit - invoked whenever the user attempts to edit the UDO (either by Edit→User Defined

Object or by right clicking on the UDO and selecting Edit from the MB3 popup menu).

∑ Information - invoked whenever the user goes to Information→Object and selects the UDO.
The following properties also effect UDO behavior:

∑ Is Occurrenceable - does the UDO display in an assembly, or only when the part containing

the UDO is also the displayed part?

∑ Allow Owned Object Selection - specifies whether or not you have permission to select

objects owned by this class.

∑ Warn User Flag - should we warn users when a part is loaded that contains UDO's of this

class (if the class is not yet registered in the session)? Note this warning will only occur once

per session (even if there are multiple unregistered classes that attempt to use this warning).

After that first warning, additional warnings are suppressed if any new parts are loaded with

unregistered UDO classes.

Additional points of interest:

∑ UDO Status - the status value on the UDO indicates whether the UDO is out of date, and

why it's out of date.

∑ UDO Features - UDO's can also be features so that they can be time-stamped and updated

in order with respect to other features in the model.

Sample Code

The following 4 programs do essentially the same thing, and snippets of the code will be used

throughout this document: Each program creates a very simple UDO example that demonstrates

each of the following callbacks:

∑ Display

∑ Selection

∑ Attention Point

∑ Fit

∑ Edit

∑ Information

In NX execute this program via: File → Execute → NX Open... This program begins by opening a

new part (if there were no open parts). Next it will prompt you to select a position on the screen.

The screen position will be used as a reference point for the UDO. The UDO will display as a

triangle on that point with a name next to the triangle. The name will indicate which language was

used to create the UDO.

The image above shows a part with one UDO created by each of the four programs. From left to

right you see the VB .NET UDO, the C# UDO, the C++ UDO and finally the JAVA UDO.

This UDO is selectable. If you go to Information→Object and select the UDO you will see custom

information output to the listing window from the function myInfoCB defined in this program.

You can also edit the location of the UDO. Start by right-clicking on the UDO and selecting "Edit

User Defined Object" from the MB3 popup menu.

Editing the UDO will invoke the myEditCB function defined in this program. You will be prompted

to select a new screen position, and after you make the selection the UDO will move to the new

location.

Language Specific Section

VB

C#

C++

Java
VB

'---

' This program creates a very simple UDO example.
'
' It demonstrates each of the following callbacks:
' * Display
' * Selection
' * Attention Point
' * Fit
' * Edit
' * Information
'
' In NX execute this program via: File -> Execute -> NX Open...
' This program begins by opening a new part (if there were no open
parts).
' Next it will prompt you to select a position on the screen.
' The screen position will be used as a reference point for the UDO.
' The UDO will display as a triangle on that point with a name
' "VB .Net UDO" next to the triangle.

'
' This UDO is selectable. If you go to Information->Object and select
' the UDO you will see custom information output to the listing window
from
' the function myInfoCB defined in this program.
'
' You can also edit the location of the UDO. Start by right-clicking
' on the UDO and selecting "Edit User Defined Object" from the MB3
popup menu.
' Editing the UDO will invoke the myEditCB function defined in this
program.
' You will be prompted to select a new screen position, and after you
make
' the selection the UDO will move to the new location.
'--

Option Strict Off
Imports System
Imports NXOpen
Imports NXOpenUI
Imports NXOpen.UF

Module Module1
Dim theSession As Session = Nothing
Dim theUI As UI = Nothing
Dim theUFSession As UFSession = Nothing

Dim myUDOclass As UserDefinedObjects.UserDefinedClass = Nothing
'--

' Callback Name: myDisplayCB
' This is a callback method associated with displaying a UDO.
' This same callback is registered for display, select, fit, and

attention point
'--

Public Function myDisplayCB
(ByVal displayEvent As_
UserDefinedObjects.UserDefinedDisplayEvent)_
As Integer

Try
' Get the doubles used to define the selected screen position

for this UDO.
Dim myUDOdoubles() As Double =_

displayEvent.UserDefinedObject.GetDoubles()

' Use the doubles to define points of a triangle
Dim myPoints(3) As Point3d
myPoints(0).X = myUDOdoubles(0) + 0
myPoints(0).Y = myUDOdoubles(1) + 0
myPoints(0).Z = myUDOdoubles(2) + 0

myPoints(1).X = myUDOdoubles(0) + 100
myPoints(1).Y = myUDOdoubles(1) + 0
myPoints(1).Z = myUDOdoubles(2) + 0

myPoints(2).X = myUDOdoubles(0) + 0
myPoints(2).Y = myUDOdoubles(1) + 100
myPoints(2).Z = myUDOdoubles(2) + 0

myPoints(3).X = myUDOdoubles(0) + 0
myPoints(3).Y = myUDOdoubles(1) + 0
myPoints(3).Z = myUDOdoubles(2) + 0

' Display the triangle
displayEvent.DisplayContext.DisplayPolyline(myPoints)

' Display the text next to the triangle
Dim myPt As Point3d
myPt.X = myUDOdoubles(0) + 100
myPt.Y = myUDOdoubles(1) + 0
myPt.Z = myUDOdoubles(2) + 0
displayEvent.DisplayContext.DisplayText("VB .Net UDO", myPt, 0)
Catch ex As NXException

' the display/selection/fit/attention callback is called so
many times

' that it's best to print this error handling stuff in the
syslog

' any interactive messages in the UI would drive the user crazy
;)

theUfSession.UF.PrintSyslog("Caught Exception in myDisplayCB:_
'" & ex.Message() & "'" & vbCrLf, False)

End Try

myDisplayCB = 0
End Function

'--

' Callback Name: myEditCB
' This is a callback method associated with editing a UDO.
'--

Public Function myEditCB
(ByVal editEvent As_

UserDefinedObjects.UserDefinedEvent) As Integer
Try

Dim myView As NXOpen.View = Nothing
Dim myCursor As Point3d
myCursor.X = 0
myCursor.Y = 0
myCursor.Z = 0

' highlight the current udo we are about to edit
' this is helpful if multiple udo's were on the selection
' list when the user decided to edit them
editEvent.UserDefinedObject.Highlight()

' ask the user to select a new origin for this UDO
Dim myResponse As Selection.DialogResponse =_

theUI.SelectionManager.SelectScreenPosition("Select New
Origin_

for VB UDO", myView, myCursor)
' we are done asking the user for input... unhighlight the udo
editEvent.UserDefinedObject.Unhighlight()

' use the new screen position (if the user picked one)
If myResponse = Selection.DialogResponse.Pick Then

Dim myUDOdoubles(3) As Double
myUDOdoubles(0) = myCursor.X
myUDOdoubles(1) = myCursor.Y
myUDOdoubles(2) = myCursor.Z

' store the newly selected origin with the udo
editEvent.UserDefinedObject.SetDoubles(myUDOdoubles)

' add the udo to the display list manually
' this will force the udo display to regenerate
' immediately and show the changes we just made
theUFSession.Disp.AddItemToDisplay_

(editEvent.UserDefinedObject.Tag())
End If

Catch ex As NXException
Dim theLW As ListingWindow = theSession.ListingWindow

theLW.Open()
theLW.WriteLine("Caught Exception in myEditCB: '" &

ex.Message() & "'")
End Try

myEditCB = 0
End Function
'--

' Callback Name: myInfoCB '
This is a callback method associated with querying information for

a UDO.
' The information is printed in the listing window.
'--

Public Function myInfoCB(ByVal infoEvent As
UserDefinedObjects.UserDefinedEvent) As Integer

Dim theLW As ListingWindow = theSession.ListingWindow
theLW.Open()

Try
theLW.WriteLine(" ")
theLW.WriteLine("--

--------------")
theLW.WriteLine("Begin Custom Information")
theLW.WriteLine(" ")
theLW.WriteLine("UDO Class Name: '" &

infoEvent.UserDefinedObject.UserDefinedClass.ClassName & "'")
theLW.WriteLine("UDO Friendly Name: '" &

infoEvent.UserDefinedObject.UserDefinedClass.FriendlyName & "'")
Dim myUDOdoubles() As Double =

infoEvent.UserDefinedObject.GetDoubles
()

theLW.WriteLine("myUDOdoubles(0) = " &
myUDOdoubles(0).ToString)

theLW.WriteLine("myUDOdoubles(1) = " &
myUDOdoubles(1).ToString)

theLW.WriteLine("myUDOdoubles(2) = " &
myUDOdoubles(2).ToString)

theLW.WriteLine(" ") theLW.WriteLine_
("End Custom Information")

Catch ex As NXException
theLW.WriteLine("Caught Exception in myInfoCB:'" & ex.Message()

& "'")
End Try

myInfoCB = 0
End Function

'--

' initUDO
' Checks to see which (if any) of the application's static

variables are
' uninitialized, and sets them accordingly.
' Initializes the UDO class and registers all of its callback

methods.
'--

Public Function initUDO(ByVal alertUser As Boolean) As Integer
Try

If theSession Is Nothing Then
theSession = Session.GetSession()

End if
If theUI Is Nothing Then

theUI = UI.GetUI()
End if
If theUFSession Is Nothing Then

theUFSession = NXOpen.UF.UFSession.GetUFSession()
End if
If myUDOclass Is Nothing Then

If alertUser = True Then
MsgBox("Registering VB UDO Class", MsgBoxStyle.OkOnly)

End If
' Define your custom UDO class
myUDOclass =_

theSession.UserDefinedClassManager.CreateUserDefinedObjectClass_
("Sample_VB_UDO", "Sample VB UDO")

' Setup properties on the custom UDO class
myUDOclass.AllowQueryClassFromName =_

UserDefinedObjects.UserDefinedClass.AllowQueryClass.On
' Register callbacks for the UDO class
myUDOclass.AddDisplayHandler(AddressOf myDisplayCB)
myUDOclass.AddAttentionPointHandler(AddressOf myDisplayCB)
myUDOclass.AddFitHandler(AddressOf myDisplayCB)

myUDOclass.AddSelectionHandler(AddressOf myDisplayCB)
myUDOclass.AddEditHandler(AddressOf myEditCB)
myUDOclass.AddInformationHandler(AddressOf myInfoCB)
' Add this class to the list of object types available for

selection in NX.
' If you skip this step you won't be able to select UDO's of

this class,
' even though you registered a selection callback.

theUI.SelectionManager.SetSelectionStatusOfUserDefinedClass(myUDOclass,
True)

End If
Catch ex As NXException

' We may be initializing the UDO class during NX Startup
' Print any error messages directly to the syslog
If theUFSession Is Nothing Then

theUFSession = NXOpen.UF.UFSession.GetUFSession()
End if
theUfSession.UF.PrintSyslog("Caught Exception in initUDO: '" &

ex.Message() & "'" & vbCrLf, False)
End Try
initUDO = 0

End Function
'--

' Main (Explicit Activation)
' This entry point is used to activate the application explicitly,

as in
' "File->Execute UG/Open->NX Open..."
'--

Sub Main()
Try

' initialize the UDO - if we didn't load this library at
' startup, here is our second chance to load it
initUDO(True)

' if we don't have any parts open create one
Dim myBasePart As BasePart = theSession.Parts.BaseDisplay
If myBasePart Is Nothing Then

myBasePart =
theSession.Parts.NewBaseDisplay("test_vb_udo.prt",
BasePart.Units.Millimeters)

End If

Dim myView As NXOpen.View = Nothing
Dim myCursor As Point3d
myCursor.X = 0

myCursor.Y = 0
myCursor.Z = 0
' ask the user to select an origin for this UDO
Dim myResponse As Selection.DialogResponse =

theUI.SelectionManager.SelectScreenPosition("Select Origin of VB UDO",
myView, myCursor)

If myResponse = Selection.DialogResponse.Pick Then
' The user selected a point - go ahead and create the

udo
Dim myUDOmanager As

UserDefinedObjects.UserDefinedObjectManager =
myBasePart.UserDefinedObjectManager

Dim firstUDO As UserDefinedObjects.UserDefinedObject =
myUDOmanager.CreateUserDefinedObject(myUDOclass)

' set the color property of the udo - just for fun :)
firstUDO.Color = 36
' store the origin selected by the user with the udo
Dim myUDOdoubles(3) As Double
myUDOdoubles(0) = myCursor.X
myUDOdoubles(1) = myCursor.Y
myUDOdoubles(2) = myCursor.Z
firstUDO.SetDoubles(myUDOdoubles)
' add the udo to the display list manually
' this will force the udo to display immediately
theUFSession.Disp.AddItemToDisplay(firstUDO.Tag())

End If
Catch ex As NXException

Dim theLW As ListingWindow = theSession.ListingWindow
theLW.Open()
theLW.WriteLine("Caught Exception in Main: '" &

ex.Message() & "'")
End Try

End Sub

'--

' Startup
' Entrypoint used when program is loaded automatically
' as NX starts up. Note this application must be placed in a
' special folder for NX to find and load it during startup.
' Refer to the NX Open documentation for more details on how
' NX finds and loads applications during startup.
'--

Public Function Startup() As Integer
initUDO(False)
Startup = 0

End Function ' Startup ends

'--

' GetUnloadOption
' Make sure you specify AtTermination for the unload option.
' If you unload the library before the NX Session Terminates
' bad things could happen when we try to execute a udo
' callback that no longer exists in the session.
'--

Public Function GetUnloadOption(ByVal dummy As String) As Integer
Return CType(Session.LibraryUnloadOption.AtTermination, Integer)

End Function
End Module

C#

//--

// This program creates a very simple UDO example.
//
// It demonstrates each of the following callbacks:

// * Display
// * Selection
// * Attention Point
// * Fit
// * Edit
// * Information
//
// In NX execute this program via: File -> Execute -> NX Open...
// This program begins by opening a new part (if there were no open
parts).
// Next it will prompt you to select a position on the screen.
// The screen position will be used as a reference point for the UDO.
// The UDO will display as a triangle on that point with a name
// "C# UDO" next to the triangle.
//
// This UDO is selectable. If you go to Information->Object and select
// the UDO you will see custom information output to the listing window
from
// the function myInfoCB defined in this program.
//
// You can also edit the location of the UDO. Start by right-clicking
// on the UDO and selecting "Edit User Defined Object" from the MB3
popup menu.
// Editing the UDO will invoke the myEditCB function defined in this
program.
// You will be prompted to select a new screen position, and after you
make

// the selection the UDO will move to the new location.
//---

using System;
using NXOpen;
using NXOpen.UF;
using NXOpen.UserDefinedObjects;

public class Program
{

// class members
static Session theSession = null;
static UI theUI = null;
static UFSession theUFSession = null;
static UserDefinedClass myUDOclass = null;

//---

// Callback Name: myDisplayCB
// This is a callback method associated with displaying a UDO.
// This same callback is registered for display, select, fit, and

attention point
//---

public static int myDisplayCB(UserDefinedDisplayEvent displayEvent)
{

try
{

// Get the doubles used to define the selected screen
position for this UDO.

double[] myUDOdoubles =
displayEvent.UserDefinedObject.GetDoubles();

// Use the doubles to define points of a triangle
Point3d[] myPoints = new Point3d[4];
myPoints[0].X = myUDOdoubles[0] + 0;
myPoints[0].Y = myUDOdoubles[1] + 0;
myPoints[0].Z = myUDOdoubles[2] + 0;

myPoints[1].X = myUDOdoubles[0] + 100;
myPoints[1].Y = myUDOdoubles[1] + 0;
myPoints[1].Z = myUDOdoubles[2] + 0;

myPoints[2].X = myUDOdoubles[0] + 0;
myPoints[2].Y = myUDOdoubles[1] + 100;
myPoints[2].Z = myUDOdoubles[2] + 0;

myPoints[3].X = myUDOdoubles[0] + 0;
myPoints[3].Y = myUDOdoubles[1] + 0;
myPoints[3].Z = myUDOdoubles[2] + 0;

// Display the triangle
displayEvent.DisplayContext.DisplayPolyline(myPoints);

// Display the text next to the triangle
Point3d myPt = new Point3d();
myPt.X = myUDOdoubles[0] + 100;
myPt.Y = myUDOdoubles[1] + 0;
myPt.Z = myUDOdoubles[2] + 0;
displayEvent.DisplayContext.DisplayText("C# UDO", myPt, 0);

}
catch (NXOpen.NXException ex)
{

// ---- Enter your exception handling code here -----
UI.GetUI().NXMessageBox.Show("Caught exception",

NXMessageBox.DialogType.Error, ex.Message);
}
return 0;

}
//---

// Callback Name: myEditCB
// This is a callback method associated with editing a UDO.
//---

public static int myEditCB(UserDefinedEvent editEvent)
{

try
{

View myView = null;
Point3d myCursor;
myCursor.X = 0;
myCursor.Y = 0;
myCursor.Z = 0;

// highlight the current udo we are about to edit
// this is helpful if multiple udo's were on the selection
// list when the user decided to edit them
editEvent.UserDefinedObject.Highlight();

// ask the user to select a new origin for this UDO
Selection.DialogResponse myResponse =

theUI.SelectionManager.SelectScreenPosition("Select New Origin for C#
UDO", out myView, out myCursor);

// we are done asking the user for input... unhighlight the
udo

editEvent.UserDefinedObject.Unhighlight();

// use the new screen position (if the user picked one)
if(myResponse == Selection.DialogResponse.Pick)
{

double[] myUDOdoubles = new double[3];
myUDOdoubles[0] = myCursor.X;
myUDOdoubles[1] = myCursor.Y;
myUDOdoubles[2] = myCursor.Z;
// store the newly selected origin with the udo
editEvent.UserDefinedObject.SetDoubles(myUDOdoubles);

// add the udo to the display list manually
// this will force the udo display to regenerate
// immediately and show the changes we just made
theUFSession.Disp.AddItemToDisplay

(editEvent.UserDefinedObject.Tag);
}

}
catch (NXOpen.NXException ex)
{

// ---- Enter your exception handling code here -----
UI.GetUI().NXMessageBox.Show("Caught exception",

NXMessageBox.DialogType.Error, ex.Message);
}
return 0;

} //---
--------------- /

/ Callback Name: myInfoCB
// This is a callback method associated with querying information

for a UDO.
// The information is printed in the listing window.
//---

public static int myInfoCB(UserDefinedEvent infoEvent)
{

try
{

ListingWindow
theLW = theSession.ListingWindow;
theLW.Open(); theLW.WriteLine(" ");
theLW.WriteLine("--

--------------");
theLW.WriteLine("Begin Custom Information");
theLW.WriteLine(" ");

theLW.WriteLine("UDO Class Name: '" +

infoEvent.UserDefinedObject.UserDefinedClass.ClassName + "'");
theLW.WriteLine("UDO Friendly Name: '" +

infoEvent.UserDefinedObject.UserDefinedClass.FriendlyName + "'");
double[] myUDOdoubles =

infoEvent.UserDefinedObject.GetDoubles();
theLW.WriteLine("myUDOdoubles(0) = " + myUDOdoubles[0]);
theLW.WriteLine("myUDOdoubles(1) = " + myUDOdoubles[1]);
theLW.WriteLine("myUDOdoubles(2) = " + myUDOdoubles[2]);
theLW.WriteLine(" "); theLW.WriteLine("End Custom

Information");
}
catch (NXOpen.NXException ex)
{

// ---- Enter your exception handling code here -----
UI.GetUI().NXMessageBox.Show("Caught exception",

NXMessageBox.DialogType.Error, ex.Message);
}
return 0;

}
//---

// initUDO // Checks to see which (if any) of the application's static
variables are
// uninitialized, and sets them accordingly.
// Initializes the UDO class and registers all of its callback methods.
//---

static int initUDO(bool alertUser)
{

try
{

if (theSession == null)
{

theSession = Session.GetSession();
}
if(theUI == null)
{

theUI = UI.GetUI();
}
if(theUFSession == null)
{
theUFSession = UFSession.GetUFSession();
}
if (myUDOclass == null)
{

if (alertUser)

{
ListingWindow theLW = theSession.ListingWindow;
theLW.Open();
theLW.WriteLine("Registering C# UDO Class");

}
// Define your custom UDO class
myUDOclass =

theSession.UserDefinedClassManager.CreateUserDefinedObjectClass
("Sample_CSharp_UDO", "Sample C# UDO");

// Setup properties on the custom UDO class
myUDOclass.AllowQueryClassFromName =

UserDefinedClass.AllowQueryClass.On;
// Register callbacks for the UDO class
myUDOclass.AddDisplayHandler(new

UserDefinedClass.DisplayCallback(Program.myDisplayCB));
myUDOclass.AddAttentionPointHandler(new

UserDefinedClass.DisplayCallback (Program.myDisplayCB));
myUDOclass.AddFitHandler(new

UserDefinedClass.DisplayCallback
(Program.myDisplayCB));

myUDOclass.AddSelectionHandler(new
UserDefinedClass.DisplayCallback(Program.myDisplayCB));

myUDOclass.AddEditHandler(new
UserDefinedClass.GenericCallback(Program.myEditCB));

myUDOclass.AddInformationHandler(new
UserDefinedClass.GenericCallback(Program.myInfoCB));

// Add this class to the list of object types available for
selection in NX.

// If you skip this step you won't be able to select UDO's
of this class,

// even though you registered a selection callback.
theUI.SelectionManager.SetSelectionStatusOfUserDefinedClass(myUDOclass,
true);

}
}
catch (NXOpen.NXException ex)
{

// ---- Enter your exception handling code here -----
UI.GetUI().NXMessageBox.Show("Caught exception",

NXMessageBox.DialogType.Error, ex.Message);
}
return 0;

}
//---

// Main (Explicit Activation)
// This entry point is used to activate the application explicitly, as
in

// "File->Execute UG/Open->NX Open..."
//---

public static int Main(string[] args)
{

int retValue = 0;
try
{

// initialize the UDO - if we didn't load this library at
// startup, here is our second chance to load it
initUDO(true);

// if we don't have any parts open create one
BasePart myBasePart = theSession.Parts.BaseDisplay;
if(myBasePart == null)
{ myBasePart = theSession.Parts.NewBaseDisplay

("test_csharp_udo.prt", BasePart.Units.Millimeters);
}

View myView = null;
Point3d myCursor;
myCursor.X = 0;
myCursor.Y = 0;
myCursor.Z = 0;
// ask the user to select an origin for this UDO
Selection.DialogResponse myResponse =

theUI.SelectionManager.SelectScreenPosition("Select Origin of C# UDO",
out myView, out myCursor);

if
(myResponse == Selection.DialogResponse.Pick)
{
// The user selected a point - go ahead and create the udo

UserDefinedObjectManager myUDOmanager =
myBasePart.UserDefinedObjectManager;

UserDefinedObject firstUDO =
myUDOmanager.CreateUserDefinedObject(myUDOclass);

// set the color property of the udo - just for fun :)
firstUDO.Color = 36;
// store the origin selected by the user with the udo
double[] myUDOdoubles = new double[3];
myUDOdoubles[0] = myCursor.X;
myUDOdoubles[1] = myCursor.Y;
myUDOdoubles[2] = myCursor.Z;
firstUDO.SetDoubles(myUDOdoubles);
// add the udo to the display list manually
// this will force the udo to display immediately
theUFSession.Disp.AddItemToDisplay(firstUDO.Tag);

}
}

catch (NXOpen.NXException ex)
{/

// ---- Enter your exception handling code here -----
UI.GetUI().NXMessageBox.Show("Caught exception",

NXMessageBox.DialogType.Error, ex.Message);
}
return retValue;

}
//---

// Startup
// Entrypoint used when program is loaded automatically
// as NX starts up. Note this application must be placed in a
// special folder for NX to find and load it during startup.
// Refer to the NX Open documentation for more details on how
// NX finds and loads applications during startup.
//---

public static int Startup()
{

int retValue = 0;
try

{
initUDO(false);

}
catch (NXOpen.NXException ex)
{

// ---- Enter your exception handling code here -----
UI.GetUI().NXMessageBox.Show("Caught exception",

NXMessageBox.DialogType.Error, ex.Message);
}
return retValue;
}

//---

// GetUnloadOption
// Make sure you specify AtTermination for the unload option.
// If you unload the library before the NX Session Terminates
// bad things could happen when we try to execute a udo
// callback that no longer exists in the session.
//---

public static int GetUnloadOption(string arg)
{

//Unloads the image when the NX session terminates
return

System.Convert.ToInt32(Session.LibraryUnloadOption.AtTermination);
}

}

C++

//--

// This program creates a very simple UDO example.
//
// It demonstrates each of the following callbacks:
// * Display
// * Selection
// * Attention Point
// * Fit
// * Edit
// * Information
//
// In NX execute this program via: File -> Execute -> NX Open...
// This program begins by opening a new part (if there were no open
parts).
// Next it will prompt you to select a position on the screen.

// The screen position will be used as a reference point for the UDO.
// The UDO will display as a triangle on that point with a name
// "C++ UDO" next to the triangle.
//
// This UDO is selectable. If you go to Information->Object and select
// the UDO you will see custom information output to the listing window
from
// the function myInfoCB defined in this program.
//
// You can also edit the location of the UDO. Start by right-clicking
// on the UDO and selecting "Edit User Defined Object" from the MB3
popup menu.
// Editing the UDO will invoke the myEditCB function defined in this
program.
// You will be prompted to select a new screen position, and after you
make
// the selection the UDO will move to the new location.
//---

/* Include files */
#if ! defined (__hp9000s800) && ! defined (__sgi) && ! defined (
__sun)
include <strstream>
include <iostream>
using std::ostrstream;
using std::endl;
using std::ends;

using std::cerr;
#else
include <strstream.h>
include iostream.h>
#endif
#include <uf.h>
#include <uf_ui.h>
#include <uf_exit.h>
#include <ufdisp.h>

#include <NXOpen/Session.hxx>
#include <NXOpen/Part.hxx>
#include <NXOpen/PartCollection.hxx>
#include <NXOpen/Callback.hxx>
#include <NXOpen/NXException.hxx>
#include <NXOpen/UI.hxx>
#include <NXOpen/Selection.hxx>
#include <NXOpen/LogFile.hxx>
#include <NXOpen/NXObjectManager.hxx>
#include <NXOpen/ListingWindow.hxx>
#include <NXOpen/View.hxx>

#include <NXOpen/UserDefinedObjects_UserDefinedClass.hxx>
#include <NXOpen/UserDefinedObjects_UserDefinedClassManager.hxx>
#include <NXOpen/UserDefinedObjects_UserDefinedObject.hxx>
#include <NXOpen/UserDefinedObjects_UserDefinedObjectManager.hxx>
#include <NXOpen/UserDefinedObjects_UserDefinedEvent.hxx>
#include <NXOpen/UserDefinedObjects_UserDefinedDisplayEvent.hxx>
#include <NXOpen/UserDefinedObjects_UserDefinedLinkEvent.hxx>
#include
<NXOpen/UserDefinedObjects_UserDefinedObjectDisplayContext.hxx>

using namespace NXOpen;
using namespace NXOpen::UserDefinedObjects;
//static variables
static NXOpen::Session* theSession = NULL;
static UI* theUI = NULL;
static UserDefinedClass* myUDOclass = NULL;

//---

// Callback Name: myDisplayCB
// This is a callback method associated with displaying a UDO.
// This same callback is registered for display, select, fit, and
attention point
//---

extern int myDisplayCB(UserDefinedDisplayEvent* displayEvent)
{

try
{

// Get the doubles used to define the selected screen position
for this UDO.

std::vector myUDOdoubles = displayEvent->UserDefinedObject()-
>GetDoubles();

// Use the doubles to define points of a triangle
std::vector

myPoints(4); myPoints[0].X = myUDOdoubles[0] + 0;
myPoints[0].Y = myUDOdoubles[1] + 0;
myPoints[0].Z = myUDOdoubles[2] + 0;

myPoints[1].X = myUDOdoubles[0] + 100;
myPoints[1].Y = myUDOdoubles[1] + 0;
myPoints[1].Z = myUDOdoubles[2] + 0;

myPoints[2].X = myUDOdoubles[0] + 0;
myPoints[2].Y = myUDOdoubles[1] + 100;
myPoints[2].Z = myUDOdoubles[2] + 0;

myPoints[3].X = myUDOdoubles[0] + 0;
myPoints[3].Y = myUDOdoubles[1] + 0;
myPoints[3].Z = myUDOdoubles[2] + 0;

// Display the triangle
displayEvent->DisplayContext()->DisplayPolyline(myPoints);

// Display the text next to the triangle
Point3d myPt = Point3d(myUDOdoubles[0] + 100, myUDOdoubles[1],

myUDOdoubles[2]);
displayEvent->DisplayContext()->DisplayText("C++ UDO", myPt,

UserDefinedObjectDisplayContext::TextRefBottomLeft);
}
catch (NXException ex)
{

// ---- Enter your exception handling code here -----
cerr << "Caught exception: " << ex.Message() << endl;

}
return 0;

}
//---

// Callback Name: myEditCB
// This is a callback method associated with editing a UDO.
//---

extern int myEditCB(UserDefinedEvent* editEvent)

{
try
{

// required for calls to legacy UF routines
// such as UF_DISP_add_item_to_display
UF_initialize();

View* myView = NULL;
Point3d myCursor(0,0,0);

// highlight the current udo we are about to edit
// this is helpful if multiple udo's were on the selection
// list when the user decided to edit them
editEvent->UserDefinedObject()->Highlight();

// ask the user to select a new origin for this UDO
Selection::DialogResponse myResponse = theUI-

>SelectionManager()->SelectScreenPosition("Select New Origin for C++
UDO", &myView, &myCursor);

// we are done asking the user for input... unhighlight the udo
editEvent->UserDefinedObject()->Unhighlight();

// use the new screen position (if the user picked one)
if(myResponse == Selection::DialogResponsePick)
{
std::vector myUDOdoubles(3);
myUDOdoubles[0] = myCursor.X;
myUDOdoubles[1] = myCursor.Y;
myUDOdoubles[2] = myCursor.Z;
// store the newly selected origin with the udo
editEvent->UserDefinedObject()->SetDoubles(myUDOdoubles);
// add the udo to the display list manually
// this will force the udo display to regenerate
// immediately and show the changes we just made
UF_DISP_add_item_to_display(editEvent->UserDefinedObject()-

>GetTag());
}
UF_terminate();

} catch (NXException ex)
{

// ---- Enter your exception handling code here -----
cerr << "Caught exception: " << ex.Message() << endl;

} return 0;
}
//---

// Callback Name: myInfoCB
// This is a callback method associated with querying information for a
UDO.

// The information is printed in the listing window.
//---

extern int myInfoCB(UserDefinedEvent* infoEvent)
{

try
{

ListingWindow* theLW = theSession->ListingWindow();
char msg[256];
theLW->Open();
theLW->WriteLine(" ");
theLW->WriteLine("---

---------------");
theLW->WriteLine("Begin Custom Information");
theLW->WriteLine(" ");
sprintf(msg, "UDO Class Name: '%s'", infoEvent-

>UserDefinedObject()->UserDefinedClass()->ClassName());
theLW->WriteLine(msg);
sprintf(msg, "UDO Friendly Name: '%s'", infoEvent-

>UserDefinedObject()->UserDefinedClass()->FriendlyName());
theLW->WriteLine(msg);
std::vector myUDOdoubles = infoEvent->UserDefinedObject()-

>GetDoubles();
sprintf(msg, "myUDOdoubles(0) = %f", myUDOdoubles[0]);
theLW->WriteLine(msg);
sprintf(msg, "myUDOdoubles(1) = %f", myUDOdoubles[1]);
theLW->WriteLine(msg); sprintf(msg, "myUDOdoubles(2) = %f",

myUDOdoubles[2]);
theLW->WriteLine(msg);
theLW->WriteLine(" ");
theLW->WriteLine("End Custom Information");

}
catch (NXException ex)
{
// ---- Enter your exception handling code here -----
cerr << "Caught exception: " << ex.Message() << endl;
}
return 0;

}

//---

// initUDO
// Checks to see which (if any) of the application's static variables
are
// uninitialized, and sets them accordingly.
// Initializes the UDO class and registers all of its callback methods.
//---

static int initUDO(bool alertUser)
{

try
{

if (theSession == NULL)
{
theSession = Session::GetSession();
}
if(theUI == NULL)
{
theUI = UI::GetUI();
}
if (myUDOclass == NULL)
{
if (alertUser)
{
ListingWindow*
theLW = theSession->ListingWindow();
theLW->Open();
theLW->WriteLine("Registering C++ UDO Class");
}
// Define your custom UDO class
myUDOclass = theSession->UserDefinedClassManager()-

>CreateUserDefinedObjectClass("Sample_Cpp_UDO", "Sample C++ UDO");
// Setup properties on the custom UDO class
myUDOclass-

>SetAllowQueryClassFromName(UserDefinedClass::AllowQueryClassOn);
// Register callbacks for the UDO class
myUDOclass->AddDisplayHandler(make_callback(&myDisplayCB));
myUDOclass-

>AddAttentionPointHandler(make_callback(&myDisplayCB));
myUDOclass->AddFitHandler(make_callback(&myDisplayCB));
myUDOclass->AddSelectionHandler(make_callback(&myDisplayCB));
myUDOclass->AddEditHandler(make_callback(&myEditCB));
myUDOclass->AddInformationHandler(make_callback(&myInfoCB));
// Add this class to the list of object types available for

selection in NX.
// If you skip this step you won't be able to select UDO's of

this class,
// even though you registered a selection callback.
theUI->SelectionManager()-

>SetSelectionStatusOfUserDefinedClass(myUDOclass, true);
}

}
catch (NXException ex)
{
// ---- Enter your exception handling code here -----
cerr << "Caught exception: " << ex.Message() << endl;
}

return 0;
}

//---

// ufusr (Explicit Activation)
// This entry point is used to activate the application explicitly, as
in
// "File->Execute UG/Open->NX Open..."
//---

extern void ufusr(char *parm, int *returnCode, int rlen)
{

try
{
// required for calls to legacy UF routines
// such as UF_DISP_add_item_to_display
UF_initialize();

// initialize the UDO - if we didn't load this library at
// startup, here is our second chance to load it
initUDO(true);

// if we don't have any parts open create one
BasePart* myBasePart = theSession->Parts()->BaseDisplay();
if(myBasePart == NULL)
{

myBasePart = theSession->Parts()-
>NewBaseDisplay("test_cpp_udo.prt", BasePart::UnitsMillimeters);

}

View* myView = NULL;
Point3d myCursor(0,0,0);

// ask the user to select an origin for this UDO
Selection::DialogResponse myResponse = theUI-

>SelectionManager()->SelectScreenPosition("Select Origin of C++ UDO",
&myView, &myCursor);

if(myResponse == Selection::DialogResponsePick)
{

// The user selected a point - go ahead and create the udo
UserDefinedObjectManager* myUDOmanager = myBasePart-

>UserDefinedObjectManager();
UserDefinedObject* firstUDO = myUDOmanager-

>CreateUserDefinedObject(myUDOclass);
// set the color property of the udo - just for fun :)
firstUDO->SetColor(36);
// store the origin selected by the user with the udo
std::vector myUDOdoubles(3);

myUDOdoubles[0] = myCursor.X;
myUDOdoubles[1] = myCursor.Y;
myUDOdoubles[2] = myCursor.Z;
firstUDO->SetDoubles(myUDOdoubles);
// add the udo to the display list manually
// this will force the udo to display immediately
UF_DISP_add_item_to_display(firstUDO->GetTag());

}
UF_terminate();

}
catch (const NXOpen::NXException& ex)
{
cerr << "Caught exception: " << ex.Message() << endl;
}

}

//---

// ufsta
// Entrypoint used when program is loaded automatically
// as NX starts up. Note this application must be placed in a
// special folder for NX to find and load it during startup.
// Refer to the NX Open documentation for more details on how
// NX finds and loads applications during startup.
//---

extern void ufsta(char *param, int *returnCode, int rlen)
{

try
{

initUDO(false);
}
catch (const NXOpen::NXException& ex)
{
cerr << "Caught exception: " << ex.Message() << endl;
}

} //---

// ufusr_ask_unload
// Make sure you specify AtTermination for the unload option.
// If you unload the library before the NX Session Terminates
// bad things could happen when we try to execute a udo
// callback that no longer exists in the session.
//---

extern int ufusr_ask_unload(void)
{
//return (int)Session::LibraryUnloadOptionExplicitly;
// return (int)Session::LibraryUnloadOptionImmediately;

return (int)Session::LibraryUnloadOptionAtTermination;
}

JAVA

//--

// This program creates a very simple UDO example.
//
// It demonstrates each of the following callback reasons:
// * Display
// * Selection
// * Attention Point
// * Fit
// * Edit
// * Information
//
// In NX execute this program via: File -> Execute -> NX Open...
// This program begins by opening a new part (if there were no open
parts).
// Next it will prompt you to select a position on the screen.
// The screen position will be used as a reference point for the UDO.
// The UDO will display as a triangle on that point with a name
// "JAVA UDO" next to the triangle.

//
// This UDO is selectable. If you go to Information->Object and select
// the UDO you will see custom information output to the listing window
from
// the function genericCallback defined in this program.
//
// You can also edit the location of the UDO. Start by right-clicking
// on the UDO and selecting "Edit User Defined Object" from the MB3
popup menu.
// Editing the UDO will invoke the genericCallback function defined in
this program.
// You will be prompted to select a new screen position, and after you
make
// the selection the UDO will move to the new location.
//---

import nxopen.*;
import nxopen.userdefinedobjects.*;
import java.io.*;

// SimpleJavaUDO class used to demo a UDO in the java language
public class SimpleJavaUDO implements
nxopen.userdefinedobjects.UserDefinedClass.DisplayCallback,
nxopen.userdefinedobjects.UserDefinedClass.GenericCallback
{
// class members

public static Session theSession = null;

public static UI theUI = null;
public static UFSession theUFSession = null;
public static UserDefinedClass myUDOclass = null;

static SimpleJavaUDO theSimpleJavaUDO;

//---

// Callback Name: displayCallback
// This is a callback method associated with displaying a UDO.
// This same callback is registered for display, select, fit, and

attention point
//---

public int
displayCallback(nxopen.userdefinedobjects.UserDefinedDisplayEvent e)

{
int retValue = 0;
try
{

// all display reasons (DISPLAY, SELECTION, FIT, and
ATTENTION_POINT)

// should do the same thing so we don't need to figure out
the

// reason we're in this displayCallback

//Get the doubles used to define the selected screen
position for this UDO.

double[] myUDOdoubles = e.userDefinedObject().getDoubles();

// Use the doubles to define points of a triangle
Point3d[] myPoints = new Point3d[]

{ new Point3d(myUDOdoubles[0] + 0,
myUDOdoubles[1] + 0,
myUDOdoubles[2] + 0),

new Point3d(myUDOdoubles[0] + 100,
myUDOdoubles[1] + 0,
myUDOdoubles[2] + 0),

new Point3d(myUDOdoubles[0] + 0,
myUDOdoubles[1] + 100,
myUDOdoubles[2] + 0),
new

Point3d(myUDOdoubles[0] + 0,
myUDOdoubles[1] + 0,
myUDOdoubles[2] + 0)};

// Display the triangle

e.displayContext().displayPolyline(myPoints);

// Display the text next to the triangle
Point3d myPt = new Point3d();
myPt.x = myUDOdoubles[0] + 100;
myPt.y = myUDOdoubles[1] + 0;
myPt.z = myUDOdoubles[2] + 0;
e.displayContext().displayText("JAVA UDO", myPt,

UserDefinedObjectDisplayContext.TextRef.BOTTOM_LEFT);
}
catch(Exception ex)
{

System.out.println("Error Message");
System.out.println(ex.getMessage());

}
return retValue;

}
//---

// Callback Name: genericCallback
// This is a callback method associated with editing a UDO, or

querying the UDO
// for information. Because one callback is used to do two completely

different
// things (with different functionality for each thing) we must first

check the
// reason stored in the event object to see which piece of

functionality we need
// to execute.
//---

public int genericCallback(nxopen.userdefinedobjects.UserDefinedEvent

e)
{
int retValue = 0;
try
{
if(e.eventReason() ==

nxopen.userdefinedobjects.UserDefinedEvent.Reason.EDIT)
{
// highlight the current udo we are about to edit
// this is helpful if multiple udo's were on the selection
// list when the user decided to edit them
e.userDefinedObject().highlight();

// ask the user to select a new origin for this UDO

Selection.SelectScreenPositionData mySelectionData =
theUI.selectionManager().selectScreenPosition("Select Origin of Java
UDO");

// we are done asking the user for input... unhighlight the udo
e.userDefinedObject().unhighlight();

// use the new screen position (if the user picked one)
if(mySelectionData.response == Selection.DialogResponse.PICK)
{
double[]
myUDOdoubles = new double[3];
myUDOdoubles[0] = mySelectionData.screenPosition.x;
myUDOdoubles[1] = mySelectionData.screenPosition.y;
myUDOdoubles[2] = mySelectionData.screenPosition.z;
// store the newly selected origin with the udo
e.userDefinedObject().setDoubles(myUDOdoubles);

// add the udo to the display list manually
// this will force the udo display to regenerate
// immediately and show the changes we just made

theUFSession.disp().addItemToDisplay(e.userDefinedObject().tag());
}

}
else if(e.eventReason() ==

nxopen.userdefinedobjects.UserDefinedEvent.Reason.INFO)
{
// print information for the udo here
ListingWindow
theLW = theSession.listingWindow();
theLW.open(); theLW.writeLine(" ");
theLW.writeLine("---

-----------");
theLW.writeLine("Begin Custom Information");
theLW.writeLine(" ");
theLW.writeLine("UDO Class Name: '" +

e.userDefinedObject().userDefinedClass().className() + "'");
theLW.writeLine("UDO Friendly Name: '" +

e.userDefinedObject().userDefinedClass().friendlyName() + "'");
double[] myUDOdoubles = e.userDefinedObject().getDoubles();
theLW.writeLine("myUDOdoubles(0) = " + myUDOdoubles[0]);
theLW.writeLine("myUDOdoubles(1) = " + myUDOdoubles[1]);
theLW.writeLine("myUDOdoubles(2) = " + myUDOdoubles[2]);
theLW.writeLine(" "); theLW.writeLine("End Custom Information");

}
}
catch(Exception ex)
{
System.out.println("Error Message");

System.out.println(ex.getMessage());
}
return retValue;

}
//---

// initUDO
// Checks to see which (if any) of the application's static variables

are
// uninitialized, and sets them accordingly.
// Initializes the UDO class and registers all of its callback

methods.
//---

private void initUDO()
{
try
{
if (theSession == null)
{
theSession = (Session)SessionFactory.get("Session");

}
if(theUI == null)
{
theUI = (UI)SessionFactory.get("UI");

}
if(theUFSession == null)
{
theUFSession = (UFSession)SessionFactory.get("UFSession");

}
if (myUDOclass == null)
{
// Define your custom UDO class
myUDOclass =

theSession.userDefinedClassManager().createUserDefinedObjectClass("Samp
le_Java_UDO", "Sample Java UDO");

// Setup properties on the custom UDO class
myUDOclass.setAllowQueryClassFromName(

nxopen.userdefinedobjects.UserDefinedClass.AllowQueryClass.ON);
// Register callbacks for the UDO class
myUDOclass.addDisplayHandler(this);
myUDOclass.addAttentionPointHandler(this);
myUDOclass.addFitHandler(this);
myUDOclass.addSelectionHandler(this);
myUDOclass.addEditHandler(this);
myUDOclass.addInformationHandler(this);
// Add this class to the list of object types available for

selection in NX.

// If you skip this step you won't be able to select UDO's of this
class,

// even though you registered a selection callback.

theUI.selectionManager().setSelectionStatusOfUserDefinedClass(myUDOclas
s, true);

}
}
catch(Exception ex)
{

System.out.println("Error Message");
System.out.println(ex.getMessage());

}
}
// constructor
public SimpleJavaUDO()
{

try
{

initUDO();
}
catch(Exception ex)
{

System.out.println("Caught Exception");
System.out.println(ex.getMessage());

}
}

//---

// main (Explicit Activation)
// This entry point is used to activate the application explicitly,

as in
// "File->Execute UG/Open->NX Open..."
//---

public static void main(String[] args)
{

try
{

theSimpleJavaUDO = new SimpleJavaUDO();
// if we don't have any parts open create one
BasePart myBasePart =

theSession.parts().baseDisplay();
if(myBasePart == null)
{

myBasePart =
theSession.parts().newBaseDisplay("test_java_udo.prt",
BasePart.Units.MILLIMETERS);

}

// ask the user to select an origin for this UDO
Selection.SelectScreenPositionData mySelectionData =

theUI.selectionManager().selectScreenPosition("Select Origin of Java
UDO");

if(mySelectionData.response ==
Selection.DialogResponse.PICK)

{
// The user selected a point - go ahead and

create the udo
UserDefinedObjectManager myUDOmanager =

myBasePart.userDefinedObjectManager;
UserDefinedObject firstUDO =

myUDOmanager.createUserDefinedObject(myUDOclass);
// set the color property of the udo - just

for fun :)
firstUDO.setColor(36);
// store the origin selected by the user

with the udo
double[] myUDOdoubles = new double[3];
myUDOdoubles[0] =

mySelectionData.screenPosition.x;
myUDOdoubles[1] =

mySelectionData.screenPosition.y;
myUDOdoubles[2] =

mySelectionData.screenPosition.z;
firstUDO.setDoubles(myUDOdoubles);
// add the udo to the display list manually
// this will force the udo to display

immediately

theUFSession.disp().addItemToDisplay(firstUDO.tag());
}

}
catch(Exception ex)
{

System.out.println("Caught Exception");
System.out.println(ex.getMessage());

}
}
//---

// startup
// Entrypoint used when program is loaded automatically

// as NX starts up. Note this application must be placed in a
// special folder for NX to find and load it during startup.
// Refer to the NX Open documentation for more details on how
// NX finds and loads applications during startup.
//---

public static void startup (String [] args)throws NXException,

java.rmi.RemoteException
{

try
{

theSimpleJavaUDO = new SimpleJavaUDO();
}
catch(Exception ex)
{

System.out.println("Caught Exception");
System.out.println(ex.getMessage());

}
}
//---

// getUnloadOption
// Make sure you specify AtTermination for the unload option.
// If you unload the library before the NX Session Terminates
// bad things could happen when we try to execute a udo
// callback that no longer exists in the session.
//---

public static int getUnloadOption()
{

return BaseSession.LibraryUnloadOption.AT_TERMINATION;
}

UDO Name

Before creating a user defined object in your part, you must first define the class for the UDO.

The class must contain a class name and a "user friendly" name. The class name should not

match the name of any NX object. A class name should be specified as unique to a particular

application to avoid conflicts with class names from other applications. The user friendly name

doesn't have to be unique, but using a descriptive name is advised to avoid confusing the end

users.

The method to create a UDO class and establish the class name is

CreateUserDefinedObjectClass. This method can be found in the UserDefinedClassManager.

Examples:

Code (create class)

VB myUDOclass =
theSession.UserDefinedClassManager.CreateUserDefinedObjectClass("Sam
ple_VB_UDO", "Sample VB UDO")

C# myUDOclass =
theSession.UserDefinedClassManager.CreateUserDefinedObjectClass("Sam
ple_CSharp_UDO", "Sample C# UDO");

C+
+

myUDOclass = theSession->UserDefinedClassManager()-
>CreateUserDefinedObjectClass("Sample_Cpp_UDO", "Sample C++ UDO");

Jav
a

myUDOclass =
theSession.userDefinedClassManager().createUserDefinedObjectClass("S
ample_Java_UDO", "Sample Java UDO");

Free Form Data

There are predefined areas for data types (integers, doubles, and strings) that are controlled

exclusively by the user (NX has no knowledge of the content or use of these areas and does not

perform any validation on these areas). These areas are arrays that can contain any number of

valid data element types.

There are functions for adding, editing, deleting, and querying the area for each data type.

Examples:

Code (get doubles)

VB Dim myUDOdoubles() As Double =
displayEvent.UserDefinedObject.GetDoubles()

C# double[] myUDOdoubles =
displayEvent.UserDefinedObject.GetDoubles();

C++ std::vector<double> myUDOdoubles =
displayEvent→UserDefinedObject()→GetDoubles();

Java double[] myUDOdoubles = e.userDefinedObject().getDoubles();

Code (set doubles)

VB Dim myUDOdoubles(3) As Double
myUDOdoubles(0) = myCursor.X
myUDOdoubles(1) = myCursor.Y
myUDOdoubles(2) = myCursor.Z
' store the newly selected origin with the udo
editEvent.UserDefinedObject.SetDoubles(myUDOdoubles)

C# double[] myUDOdoubles = new double[3]; myUDOdoubles[0] =
myCursor.X; myUDOdoubles[1] = myCursor.Y; myUDOdoubles[2] =
myCursor.Z; // store the newly selected origin with the udo
editEvent.UserDefinedObject.SetDoubles(myUDOdoubles);

C++ std::vector<double> myUDOdoubles(3);
myUDOdoubles[0] = myCursor.X;
myUDOdoubles[1] = myCursor.Y;
myUDOdoubles[2] = myCursor.Z;
// store the newly selected origin with the udo
editEvent->UserDefinedObject()->SetDoubles(myUDOdoubles);

Java double[] myUDOdoubles = new double[3];
myUDOdoubles[0] = mySelectionData.screenPosition.x;
myUDOdoubles[1] = mySelectionData.screenPosition.y;
myUDOdoubles[2] = mySelectionData.screenPosition.z;
// store the newly selected origin with the udo
e.userDefinedObject().setDoubles(myUDOdoubles);

Convertible Data

There are data areas (unlike the free form areas) that are converted automatically from English to

Metric or vice versa when the part file is converted. These convertible data areas are arrays of

elements which represent:

∑ Lengths — an array that can contain any number of doubles where each double represents

a unit of length (e.g. centimeters).

∑ Areas — an array that can contain any number of doubles where each double represents a

unit of area (e.g. square meters).

∑ Volumes — an array that can contain any number of doubles where each double represents

a unit of volume (e.g. cubic meters).

There are functions for adding, editing, deleting, and querying each one of the convertible data

areas.

Links to NX Objects

You can link a UDO to other NX objects using any one of five different linking mechanisms. Each

of the five link mechanisms has features that affect the behavior of NX during update and delete

events.

If: UDO is Deleted Associated Object is
Deleted

UDO is
Updated

Associated
Object is
Updated

What
happens
to:

Link Associated Object Link UDO Associated
Object

UDO

Link type 1 Removed Nothing Removed Deleted Nothing* Updated

Link type 2 Removed Deleted Nothing Nothing Nothing* Nothing

Link type 3 Removed Nothing Removed Updated Nothing* Updated

Link type 4 Removed Nothing Removed Nothing Nothing* Nothing

Owning
Link

Removed Nothing (if AssocObj
is a solid body) /

NA-The AssocObj
cannot be deleted

Nothing* Nothing

Deleted (otherwise) directly

*However, you can cause the associated object to update by registering an update function to the

UDO class.

Note:

Not every object can be linked to a UDO with every available link type. To check if a given object

may be linked to a UDO with a given link type use the IsObjectLinkable method on the

UserDefinedObjectManager class.

Known restrictions for Link Type 2

Link Type 2 can not be used to link User Defined Objects to features, solid faces, or solid edges

Note:

Cyclical links (regardless of type) are not allowed. For example, if UDO_A is linked to UDO_B, then

UDO_B should not be linked back to UDO_A.

Cyclical links are not allowed

Example VB Link Program:

'---

' This program allows you to test all of the various link types.
'
' Open a part that contains multiple smart points and execute
' this program. It will prompt you to select one of the points,
' and will then ask you to enter a number (0-4) to indicate
' the link type you wish to test.
'
' 0 = Owning link
' 1 = Type 1 link
' 2 = Type 2 link
' 3 = Type 3 link
' 4 = Type 4 link
'
' After selecting the point an link type, you will see a new

' UDO in the part that links to the selected point via the
' specified link type. The UDO is displayed as a Circle.
' The color and font of the UDO will vary depending on the
' link type you chose, it will also have text near the center
' to indicated what link type is being tested by that UDO.
'
' You may now edit the point (to see if the UDO goes through
' update when the point updates) or try to delete the point
' to see what happens to the linked UDO.
'
' After testing one link type for a while, you may decide to
' create a new UDO with a different link type to test, or
' you have the option of editing an existing UDO to use a
' new link type. If you right click on a UDO in the screen
' it will give you the option to "Edit User Defined Object".
' If you choose to edit the UDO, it will prompt you to choose
' a new link type for your UDO.
'
' NOTE: owning links have special properties for selection,
' so you won't be able to right click on the owning link UDO
' and choose edit. However, you can still edit the owning link
' UDOs. Go to the menu at the top and choose
' Edit->User Defined Object. This will bring up the selection
' dialog and allow you to choose the UDO(s) you wish to edit
' including the owning link UDOs.
'
'--

Option Strict Off
Imports System
Imports NXOpen
Imports NXOpen.UF Module

Module1
Dim myUDOclass As UserDefinedObjects.UserDefinedClass = Nothing
Dim theSession As Session = Nothing
'--

' Callback: myDisplayCB ' This is a callback method associated with

displaying a UDO.
' This same callback is registered for display, select, fit, and
' attention point.
'--

Public Function myDisplayCB(ByVal displayEvent As

UserDefinedObjects.UserDefinedDisplayEvent) As Integer
Try

Dim myUDODisplayString As String = ""

Dim myUDOLinks() As UserDefinedObjects.
UserDefinedObject.LinkDefinition = Nothing

' What type of link did we store with this udo?
Dim myUDOints() As Integer =

displayEvent.UserDefinedObject.GetIntegers

' Find the point we stored with the specified link
type

If myUDOints(0) = 0 Then
myUDOLinks =

displayEvent.UserDefinedObject.GetLinks
(UserDefinedObjects.UserDefinedObject.LinkType.Owning)

myUDODisplayString = "Own"
ElseIf myUDOints(0) = 1 Then

myUDOLinks =
displayEvent.UserDefinedObject.GetLinks
(UserDefinedObjects.UserDefinedObject.LinkType.Type1)

myUDODisplayString = "1"
ElseIf myUDOints(0) = 2 Then

myUDOLinks =
displayEvent.UserDefinedObject.GetLinks
(UserDefinedObjects.UserDefinedObject.LinkType.Type2)

myUDODisplayString = "2"
ElseIf myUDOints(0) = 3 Then

myUDOLinks =
displayEvent.UserDefinedObject.GetLinks
(UserDefinedObjects.UserDefinedObject.LinkType.Type3)

myUDODisplayString = "3"
ElseIf myUDOints(0) = 4 Then

myUDOLinks =
displayEvent.UserDefinedObject.GetLinks
(UserDefinedObjects.UserDefinedObject.LinkType.Type4)

myUDODisplayString = "4"
Else

' There was no link type defined...
' We should never get here, but if we do,

stop trying
' to display this UDO.
Return 0

End If
If myUDOLinks.Length = 0 Then

' The linked point was missing (the point
may have been deleted)

' Don't bother to display any UDO's without
linked points.

Return 0
End If

' The point linked to the UDO will define the
location of

' the UDO we're about to display
Dim myPoint As Point =

myUDOLinks(0).AssociatedObject
Dim myPointCoordinates As Point3d =

myPoint.Coordinates
' Draw some text at this location to

indicate the link type in use

displayEvent.DisplayContext.DisplayText(myUDODisplayString,
myPointCoordinates, 0)

' Draw a circle around the linked point in
the X-Z plane

' First we must define a matrix to describe
the transform from

' Absolute coordinates into the X-Z plane
this matrix is the

' "rotation" matrix for our circle.
Dim myMatrix As Matrix3x3
myMatrix.Xx = 1
myMatrix.Xy = 0
myMatrix.Xz = 0
myMatrix.Yx = 0
myMatrix.Yy = 0
myMatrix.Yz = 1
myMatrix.Zx = 0
myMatrix.Zy = -1
myMatrix.Zz = 0
' Now we must transform the origin of the

circle from Absolute coordinates
' to the coordinates of the circle (ie apply

the rotation transform).
Dim xformedPoint As Point3d =

theSession.MathUtils.Multiply(myMatrix, myPointCoordinates)
' Draw the circle now

displayEvent.DisplayContext.DisplayCircle(xformedPoint, myMatrix,
20, False)

Catch ex As NXException
' the display/selection/fit/attention

callback is called so many times
' that it's best to print this error

handling stuff in the syslog
' any interactive messages in the UI would

drive the user crazy ;)
Dim theUfSession As UFSession =

UFSession.GetUFSession()

theUfSession.UF.PrintSyslog("Caught
Exception in myDisplayCB: '" & ex.Message() & "'" & vbCrLf, False) End
Try myDisplayCB = 0

End Function
'--

' Callback: myEditCB
' This is a callback method associated with editing a UDO.
'--

Public Function myEditCB(ByVal editEvent As

UserDefinedObjects.UserDefinedEvent) As Integer
Try

Dim theUI As UI = UI.GetUI()
Dim myView As NXOpen.View = Nothing
Dim myCursor As Point3d
myCursor.X = 0
myCursor.Y = 0
myCursor.Z = 0

' highlight the current udo we are about to
edit

' this is helpful if multiple udo's were on
the selection

' list when the user decided to edit them
editEvent.UserDefinedObject.Highlight()
' Prompt the user to specify a new link type
Dim returnVal As Integer = 0
returnVal = InputBox("Enter a number between

0 and 4", "Select Link Type", returnVal)

' We're done asking the user for input,
' it is safe to unhighlight the udo now

editEvent.UserDefinedObject.Unhighlight()
' Validate the user's input
If returnVal < 0 Then

MsgBox("Invalid input - UDO was not
edited", MsgBoxStyle.OkOnly)

Return 0
End If
If returnVal > 4 Then

MsgBox("Invalid input - UDO was not
edited", MsgBoxStyle.OkOnly)

Return 0
End If
' Verify that the user selected something

different from the original value

Dim myUDOints() As Integer =
editEvent.UserDefinedObject.GetIntegers

If myUDOints(0) = returnVal Then
MsgBox("UDO link type (" &

myUDOints(0) & ") was unchanged", MsgBoxStyle.OkOnly)
Return 0

End If
' We have a new link type, so remove the old

linked objects from the UDO
Dim myLinks() As

UserDefinedObjects.UserDefinedObject.LinkDefinition = Nothing
If myUDOints(0) = 0 Then

myLinks =
editEvent.UserDefinedObject.PopLinks(UserDefinedObjects.UserDefinedObje
ct.LinkType.Owning, 1)

ElseIf myUDOints(0) = 1 Then
myLinks =

editEvent.UserDefinedObject.PopLinks(UserDefinedObjects.UserDefinedObje
ct.LinkType.Type1, 1)

ElseIf myUDOints(0) = 2 Then
myLinks =

editEvent.UserDefinedObject.PopLinks(UserDefinedObjects.UserDefinedObje
ct.LinkType.Type2, 1)

ElseIf myUDOints(0) = 3 Then
myLinks =

editEvent.UserDefinedObject.PopLinks(UserDefinedObjects.UserDefinedObje
ct.LinkType.Type3, 1)

ElseIf myUDOints(0) = 4 Then
myLinks =

editEvent.UserDefinedObject.PopLinks(UserDefinedObjects.UserDefinedObje
ct.LinkType.Type4, 1)

End If
' Update the status of the link object we

just removed
myLinks(0).Status =

UserDefinedObjects.UserDefinedObject.LinkStatus.UpToDate

' Store the integer selected by the user
with the udo.

' This integer will indicate the link type
we are testing

' for this given UDO
myUDOints(0) = returnVal

editEvent.UserDefinedObject.SetIntegers(myUDOints)

' Set the display properties so users can
"see" what

' link type is used for the UDO and add the
old link objects

' back onto the udo with the new link type
If returnVal = 0 Then

editEvent.UserDefinedObject.SetLinks
(UserDefinedObjects.UserDefinedObject.LinkType.Owning, myLinks)

editEvent.UserDefinedObject.LineFont =
DisplayableObject.ObjectFont.Solid

editEvent.UserDefinedObject.LineWidth =
DisplayableObject.ObjectWidth.Normal

editEvent.UserDefinedObject.Color = 186
ElseIf returnVal = 1 Then

editEvent.UserDefinedObject.SetLinks
(UserDefinedObjects.UserDefinedObject.LinkType.Type1, myLinks)

editEvent.UserDefinedObject.LineFont =
DisplayableObject.ObjectFont.Dashed

editEvent.UserDefinedObject.LineWidth =
DisplayableObject.ObjectWidth.Normal

editEvent.UserDefinedObject.Color = 36
ElseIf returnVal = 2 Then

editEvent.UserDefinedObject.SetLinks
(UserDefinedObjects.UserDefinedObject.LinkType.Type2, myLinks)

editEvent.UserDefinedObject.LineFont =
DisplayableObject.ObjectFont.Dotted

editEvent.UserDefinedObject.LineWidth =
DisplayableObject.ObjectWidth.Normal

editEvent.UserDefinedObject.Color = 36
ElseIf returnVal = 3 Then

editEvent.UserDefinedObject.SetLinks
(UserDefinedObjects.UserDefinedObject.LinkType.Type3, myLinks)

editEvent.UserDefinedObject.LineFont =
DisplayableObject.ObjectFont.Dashed

editEvent.UserDefinedObject.LineWidth =
DisplayableObject.ObjectWidth.Thick

editEvent.UserDefinedObject.Color = 211
ElseIf returnVal = 4 Then

editEvent.UserDefinedObject.SetLinks
(UserDefinedObjects.UserDefinedObject.LinkType.Type4, myLinks)

editEvent.UserDefinedObject.LineFont =
DisplayableObject.ObjectFont.Dotted

editEvent.UserDefinedObject.LineWidth =
DisplayableObject.ObjectWidth.Thick

editEvent.UserDefinedObject.Color = 211
End If

' Add the udo to the display list manually.
' This will force the udo to display immediately
Dim theUfSession As UFSession =

UFSession.GetUFSession()

theUfSession.Disp.AddItemToDisplay(editEvent.UserDefinedObject.Tag(
))

Catch ex As NXException
Dim theLW As ListingWindow =

theSession.ListingWindow
theLW.Open()
theLW.WriteLine("Caught Exception in myEditCB: '" &

ex.Message() & "'")
End Try
myEditCB = 0

End Function

'--

' Callback: myUpdateCB
' This is a callback method allows you to define the update
' behavior of your UDO. It is only used for specific link

types.
'
' If your associated object goes through update and it was

linked via:
' * owning link - this callback is NOT used
' * type l link - this callback is executed
' * type 2 link - this callback is NOT used
' * type 3 link - this callback is executed
' * type 4 link - this callback is NOT used
'--

Public Function myUpdateCB(ByVal updateEvent As

UserDefinedObjects.UserDefinedLinkEvent) As Integer
Dim theLW As ListingWindow =

theSession.ListingWindow
theLW.Open()
Try

' Print information to the listing window
about what

' triggered this call to update the udo
Dim theUfSession As UFSession =

UFSession.GetUFSession()
If updateEvent.AssociatedObject Is Nothing

Then
theLW.WriteLine("Inside Update

Callback for UDO (" & updateEvent.UserDefinedObject.Tag() & ") with
linktype " & updateEvent.LinkType & " to NULL object")

Else
Dim assocObjStatus As Integer =

theUfSession.Obj.AskStatus(updateEvent.AssociatedObject.Tag())

If assocObjStatus = 0 Then
theLW.WriteLine("Inside

Update Callback for UDO (" & updateEvent.UserDefinedObject.Tag() & ")
with linktype " & updateEvent.LinkType & " to DELETED object (" &
updateEvent.AssociatedObject.Tag() & ")")

ElseIf assocObjStatus = 1 Then
theLW.WriteLine("Inside

Update Callback for UDO (" & updateEvent.UserDefinedObject.Tag() & ")
with linktype " & updateEvent.LinkType & " to TEMPORARY object (" &
updateEvent.AssociatedObject.Tag() & ")")

ElseIf assocObjStatus = 2 Then
theLW.WriteLine("Inside

Update Callback for UDO (" & updateEvent.UserDefinedObject.Tag() & ")
with linktype " & updateEvent.LinkType & " to CONDEMNED object (" &
updateEvent.AssociatedObject.Tag() & ")")

Else
theLW.WriteLine("Inside

Update Callback for UDO (" & updateEvent.UserDefinedObject.Tag() & ")
with linktype " & updateEvent.LinkType & " to ALIVE object (" &
updateEvent.AssociatedObject.Tag() & ")")

End If
End If theLW.WriteLine(" ")

Catch ex As NXException
theLW.WriteLine("Caught Exception in

myUpdateCB: '" & ex.Message() & "'")
End Try
myUpdateCB = 0

End Function

'--

' Callback: myDeleteCB
' This is callback is invoked whenever your linked objects

get deleted.
' When the linked object is deleted different things can

happen
' depending on the link type used.
'
' If your associated object goes through delete and it was

linked via:
' * owning link - Not Available - you can not delete an

object
' when it's owned by a UDO (unless that object is
' a solid body, but this example links to points
' so we don't have to worry about that case).
' * type l link - After executing this callback the UDO

itself is deleted
' along with the point.

' * type 2 link - The linked object isn't really deleted
it's marked as

' "condemned" and then this callback is invoked.
' * type 3 link - After executing this callback the point

is deleted, the
' link is removed from the UDO, and UDO itself is updated.
' * type 4 link - After executing this callback the point

is deleted, and
' the link is removed from the UDO.
'
' NOTE: With the way this particular UDO's display callback

was designed,
' if the links are removed from the UDO, it will no longer

be visible.
' Just because you don't see it anymore, does not necessary

mean
' the UDO has been deleted (as what happens with both link

type 3
' and link type 4). UDO's with link type 1 are the only

UDO's to
' commit suicide (delete themselves) whenever the linked

object gets ' deleted.
'--

Public Function myDeleteCB(ByVal updateEvent As

UserDefinedObjects.UserDefinedLinkEvent) As Integer
Dim theLW As ListingWindow =

theSession.ListingWindow
theLW.Open()
Try

' Print information to the listing window
about what

' triggered this call to the delete callback
of the udo

If updateEvent.AssociatedObject Is Nothing
Then

theLW.WriteLine("Inside Delete
Callback for UDO (" & updateEvent.UserDefinedObject.Tag() & ") with
linktype " & updateEvent.LinkType & " and NULL link object")

Else
Dim theUfSession As UFSession =

NXOpen.UF.UFSession.GetUFSession()
Dim assocObjStatus As Integer =

theUfSession.Obj.AskStatus(updateEvent.AssociatedObject.Tag())
If assocObjStatus = 0 Then

theLW.WriteLine("Inside
Delete Callback for UDO (" & updateEvent.UserDefinedObject.Tag() & ")
with linktype " & updateEvent.LinkType & " to DELETED object (" &
updateEvent.AssociatedObject.Tag() & ")")

ElseIf assocObjStatus = 1 Then
theLW.WriteLine("Inside

Delete Callback for UDO (" & updateEvent.UserDefinedObject.Tag() & ")
with linktype " & updateEvent.LinkType & " to TEMPORARY object (" &
updateEvent.AssociatedObject.Tag() & ")")

ElseIf assocObjStatus = 2 Then
theLW.WriteLine("Inside

Delete Callback for UDO (" & updateEvent.UserDefinedObject.Tag() & ")
with linktype " & updateEvent.LinkType & " to CONDEMNED object (" &
updateEvent.AssociatedObject.Tag() & ")")

Else
theLW.WriteLine("Inside

Delete Callback for UDO (" & updateEvent.UserDefinedObject.Tag() & ")
with linktype " & updateEvent.LinkType & " to ALIVE object (" &
updateEvent.AssociatedObject.Tag() & ")")

End If
End If
If updateEvent.LinkType = 0 Then

theLW.WriteLine("This should not be
possible - you can't delete owned objects.")

theLW.WriteLine("Note: owned solid
bodies can be deleted through modeling, but this demo links to points
not bodies.")

ElseIf updateEvent.LinkType = 1 Then
theLW.WriteLine("The UDO will now

delete itself.")
ElseIf updateEvent.LinkType = 2 Then

theLW.WriteLine("The point was not deleted it is now condemned (ie
invisible, but still exists in the part).")

ElseIf updateEvent.LinkType = 3 Then
theLW.WriteLine("We will soon break

the link in the UDO and force the UDO to go through update")
theLW.WriteLine("Without the linked

point, this UDO's display callback won't do anything.")
theLW.WriteLine("You will no longer

be able to see this UDO on the screen, but it still exists in the
part.")

ElseIf updateEvent.LinkType = 4 Then
theLW.WriteLine("We will soon break

the link in the UDO.") theLW.WriteLine("Without the linked point, this
UDO's display callback won't do anything.")

theLW.WriteLine("You will no longer
be able to see this UDO on the screen, but it still exists in the
part.")

theLW.WriteLine("Also note you may
need to regenerate the display before the UDO disappears.")

theLW.WriteLine("Go to View->Layout-
>Regenerate.")

End If

theLW.WriteLine(" ")
Catch ex As NXException

theLW.WriteLine("Caught Exception in
myDeleteCB: '" & ex.Message() & "'")

End Try
myDeleteCB = 0

End Function

'--

' initUDO ' Checks to see which (if any) of the application's
static

' variables are uninitialized, and sets them accordingly.
' Initializes the UDO class and registers all of its
' callback methods.
'--

Public Function initUDO(ByVal alertUser As Boolean) As Integer

Try
If theSession Is Nothing Then

theSession = Session.GetSession()
End If
If myUDOclass Is Nothing Then

If alertUser = True Then
MsgBox("Registering VB UDO Class",

MsgBoxStyle.OkOnly)
End If
myUDOclass =

theSession.UserDefinedClassManager.CreateUserDefinedObjectClass("VB_Lin
k_Test_UDO", "VB Link Test UDO")

myUDOclass.AllowQueryClassFromName =
UserDefinedObjects.UserDefinedClass.AllowQueryClass.On

myUDOclass.AllowOwnedObjectSelectionOption =
UserDefinedObjects.UserDefinedClass.AllowOwnedObjectSelection.On

myUDOclass.AddDisplayHandler(AddressOf
myDisplayCB)

myUDOclass.AddAttentionPointHandler(AddressOf myDisplayCB)
myUDOclass.AddFitHandler(AddressOf

myDisplayCB)
myUDOclass.AddSelectionHandler(AddressOf

myDisplayCB)
myUDOclass.AddEditHandler(AddressOf

myEditCB)
myUDOclass.AddUpdateHandler(AddressOf

myUpdateCB)
myUDOclass.AddDeleteHandler(AddressOf

myDeleteCB)
Dim theUI As UI = UI.GetUI()

theUI.SelectionManager.SetSelectionStatusOfUserDefinedClass(myUDOcl
ass, True)

End If
Catch ex As NXException

' We may be initializing the UDO class during NX
Startup

' Print any error messages directly to the syslog
Dim theUfSession As UFSession =

UFSession.GetUFSession()
theUfSession.UF.PrintSyslog("Caught Exception in

initUDO: '" & ex.Message() & "'" & vbCrLf, False)
End Try
initUDO = 0

End Function
'--

' NX Startup
' Startup entrypoint used when program is loaded automatically
' as NX starts up. Note this application must be placed in a
' special folder for NX to find and load it during startup.
' Refer to the NX Open documentation for more details on how
' NX finds and loads applications during startup.
'--

Public Function Startup() As Integer

initUDO(False)
Startup = 0

End Function ' Startup ends
'--

' Explicit Activation
' This entry point is used to activate the application explicitly
' via File->Execute->NX Open...
'--

Sub Main()

Try
' in case we didn't load this dll at startup...
' attempt to initialize the UDO class
initUDO(True)

Dim theUI As UI = UI.GetUI()
Dim theUfSession As UFSession =

UFSession.GetUFSession()

' if we don't have any parts open create one
Dim myBasePart As BasePart =

theSession.Parts.BaseDisplay

If myBasePart Is Nothing Then
myBasePart =

theSession.Parts.NewBaseDisplay("test_vb_udo.prt",
BasePart.Units.Millimeters)

End If

Dim myView As NXOpen.View = Nothing
Dim myCursor As Point3d
myCursor.X = 0
myCursor.Y = 0
myCursor.Z = 0

' Prompt user to select a point
Dim selectedPoint As NXObject = Nothing
Dim mask(0) As Selection.MaskTriple
mask(0).Type = NXOpen.UF.UFConstants.UF_point_type
mask(0).Subtype =

NXOpen.UF.UFConstants.UF_point_subtype
theUI.SelectionManager.SelectObject("Select point to

link to UDO", "Select point",
Selection.SelectionScope.WorkPart, _

Selection.SelectionAction.ClearAndEnableSpecific, False, False, mask, _
selectedPoint, myCursor)

If selectedPoint Is Nothing Then Return
' Prompt user to select a link type to test
' (Owning, Type 1, Type 2, Type 3, or Type

4)
Dim returnVal As Integer
returnVal = 0 returnVal = InputBox("Enter a

number between 0 and 4", "Select Link Type", returnVal)
' Validate the input
If returnVal < 0 Then

Return
End If
If returnVal > 4 Then

Return
End If
' The user selected a valid point and link

type
' go ahead and create the udo
Dim myUDOmanager As

UserDefinedObjects.UserDefinedObjectManager =
myBasePart.UserDefinedObjectManager

Dim firstUDO As
UserDefinedObjects.UserDefinedObject =
myUDOmanager.CreateUserDefinedObject(myUDOclass)

' set the display properties so users can
"see" what

' link type is used for the udo and add the
old link objects

' back onto the udo with the new link type
Dim myLinks(0) As

UserDefinedObjects.UserDefinedObject.LinkDefinition
myLinks(0).AssociatedObject = selectedPoint
myLinks(0).Status =

UserDefinedObjects.UserDefinedObject.LinkStatus.UpToDate
If returnVal = 0 Then

firstUDO.LineFont =
DisplayableObject.ObjectFont.Solid

firstUDO.LineWidth =
DisplayableObject.ObjectWidth.Normal

firstUDO.Color = 186
firstUDO.SetLinks

(UserDefinedObjects.UserDefinedObject.LinkType.Owning, myLinks)
ElseIf returnVal = 1 Then

firstUDO.LineFont =
DisplayableObject.ObjectFont.Dashed

firstUDO.LineWidth =
DisplayableObject.ObjectWidth.Normal

firstUDO.Color = 36 firstUDO.SetLinks
(UserDefinedObjects.UserDefinedObject.LinkType.Type1, myLinks)

ElseIf returnVal = 2 Then
firstUDO.LineFont =

DisplayableObject.ObjectFont.Dotted
firstUDO.LineWidth =

DisplayableObject.ObjectWidth.Normal
firstUDO.Color = 36
firstUDO.SetLinks

(UserDefinedObjects.UserDefinedObject.LinkType.Type2, myLinks)
ElseIf returnVal = 3 Then

firstUDO.LineFont =
DisplayableObject.ObjectFont.Dashed

firstUDO.LineWidth =
DisplayableObject.ObjectWidth.Thick

firstUDO.Color = 211
firstUDO.SetLinks

(UserDefinedObjects.UserDefinedObject.LinkType.Type3, myLinks)
Else

firstUDO.LineFont =
DisplayableObject.ObjectFont.Dotted

firstUDO.LineWidth =
DisplayableObject.ObjectWidth.Thick

firstUDO.Color = 211
firstUDO.SetLinks

(UserDefinedObjects.UserDefinedObject.LinkType.Type4, myLinks)
End If

' store the integer selected by the user
with the udo

' this integer will indicate the link type
we are testing

' for this given udo
Dim myUDOints(0) As Integer
myUDOints(0) = returnVal
firstUDO.SetIntegers(myUDOints)

' add the udo to the display list manually
' this will force the udo to display

immediately
theUfSession =

NXOpen.UF.UFSession.GetUFSession()

theUfSession.Disp.AddItemToDisplay(firstUDO.Tag())
Catch ex As NXException

Dim theLW As ListingWindow =
theSession.ListingWindow

theLW.Open()
theLW.WriteLine("Caught Exception in Main:

'" & ex.Message() & "'")
End Try

End Sub

'--

' GetUnloadOption
' Tells NX when to unload this application.
' This MUST return AtTermination because we have UDO callbacks
' defined in this program. Otherwise NX could try to call
' one of the UDO callbacks, after it had already unloaded
' the application.
'--

Public Function GetUnloadOption(ByVal dummy As String) As Integer

'Unloads the image when the NX session terminates
GetUnloadOption =

NXOpen.Session.LibraryUnloadOption.AtTermination
End Function

End Module

This program lets you link to existing points in a part with any of the 5 link types. Then by editing

and deleting the points you can force the UDO's update and delete callbacks to get invoked. This

will help you learn how the various link types work in NX.

The image above shows a part with a block and many points. UDO's with links to some of the

points were created via the example VB link program above. The red UDO with the solid font on

the left has an owning link to the point at the center of the circle. The green dashed UDO at the

bottom center of the image uses a link type 1. The green dotted UDO at the bottom right uses a

link type 2. The blue dashed UDO at the top center uses a type 3 link. Last the blue dotted UDO

on the top right uses a link type 4. NOTE: the actual colors may vary when you run the program

depending on the color palette you have loaded in your session.

UDO Owning Link

Selection with Owning Links:

A UDO Owning Link links a UDO with an NX object. A UDO with owning links has some unique

interactive selection qualities. Interactively, when you select an NX object, that is referenced to a

UDO by an owning link, you are directly selecting BOTH the associated UDO and the NX object

itself. For example, if you perform an Information Object on an point that is referenced by an

UDO owning link, then the information you receive is from both the associated UDO and the

point.

There are times where you may not want to select both the owned object, and the owning UDO.

For example, if your UDO computes the knot points of a spline, and then creates the spline as an

owned object, you may want to allow selection of the spline so that it can be used in modeling to

create an extrusion. In this case you would want to set your UDO class to allow the selection of

owned objects. This option is controlled by the AllowOwnedObjectSelectionOption property on

the UserDefinedClass.

If AllowOwnedObjectSelectionOption is set to "On" and you select the owned object, if the owning

UDO is also selectable, the Quick Pick dialog will pop up and allow you to select either the owned

object or the UDO. Now if you select the UDO, you will in effect select both the owned object and

the owning UDO (assuming the class selection filters allow their selections). If the UDO is not

eligible for selection, picking the owned object will select the owned object only, and the Quick

Pick dialog will not show the UDO in the list of selectable objects at that location. Notice that the

class selection filter can still be used to filter out selections. If the filter is set to filter out the type

of the owned object, then picking the UDO will result in the selection of only the UDO and the

owned object will not be selected.

Additional Rules for Owning Links:

The UDO owning links have similar properties to link types 1-4 which are as follows:

∑ If the UDO is deleted, then the link between the UDO and the associated object is removed

and the associated object itself is deleted, if it is not a solid body. If the owned object is a

solid, then only the link is broken, and the solid body is left alone.

∑ The associated object cannot be deleted directly. However if the owned object is a solid,

then the solid may still be selected through modeling selection where the feature list is

presented to the user. For example, it may be deleted through EditFeatureDelete Feature.

This is because ultimately modeling is in control of all solid bodies.

∑ If the UDO is updated, then the associated object is unaffected. However, you can cause the

associated object to update by registering an update function to the UDO class. Then you

can make changes to the associated object, in the UDO update method.

∑ If an associated object is updated, the UDO is unaffected.

A UDO can have more than one owning link. For example, UDO_A can have owning links to the

following NX objects: NX_obj1, NX_obj2, and NX_obj3. Selection of UDO_A will result in the

selection of all three objects, provided three are all selectable. Although a UDO can have owning

links to more than one NX object, the converse is not true. An NX object can only be owned by

one UDO.

UDOs can own other UDOs, so you can have the chain:

UDO1 owns UDO2 owns UDO3 owns point1

Events for UDOs

UDOs can participate in certain NX events through registered callback functions which are

referred to as methods. The methods are function pointers which are arguments to the callback

registration functions.

There are many events that trigger callbacks for UDO participation:

∑ Display - the three different display events include: self display (including plotting and CGM

file creation), attention point assignment, and fit to view.

∑ Selection - the selection callback should be the same as the display callback.

∑ Update - allows you to keep objects up to date as the model changes.

∑ Delete - allows you to realign data in the free form and convertible data areas as associated

objects are removed from the data model.

∑ Edit - allows custom code to execute when the user attempts to edit the UDO.

∑ Information - allows custom code to execute when the user attempts to query information

from the UDO.

Display

NX has no knowledge of how or where a UDO should be displayed. Therefore if you want

something visible in the screen to indicate the presence of a UDO, you must define and register

your own display callback. If any of the display callbacks (self display, attention point, and fit) are

to be used, then all of them should be used and the same callback may be registered for all three

events.

Examples:

Code (register display methods)

VB myUDOclass.AddDisplayHandler(AddressOf myDisplayCB)
myUDOclass.AddAttentionPointHandler(AddressOf
myDisplayCB) myUDOclass.AddFitHandler(AddressOf myDisplayCB)

C# myUDOclass.AddDisplayHandler(new
UserDefinedClass.DisplayCallback(Program.myDisplayCB));
myUDOclass.AddAttentionPointHandler(new
UserDefinedClass.DisplayCallback(Program.myDisplayCB));
myUDOclass.AddFitHandler(new
UserDefinedClass.DisplayCallback(Program.myDisplayCB));

C++ myUDOclass->AddDisplayHandler(make_callback(&myDisplayCB));
myUDOclass->AddAttentionPointHandler(make_callback(&myDisplayCB));
myUDOclass->AddFitHandler(make_callback(&myDisplayCB));

Java // be sure to declare your class so that it knows about the
callback implementation
public class SimpleJavaUDO implements
nxopen.userdefinedobjects.UserDefinedClass.DisplayCallback,
nxopen.userdefinedobjects.UserDefinedClass.GenericCallback
// then use code like this to actually register the class with the
callbacks
myUDOclass.addDisplayHandler(this);
myUDOclass.addAttentionPointHandler(this);
myUDOclass.addFitHandler(this);

The actual display is processed as a result of a series of primitive display routines within the

context of the callback. The input data for the primitive display functions is with respect to the

absolute coordinate system. The only exceptions to this rule are the Arc and Circle. The Arc and

Circle display function take in a matrix to define the orientation of the plane containing the

Arc/Circle (use the identity matrix if you want the Arc/Circle displayed in the XY plane). The

centerpoint of the circle is the original point in absolute coordinates, trasformed by the rotation

matrix.

The primitive display functions live on the UserDefinedObjectDisplayContext object and include:

∑ DisplayArc

∑ DisplayCircle

∑ DisplayPolyline

∑ DisplayPoints

∑ DisplayPolygon

∑ DisplayText

∑ DisplayFacets

Examples:

Code (display circle)

VB ' Draw a circle around the linked point in the X-Z plane
' First we must define a matrix to describe the transform from
' Absolute coordinates into the X-Z plane this matrix is the
' "rotation" matrix for our circle.
Dim myMatrix As Matrix3x3
myMatrix.Xx = 1
myMatrix.Xy = 0
myMatrix.Xz = 0

myMatrix.Yx = 0
myMatrix.Yy = 0
myMatrix.Yz = 1
myMatrix.Zx = 0
myMatrix.Zy = -1
myMatrix.Zz = 0
' Now we must transform the origin of the circle from Absolute
coordinates
' to the coordinates of the circle (ie apply the rotation
transform).
Dim xformedPoint As Point3d =
theSession.MathUtils.Multiply(myMatrix, myPointCoordinates)
' Draw the circle now
displayEvent.DisplayContext.DisplayCircle(xformedPoint, myMatrix,
20, False)

Code (display polyline)

VB Dim myPoints(3) As Point3d
myPoints(0).X = myUDOdoubles(0) + 0
myPoints(0).Y = myUDOdoubles(1) + 0
myPoints(0).Z = myUDOdoubles(2) + 0

myPoints(1).X = myUDOdoubles(0) + 100
myPoints(1).Y = myUDOdoubles(1) + 0
myPoints(1).Z = myUDOdoubles(2) + 0

myPoints(2).X = myUDOdoubles(0) + 0
myPoints(2).Y = myUDOdoubles(1) + 100
myPoints(2).Z = myUDOdoubles(2) + 0

myPoints(3).X = myUDOdoubles(0) + 0
myPoints(3).Y = myUDOdoubles(1) + 0
myPoints(3).Z = myUDOdoubles(2) + 0

' Display the triangle
displayEvent.DisplayContext.DisplayPolyline(myPoints)

C# Point3d[] myPoints = new Point3d[4];
myPoints[0].X = myUDOdoubles[0] + 0;
myPoints[0].Y = myUDOdoubles[1] + 0;
myPoints[0].Z = myUDOdoubles[2] + 0;

myPoints[1].X = myUDOdoubles[0] + 100;

myPoints[1].Y = myUDOdoubles[1] + 0;
myPoints[1].Z = myUDOdoubles[2] + 0;

myPoints[2].X = myUDOdoubles[0] + 0;
myPoints[2].Y = myUDOdoubles[1] + 100;
myPoints[2].Z = myUDOdoubles[2] + 0;

myPoints[3].X = myUDOdoubles[0] + 0;
myPoints[3].Y = myUDOdoubles[1] + 0;
myPoints[3].Z = myUDOdoubles[2] + 0;

// Display the triangle
displayEvent.DisplayContext.DisplayPolyline(myPoints);

C++ std::vector<Point3d> myPoints(4);
myPoints[0].X = myUDOdoubles[0] + 0;
myPoints[0].Y = myUDOdoubles[1] + 0;
myPoints[0].Z = myUDOdoubles[2] + 0;

myPoints[1].X = myUDOdoubles[0] + 100;
myPoints[1].Y = myUDOdoubles[1] + 0;
myPoints[1].Z = myUDOdoubles[2] + 0;

myPoints[2].X = myUDOdoubles[0] + 0;
myPoints[2].Y = myUDOdoubles[1] + 100;
myPoints[2].Z = myUDOdoubles[2] + 0;

myPoints[3].X = myUDOdoubles[0] + 0;
myPoints[3].Y = myUDOdoubles[1] + 0;
myPoints[3].Z = myUDOdoubles[2] + 0;

// Display the triangle
displayEvent->DisplayContext()->DisplayPolyline(myPoints);

Java Point3d[] myPoints = new Point3d[] {new Point3d(myUDOdoubles[0] +
0,
myUDOdoubles[1] + 0,
myUDOdoubles[2] + 0),
new Point3d(myUDOdoubles[0] + 100,
myUDOdoubles[1] + 0,
myUDOdoubles[2] + 0),
new Point3d(myUDOdoubles[0] + 0,
myUDOdoubles[1] + 100,
myUDOdoubles[2] + 0),
new Point3d(myUDOdoubles[0] + 0,
myUDOdoubles[1] + 0,
myUDOdoubles[2] + 0)};
// Display the triangle
e.displayContext().displayPolyline(myPoints);

Code (display text)

VB Dim myPt As Point3d
myPt.X = myUDOdoubles(0) + 100
myPt.Y = myUDOdoubles(1) + 0
myPt.Z = myUDOdoubles(2) + 0
displayEvent.DisplayContext.DisplayText("VB .Net UDO", myPt, 0)

C# Point3d myPt = new Point3d();
myPt.X = myUDOdoubles[0] + 100;
myPt.Y = myUDOdoubles[1] + 0;
myPt.Z = myUDOdoubles[2] + 0;
displayEvent.DisplayContext.DisplayText("C# UDO", myPt, 0);

C++ Point3d myPt = Point3d(myUDOdoubles[0] + 100, myUDOdoubles[1],

myUDOdoubles[2]);
displayEvent->DisplayContext()->DisplayText("C++ UDO", myPt,
UserDefinedObjectDisplayContext::TextRefBottomLeft);

Java Point3d myPt = new Point3d();
myPt.x = myUDOdoubles[0] + 100;
myPt.y = myUDOdoubles[1] + 0;
myPt.z = myUDOdoubles[2] + 0;
e.displayContext().displayText("JAVA UDO", myPt,
UserDefinedObjectDisplayContext.TextRef.BOTTOM_LEFT);

Note:

The display callbacks should not perform any operations other than the primitive display

functions listed above. In particular, you should never use the following routines in any display

callback function:

∑ Any routine that Regenerates the Display

∑ Any routine that Queries or Sets the Work or Displayed Part

∑ Any routine that alters data in the part.

The same function can be used for all three methods because they all have the same basic code

structure, and in most cases the same area that is occupied by the UDO on the screen for display

is the same area you want defined for the fit and attention point operations. If you have a special

circumstance where you really want different behavior for the three methods, the event reason

can be used to determine the actual cause of the callback.

Selection

NX has no knowledge of how to select a UDO, or what set of points define the UDO (ie where

must you place your mouse on the screen to select this UDO). Therefore if you want to be able to

select your UDO, you must define and register your own selection callback. The selection

callback should be the same function you registered as your display callback. If you use different

functions for display and selection, then the set of points used to display your UDO may not be

the same as the set of points your mouse must land on to select the UDO (this would lead to

mass confusion of anyone trying to use your UDO).

Examples:

Code (register selection method)

VB myUDOclass.AddSelectionHandler(AddressOf myDisplayCB)

C# myUDOclass.AddSelectionHandler(new
UserDefinedClass.DisplayCallback(Program.myDisplayCB));

C++ myUDOclass->AddSelectionHandler(make_callback(&myDisplayCB));

Java // be sure to declare your class so that it knows about the
callback implementation
public class SimpleJavaUDO implements
nxopen.userdefinedobjects.UserDefinedClass.DisplayCallback,

nxopen.userdefinedobjects.UserDefinedClass.GenericCallback
// then use code like this to actually register the class with the
callbacks
myUDOclass.addSelectionHandler(this);

In addition to the registered selection method, you need to tell NX to enable selection for the

UDO class. For example if you go to to Information Object the class selection dialog will launch.

Choose the option to filter by types in this dialog, and you will see a list of all of the types

available for selection. If you don't enable selection for this UDO class, then the UDO class will

never appear in that list of available types, and UDO's of this class will never be selectable. Note

the User Friendly name is the class name listed for a UDO in the filter by types dialog.

Examples:

Code (enable selection)

VB theUI.SelectionManager.SetSelectionStatusOfUserDefinedClass(myUDOcl
ass, True)

C# theUI.SelectionManager.SetSelectionStatusOfUserDefinedClass(myUDOcl
ass, true);

C++ theUI->SelectionManager()-
>SetSelectionStatusOfUserDefinedClass(myUDOclass, true);

Jav
a

theUI.selectionManager().setSelectionStatusOfUserDefinedClass(myUDO
class, true);

Note:

Owning links have special selection properties. If the UDO class is enabled for selection, and all of

the UDO's in that class own NX objects, you can select the owned NX object, you can select the

owned object and both the UDO and owned objects will be selected. Therefore if you used owned

objects, the UDO can be selected even without having registered a selection callback.

Update

The mechanism within NX that keeps all of the objects up to date as the model changes is called

the update mechanism.

As objects change in the data model, other objects need to be notified about those changes so

they keep up to date with respect to the model. For example, if a dimension is assigned to the

height of a block and the block's height changes, the dimension needs to be notified so that it can

reflect the new height. As objects are involved in the update mechanism, they are examined for

associations with other objects (such as UDOs linked via LinkType.Type1 and LinkType.Type3)

that require those linked objects to be updated in addition to the original object. If any such

associations are found, the associated objects are added to the list of items to be updated, and

the process continues. (This is why cyclic relationships are not allowed as mentioned earlier in

the Links section.) Each item on the update list is then accessed and processed during update.

The update method available with UDOs is called when an object associated to a UDO with

either a link type 1 or a link type 3 association passed through update. By definition associated

objects going through update that are linked to a UDO, with link type 2, 4, or with an owning link

do not add the UDO to the update list. Therefore, an associated object with link type 2, or 4, or

owning link does not invoke the update method.

As with any UDO callback method the update method must be registered in the NX session.

Examples:

Code (register update method)

VB myUDOclass.AddUpdateHandler(AddressOf myUpdateCB)

C# myUDOclass.AddUpdateHandler(new
UserDefinedClass.LinkCallback(Program.myUpdateCB));

C++ myUDOclass->AddUpdateHandler(make_callback(&myUpdateCB));

Java // be sure to declare your class so that it knows about the
callback implementation public class MyJavaUDO implements
nxopen.userdefinedobjects.UserDefinedClass.LinkCallback
// then use code like this to actually register the class with the
callbacks myUDOclass.addUpdateHandler(this);

The update method has a UserDefinedLinkEvent input object to give you information about the

reason the update method was called.

Refer to the Example VB Link Program above to see the implementation of an update callback

named myUpdateCB.

If a UDO is linked to a number of NX objects using link types 1 or 3 and has an update callback

registered, an update of the UDO will be caused by changes to any one (or more) of the linked

NX objects. The update callback will be called only after all of the associated objects are

updated. In other words, the UDO's registered callback is called only once per update cycle,

regardless of how many associated objects are modified. The AssociatedObject property of the

update callback's eventObject (update cause) argument contains only one of the object tags

which may have changed. The callback should assume that everything that the UDO depends on

has already changed and update itself accordingly.

While within the update callback, you may freely query the data model. You may also edit the

free form data areas in the UDO. Additionally, you may display a dialog (if running an internal -

non batch - program) to inform the NX user of the affect the edit may have on the UDO. If you

display any dialogs be sure you use UI's LockAccess and UnlockAccess methods around the call

to launch your dialog.

There are restrictions on the types of actions that can be performed during the context of this

callback. These restrictions are necessary to keep the context of the system correct and because

the update mechanism can not cope with recursive invocations. The restrictions are:

∑ Never explicitly invoke the update process again. This may occur by using

Update.DoUpdate, or by creating a new feature.

∑ Never change the work part.

∑ Delete
∑

∑ As objects associated to the UDO are deleted from the model, it may be necessary to

realign data in the free form data areas or in the convertible data areas to reflect the

removal of the associated objects from the data model. The notification during the delete

callback should enable this realignment. Note that the associated objects may not be alive

when this method is called. If you have UDO with a link type 2 and attempt to delete the

associated object, when the delete callback is executed the associated object in the link

event is already in a condemned state.

∑ Examples:

Code (register delete method)

VB myUDOclass.AddDeleteHandler(AddressOf myDeleteCB)

C# myUDOclass.AddDeleteHandler(new
UserDefinedClass.LinkCallback(Program.myDeleteCB));

C++ myUDOclass->AddDeleteHandler(make_callback(&myDeleteCB));

Java // be sure to declare your class so that it knows about the
callback implementation public class MyJavaUDO implements
nxopen.userdefinedobjects.UserDefinedClass.LinkCallback
// then use code like this to actually register the class with the
callbacks myUDOclass.addDeleteHandler(this);

∑

∑ Refer to the Example VB Link Program above to see the implementation of an delete

callback named myDeleteCB.

∑ Edit
∑
∑ The edit callback allows you to define what it means to Edit your UDO. If you register an

edit callback for your UDO, when you right-click on your UDO in the screen you will have

the option to "Edit User Defined Object". If you do not register an edit callback for your

class you will not have the option to "Edit User Defined Object" when you right click on your

UDO. If you select "Edit User Defined Object" from the popup menu, your custom edit

callback is executed. The edit callback may also be executed when the user goes to

Edit→User Defined Object from the pull down menu and then selects a UDO of your class.

If you launch any dialogs (other then the NX Object Selection dialogs) from your edit

callback don't forget to use UI's LockAccess and UnlockAccess methods around the call to

launch your dialog.

∑ Examples:

Code (register edit method)

VB myUDOclass.AddEditHandler(AddressOf myEditCB)

C# myUDOclass.AddEditHandler(new
UserDefinedClass.GenericCallback(Program.myEditCB));

C++ myUDOclass->AddEditHandler(make_callback(&myEditCB));

Java // be sure to declare your class so that it knows about the
callback implementation
public class SimpleJavaUDO implements
nxopen.userdefinedobjects.UserDefinedClass.DisplayCallback,
nxopen.userdefinedobjects.UserDefinedClass.GenericCallback
// then use code like this to actually register the class with the
callbacks

myUDOclass.addEditHandler(this);

Information

When the user selects Information→Object from the pull down menu default information listing all

of the data stored with the UDO will display in the listing window. However if you define and

register your own custom information callback, you can replace a portion of the default data with

whatever information you would like to display about your UDO.

Examples:

Code (register information method)

VB myUDOclass.AddInformationHandler(AddressOf myInfoCB)

C# myUDOclass.AddInformationHandler(new
UserDefinedClass.GenericCallback(Program.myInfoCB));

C++ myUDOclass->
AddInformationHandler(make_callback(&myInfoCB));

Java // be sure to declare your class so that it knows about the
callback implementation
public class SimpleJavaUDO implements
nxopen.userdefinedobjects.UserDefinedClass.DisplayCallback,
nxopen.userdefinedobjects.UserDefinedClass.GenericCallback
// then use code like this to actually register the class with the
callbacks
myUDOclass.addInformationHandler(this);

UDO Status

An integer status value (1-7) is set for each UDO by NX in the absence of user defined methods.

You can obtain the status with the query method GetUserDefinedObjectStatus on the

UserDefinedObject. The description for each status value is given in the following table.

Status
Value

UDO is
out of
date

Due to Addition or
Deletion of Links to
the UDO

Due to Update being performed
on Associated Objects in the
Absence of a UDO Method

Due to Deletion of
Associated Objects in the
Absence of a UDO Method

0 No

1 Yes Yes

2 Yes Yes

3 Yes Yes Yes

4 Yes Yes

5 Yes Yes Yes

6 Yes Yes Yes

7 Yes Yes Yes Yes

Note:

If user defined methods are used, then only status values 0 and 1 can occur.

Automatic Loading at Startup

Classes and methods can be automatically loaded into NX during system initialization for both an

interactive session and an external NX Open program. To load the classes and methods

automatically create a user directory with startup, application, and udo subdirectories. Once the

user directory structure is created, add the base directory to the custom_dirs.dat file found in the

$UGII_BASE_DIR/ugii/ugmenu. Then, place the libraries in the "udo" directory.

For example, if you add the directory "/user/myhome" to custom_dirs.dat, then you place your

libraries in the directory "/user/myhome/udo".

Warning:

If you place a shared library in the udo directory for both internal (interactive) NX and for

external (batch) programs, then your shared library cannot contain any calls to the internal only

routines.

The directories present in the custom_dirs.dat file are processed in order, and the shared

libraries found are loaded. In order to load the shared library, the library must contain the proper

startup entry point.

Examples:

Code (sample startup entry points)

VB Public Function Startup() As Integer

C# public static int Startup()

C++ extern void ufsta(char *param, int *returnCode, int rlen)

Java public static void startup (String [] args)throws NXException,
java.rmi.RemoteException

Additionally, your shared library must have the correct file extension for a particular platform as

follows:

∑ Windows - .dll (or .class for java)

∑ Non—Windows .class for java)

Loading takes place during NX initialization. Thus, the loading of a shared library occurs before

any parts are loaded, and (if in interactive mode) before a user interface is present.

Consequently, you should not:

∑ Place code within the ufsta function that attempts to access a part or the user interface.

∑ Attempt to load or create a part within the call to ufsta.

The creation of UDO classes and the registration of the methods is all we recommend during this

period of the system's initialization.

Since classes can be created at an time during an NX session, you are not required to use this

mechanism. However, this mechanism guarantees that classes and methods are present for and

applied to all parts loaded within a session.

UDO Features

UDO's can also be features so that they can be time-stamped and updated in order with respect

to other features in the model. Use the UserDefinedObjectFeatureBuilder to create a UDO

feature.

The UDO links of type 1 and type 3 define parents of the UDO feature while the owned objects

define its children. It is important to ensure that the UDO data model is correct with respect to

timestamp creation. The primary difference between a UDO and a UDO feature is that the UDO

updates last. For example, if you create links to modeling objects that were created after the

UDO Feature you will get errors during update.

As you create features, the system assigns a time stamp for each feature. When a feature is

modified, the update is controlled by the ordering of the timestamps.

Features are listed in the order in which they were created, as indicated by the time stamp (the

number in parenthesis at the end of the name). The time stamp also indicates the order in which

features will be evaluated when the model is updated.

For example

1. create feature BLOCK(0)

2. create feature TAPER(1)

3. create UDO

The UDO updates after the last feature to update, in this example, after TAPER(1). If we create

feature HOLLOW(2), then the UDO updates after HOLLOW(2).

If the UDO references the edge of the block then it updates via the final state of this edge. That

is, after the taper has been applied.

UDO features update in feature order.

For example,

1. create feature BLOCK(0)

2. create feature UDO(1)

3. create feature TAPER(2)

The UDO now updates right after BLOCK(0) and right before TAPER(2). If the UDO referenced

the edge of a block, then it would update via the intermediate state of the edge (before the taper

was applied). In this example, you would most likely have wanted to create a UDO and not a

UDO feature since the final state of the model is probably what you want the UDO to reference.

However, if any of the owned objects of the UDO are going to be referenced by other features,

then a UDO feature must be created or else the feature update will be incorrect.

For example:

1. create feature BLOCK(0)

2. create feature UDO(1)

3. create feature SWEEP(2)

In general, UDOs update after feature update and UDO features update during feature update.

If you wish to, you may use UDO callbacks. The UDO feature does not place any limitations of

the implementation of callbacks.

Interactively, the UDO feature appears in the following feature menus:

∑ Info

∑ Edit Parameters

∑ Reorder

∑ Delete

∑ Suppress

∑ Unsuppress

∑ Suppress by Expression

If you choose to Edit Parameters for a UDO feature your custom edit callback is executed. If you

do not have an edit callback registered, then an default edit parameters dialog is launched that

contains any expressions linked to by the UDO.

Handling Errors and Help

Error Handling
UNDO

Error Handling

NX Open is designed to trap and report errors which prevent API methods from completing

successfully. Errors may result from various reasons including the following:

∑ invalid input parameters

∑ request to generate invalid geometric models

∑ unexpected calling sequence (API methods called in wrong order)

∑ unavailable system resources such as memory or file access

In most cases each NX Open method is designed to return NX to a valid/complete state.

However, there are logical groups of methods which must be used together. For example, after

modifying expressions, model update must be called to rebuild the model using the new

expression values. In case a valid logical group of API methods fail to complete successfully then

NX Open provides several methods for responding to errors. The following outlines NX Open

methods for detecting, reporting, handling and recovering from errors.

Note:

Accessing output parameters or calling NX Open methods after an API methods fails can result in

undefined system behavior, including session or part corruption. For example, consider an NX

Open method designed to return a pointer to an NX object. If the method fails the pointer will be

invalid. Using the pointer could result in memory being overwritten with invalid values (essentially a

random value could be written to a random memory location). System behavior will then depend on

the location and value that was changed by mistake.

Error Detection

The first step in error handling is to detect and trap an error. Most NX Open methods are

designed to return status and/or exceptions. Methods that do not return a specific status return

an object or value which can be validated. It is very important for any exception or unexpected

value to be trapped as soon as possible. Error detection is handled in two different ways

depending on which NX Open API is being used.

Open C (User Function)

Almost all Open C functions are designed to return an integer value. By convention a returned

value of zero indicates that the function completed successfully. If the return value is not zero

then the function did not complete successfully and error reporting and recovery is required. It is

important to test every return value for success or failure and to provide code to handle failures.

NX Open .NET, Java or C++ (Common API)

NX Open methods are designed to use the Try/Catch constructs. This method of error detection

has the advantage of not requiring the programmer to test a return value after every method

called. A logical block of code can be included in a Try block. If any method detects an error the

Try block will immediately terminate and the Catch block is executed. The Catch block can then

determine the type of exception and determine how to respond to the exception. Every logical

block of code making NX Open method calls should be imbedded in a Try/Catch construct to

ensure that all exceptions are handled appropriately.

Error Reporting

The second step in error handling is to report the error or at least log the error in a log file. It is a

good idea to encapsulate the following error reporting steps into an error reporting method that is

appropriate for the custom application. Typically programmers will want to create an error

reporting method that is reused by many applications.

Error Reporting Steps

1. Obtain NX Open error message.

2. Build complete error report.

3. In most cases report the error to the user.

4. Always report the error to the log file.

Obtaining an Error Message

Obtaining a human-readable error message from NX Open is the first step to error reporting. NX

Open provides methods to take a return code or an exception and produce a human-readable

error message.

Open C (User Function)

For Open C , UF_get_fail_message(...) takes an error code and returns a human redable error

message. To translate the message in native language supported by NX localization, use

UF_TEXT_translate_string(..)

NX Open .NET, Java or C++ (Common API)

(NXException) contains a Message property that contatins a human readable error message.

Building an error report

The programmer should add information to the error report that will help determine the cause of

the error. For instance, information about where the error occurred in the custom application (e.g.

a function name) and specifically what the application was attempting to do when the error was

detected. If error recovery is attempted and requires input from the user, then the user should be

told specifically what they did wrong and what they can do to correct the problem.

Note:

It may also be necessary to build two types of error reports. One report could include only the

information required by the user. Another report could contain debugging information specifically for

the programmer.

Reporting an Error

Once the appropriate information has been gathered, the programmer must decide how to report

the information. If the error is unexpected or critical, the user must be informed and given the

option to exit the custom application without corrupting the NX session or the part. If the error is

expected (see Error Handling and Error Recovery), then it may be appropriate to just log the error

in the log file. It is suggested that all errors should be written to the log file even when the errors

are reported directly to the user. This gives the programmer a record of the event. It is also

possible for the programmer to design a custom error reporting dialog or to create a log file

specifically for the custom application.

Error Recovery

Error recovery is a special case of error handling. If an unexpected error occurs then error

handling typically consists of reporting the error, returning the internal state to a valid condition

and then exiting the custom application to return control to NX. However, there are many types of

errors and exceptions which should be anticipated by the programmer. A very simple example is

asking the user to provide a file name. The programmer should anticipate that the user may

make a mistake and that the file may not be found. The programmer should give the user the

opportunity to enter another file name.

Another example of a failure that can be anticipated is a geometric modeling error. It may be that

the user has specified design parameters that are invalid. For example, a blend radius that

exceeds the limits of the faces being blended. When the blend operation fails it may be

appropriate to continue the program by trying a different blend radius.

Error recovery is one of the most important system design challenges for any application

development. Close attention must be given to maintaining a valid state for all data models.

NX Open supports error recovery in three ways:

1. Methods are designed to return exceptions to enable the programmer to detect failures.

2. When NX Open detects an error the NX Open methods are designed to return the NX

session and part to a valid state.

3. The UNDO methods are provided to let the programmer easily return the NX session and

part to a previous valid state.

Error and Exception Codes

In most cases, once a human-readable error message is obtained, error handling and recovery is

the same for all types of errors from a given method. However, in some cases special error

handling and recovery will depend on the specific type or reason for the error. The error code

value or other information contain within an exception object is typically used to determine the

specific type of error.

Error Handling - Language Specific Details

NX Open for C++

NX Open for .NET

NX Open Java
NX Open for C++

int status = UF_MODL_create_block1(UF_NULLSIGN, corner_pts[i],
edge_lens, &features[i]);

//check for return value
if (status != 0)
{

//get the human readable error message
UF_get_fail_message(status, ugErrorText);

//report error to the user
UF_UI_message_dialog("Dialog", UF_UI_MESSAGE_ERROR,

&ugErrorText, 1,);

//report error to syslog

UF_print_syslog("Failed to create block\n", false);
return 1;

}
status = UF_MODL_ask_feat_body(features[i], &blocks[i]);
if (status != 0)
{

UF_print_syslog("Failed to get body from block\n", false);
return;

}

NX Open for .NET

Try
Dim theSession As Session = Session.GetSession()
Dim workPart As Part = theSession.Parts.Work

Dim nullFeature As Features.Feature

Dim blockBuilder As Features.BlockFeatureBuilder

blockFeatureBuilder1 =
workPart.Features.CreateBlockFeatureBuilder(nullFeature)

isDisposeCalled = False

Catch ex As NXException
' ---- Enter your exception handling code here -----

' ---- report the error in syslog, Message propery on the exception
object

already has the human readable message ---

theSession.LogFile.WriteLine("Failed to Create Block",)

End Try

NX Open for Java

try

{

Session theSession =(Session)SessionFactory.get("Session");

Part workPart = theSession.parts().work();

nxopen.features.Feature nullFeatures_Feature = null;

nxopen.features.BlockFeatureBuilder blockFeatureBuilder1;

blockFeatureBuilder1 =
workPart.features().createBlockFeatureBuilder(nullFeatures_Feature);

}

catch (Exception e)
{

//report error to syslog, Message property on exception object
already has human

//readable message
theSession.Logfile().WriteLine("Failed to create block", +

e.getMessage());

}

UNDO

The UNDO methods provide a very easy and powerful way to ensure that the NX session and

parts are returned to a valid state. Conceptually using the UNDO methods are very simple. To

use the UNDO methods the programmer first creates an UNDO Mark. This saves the current

state of NX. If the program executes without error, the programmers calls the method to delete

the undo mark. (unless the UNDO Mark is visible and being provided to let the user UNDO the

operations of the custom application). If the program encounters an error and needs to recover,

the programmer can return the NX state to that defined by the UNDO Mark.

Visible vs. Invisible UNDO Marks

The choice of visible or invisible UNDO mark depends on whether the programmer wants the

user to be able to Undo the operations of an NXOpen program or not. Irrespective of whether the

Undo mark is visible or invisible, the program should always return to the the Undo mark and

delete the mark (i.e. return NX to state before the program execution) if an error is encountered.

Invisible Undo marks should always be deleted.
Visible Undo Mark

A visible Undo mark should be created if user has to be able to undo the operations of an

NXOpen program. If the program executes successfully, the visible Undo mark should not be

deleted. NX will make visible undo marks available to the user under Edit -→Undo List.

Invisible Undo Mark

If the Undo mark is used for ONLY internal error recovery and the programmer doesn't want to

expose it to the user, an invisible Undo mark should be used. Invisible Undo marks should

always be deleted even when the program executes successfully.

Usage Considerations

When using UNDO Marks the following should be considered.

1. It is recommended that every custom application should create at least one UNDO Mark

which is used for error recovery.

2. Undo marks should be maintained (created and deleted after the logical block) for any

block of code that is modifying (creating/deleting/editing) the NX session or part data. This

includes helper-objects like builders.

3. Do not overuse UNDO Marks, it takes time and space to save NX states. Only define

UNDO Marks for significant or critical blocks of operations. The number of active UNDO

marks in NX is limited to 200. Once that limit is reached, older marks are reused.

4. Making an UNDO Mark Visible exposes it to the user in the UNDO menu list. Do not

expose UNDO Marks to the user that are only used for internal error recovery.

5. Visible UNDO Marks should only be used if you want the user to be able to undo the

changes made by the custom application after the application has completed its function

and returned control to NX.

6. Take care to maintain a one to one mapping of UNDO Mark Creation and either deletion

or returning to the UNDO Mark.

7. There are special cases where an UNDO mark may be invalid. For instance, if an UNDO

mark is created and then the Part is Saved or another Part is Opened, NX will not be able

to return to the UNDO mark. Another example is trying to return to an UNDO mark that

was created before a sketch was entered. To validate that an UNDO mark is still available

use UF_UNDO_ask_mark_exist() for Open C applications or DoesUndoMarkExist()

method for common API.

UNDO - Language Specific Details

NX Open for C++

NX Open for .NET

NX Open for Java
NXOpen C++

UF_UNDO_mark_id_t myMark;

UF_UNDO_set_mark(UF_UNDO_invisible, myMarkName, myMark);

status =

if (status != 0)
{

/* UNDO to the mark */
status = UF_UNDO_undo_to_mark(myMark, myMarkName);

}

/* Delete the invisible undo mark */
UF_UNDO_delete_mark(myMark, myMarkName);

.NET

// Create UNDO Mark
Session.UndoMark myMark;

myMark = theSession.SetUndoMark(Session.MarkVisibility.Invisible,
markName);
try
{

...........
// Success Remove the UNDO Mark (because it is invisible)
theSession.DeleteUndoMark(myMark, markName);

}
catch (NXException exceptionObject)
{

// Error Reporting and Recovery

try
{

// Return NX to valid state and remove the UNDO Mark
theSession.UndoToMark(myMark);

}
catch
{

// UNDO Failed let user know that the part may be in an
invalid state

}
theSession.DeleteUndoMark(myMark, markName);

}

Java

Session theSession = (Session)SessionFactory.get("Session");

int myMark;
myMark=

theSession.setUndoMark(nxopen.Session.MarkVisibility.INVISIBLE,
markName);

try
{

................
theSession.deleteUndoMark(myMark, markName);

}
catch (Exception e)
{

try
{

//Return NX to valid state. Add the error note to syslog

theSession.logFile().writeLine("Error: " + e.getMessage());
theSession.undoToMark(myMark);

}
catch
{

//UNDO failed, report to user
}

//UNDO successful, delete the undo mark
theSession.deleteUndoMark(myMark, markName);

}

Debugging

Debugging NX Open Applications

Debugging NX Open Applications

Debugging NX Open applications with visual studio is no different then debugging any other

application.

Debugging with Visual Studio

1. Compile and Link NX Open application using visual studio - See Compiling and Linking

2. Start the NX process from visual studio - Project→Properties→Debug→Start External

Program <Path to NX executable>

If you want to debug NX Open application while in Teamcenter Integration mode:

Pass in the command line argument " -pim=yes -u<teamcenter user name> -p=<teamcenter

password>. This can be done in Project→Properties→Debug→Command Line Arguments

Debugging Java Applications

1. Compile and link NX Open Java application - See Compiling and Linking

2. To attach the debugger to the JVM:

Before starting NX, set the UGII_CLASSPATH_PRELOAD environment variable so that it

contains the classpath for the program you want to debug.

Next, add the following to the UGII_JVM_OPTIONS environment variable:

-agentlib:jdwp=transport=dt_shmem,address=jdbconn,server=y,suspend=n

You can use dt_socket instead of dt_shmem if it is available for your JRE, as dt_shmem is not

available on all platforms. For more information, see Sun Microsystems documentation for jdb.

Finally, attach to the JVM. However, you cannot attach to the JVM until it has been started, and

NX does not start a JVM until it runs a Java program. You can run any Java application from

within NX to start the JVM. For example, you could run a Hello World application. After you start

the JVM, connect to it using the following:

jdb -attach jdbconn

License Checking

Signing Process
Feature based license checking
License Management

Signing Process

An executable for any application must be "signed" before it can be executed by anyone who

does not have an NX Open Author license. This section describes the signing process. This

process is typically performed when an application is distributed to the user base and is used to

verify that application have been developed using a valid NX Open Author license.

The following two steps define the general signing process.

1. A resource file must be added to the source files. The resource must be compiled and

linked with the executable. This step is not required for Java applications.

2. Run the signing utility to add an encrypted string to the executable.

When running without an NX Open Author licenses NX will check for this encrypted string when

the application is loaded. If NX does not find an NX Open Author license or signature it will not

load the executable, or in Batch mode the Common API will fail to initialize.

∑ The signing utility may only be executed if an NX Open Author license if available.

∑ The signing utility also provides a verify option that will display a message confirming

whether the file has been correctly signed or not.

∑ Running the signing utility multiple times on the same executable does no harm, the results

are the same as running it once.

∑ Journals and GRIP programs do not need to be signed. All other NX Open applications must

be signed.

Signing Process - Language Specific Details

NX Open for C++

NX Open for .NET

NX Open for Java
NX Open for C++

The C++ resource file and signing utility are found in <NX install directory>\UGOPEN\

Resource File NXSigningResource.cpp

Signing Utility nxsign

Note:

NXSigningResource.cpp does not require a C++ compiler. You may need to change the file

extension to match the requirements of your compiler.

To embed the resource file compile and link it with the executable.

To sign an executable run nxsign at a command line prompt and provide the name of the

executable. For example:

nxsign myApplication.exe

To verify that an executable has been signed use the -verify option. For example:

nxsign -verify myApplication.exe

Valid file extensions are: dll, so, sl and exe

NX Open for .NET

The .NET resource file is found in <NX install directory>\UGOPEN\

The .NET signing utility is found in <NX install directory>\UGII\

Resource File NXSigningResource.res

Signing Utility SignLibrary

To embed the resource file from a command line use the /resource compiler switch. For example:

VB Example

vbc /libpath:<NX install dir>\UGII\managed /t:library /r:NXOpen.dll /r:NXOpen.Utilities.dll

/resource:<NX install dir>\UGOPEN\NXSigningResource.res myApplication.vb.

C# Example

csc /resource:<NX install dir>\UGOPEN\NXSigningResource.res /t:library myApplication.cs

For Visual Studio add NXSigningResouce.res as a resource to the project and set the Compile

property on resource to: Embedded Resource.

To sign an executable run SignLibrary at a command line prompt and provide the name of the

executable. For example:

SignLibrary myApplication.dll

To verify that an executable has been signed use the -verify option. For example:

SignLibrary -verify myApplication.dll

Valid file extensions are: dll and .exe

NX Open for Java

The Java signing utility is found in <NX install directory>\UGOPEN\

Resource File not required

Signing Utility SignJar

To sign a java application, a jar file must be used. Class files cannot be signed. This means that

class files cannot be distributed to users who do not have NX Open Author licenses.

No resource file is required for Java applications.

To sign a jar file run SignJar at a command line prompt and provide the name of the jar file. For

example:

SignJar myApplication.jar

To verify that a jar file has been signed use the -verify option. For example:

SignJar myApplication.jar -verify

Valid file extensions are: jar

Feature based license checking

At runtime the Common API uses Feature Based license checking. This means that an

application will only run if the NX licenses are available for the set of capabilities that are used by

the application. For example, if the application generates geometry then a modeling license is

required. If the application generates drafting dimensions then a drafting license is required. The

fundamental idea is that an application should require the same set of NX licenses that would be

required to produce the same results interactively using NX without the application.

The language reference guides define the feature licenses that are required for each property

and method in the Common API. If an applications attempts to access a property or execute a

method without the required license a dialog is displayed showing a license error. The name of

the missing feature license is logged in the NX log file. The application will then exit.

If NX has previously reserved a license the application will not check out a new license, it will

continue to use the license that is active for the NX session. When an application is unloaded

(see the section on Unload Options in Development Cycle Considerations) all unused licenses

are released.

It is also possible for the application to programmatically reserve and release specific feature

license (See License Management).

License Management

The Common API contains a License Manager class that can be used to programmatically

reserve and release feature licenses. The License Manager class contains three methods. The

following discusses when to use these methods.

Reserve - use the reserve method to checked out a feature license for the application. This will

ensure that the license is available when required by the application. To guarantee that an

application will run without encountering license errors, it is recommended that an application

reserve all required licenses during it's startup process. If a reserve fails the user can be warned

before the application produces partial results.

Release - use the release method to inform NX that the application no longer requires the

licenses. If the license is not in use by any other application it will be returned to the open pool of

NX licenses on the system. This method can be used to optimize license usage. However, it is up

to the programmer to guarantee that the licenses is no longer required by the application.

IsReserved - use this method to check to see if a license is already reserved by the NX session.

This method does not check out or check in any license.

Note:

To guarantee that licenses are available it is recommend that you use the Reserve method and

then check for failures. Using the IsReserved method followed by calling the Reserve method for

licenses that are not reserved will not prevent previously reserved licenses from being released

before the application requires the license.

These methods take a text string as input to define the target feature license. The various text

strings can be found in the language reference guides. Each property and method provides the

specific test string used to reference the license that is required to access the property or execute

the method.

License Management - Language Specific Details

NX Open for C++

Open for .NET

Open for Java
NX Open for C++

The syntax to reserve and release the solid modeling license in C++ is:

NXOpen::Session *theSession = NXOpen::Session::GetSession();

theSession->LicenseManager.Reserve(“solid_modeling");

<< your application >>

theSession->LicenseManager.Release(“solid_modeling");

NX Open for .NET

The syntax to reserve and release the solid modeling license in Visual Basic .NET is:

Dim theSession As Session = Session.GetSession()

theSession.LicenseManager.Reserve(“solid_modeling")

<< your application >>

theSession.LicenseManager.Release(“solid_modeling")

NX Open for Java

The syntax to reserve and release the solid modeling license in Java is:

Session theSession = (Session)SessionFactory.get("Session");

theSession.LicenseManager.reserve(“solid_modeling");

<< your application >>

theSession.LicenseManager.release(“solid_modeling");

Additional Topics

Additional Topics – Java

Additional Topics – Java

This section discusses additional topics related to NX Open for Java.

JVM Parameter

When the Java Virtual Machine (JVM) is run inside NX, it uses the following parameters:

Parameter Description

UGII_JVM_LIBRARY_DIR The directory where the jvm shared library is located.

UGII_JVM_OPTIONS These options are just like the options that you can use on the command
line with the JRE's Java executable, except the classpath must be set
using UGII_CLASSPATH. Some common options are:

–Dproperty=value

–Xmsn

UGII_CLASSPATH The classpath. The NX Open jars do not need to be added here, since
they are added automatically.

Use this parameter only when running a class file, not a jar file. This
method is similar to running a jar file through a java exectuble. You must
define a classpath for a jar file in the jar file's manifest file.

Requirements of the classpath:

∑ Paths must be relative.

∑ Separate each path listed in the classpath with a space.

These requirements are Java-specific and are not imposed by NX. For
more information about this topic, see Sun's documentation on Jar files.

NX obtains initial settings for these parameters from ugii_env (ugii_env.dat on Windows). You

can edit ugii_env before starting NX to change these settings.

After NX starts, you can change these parameters using the File → Execute →Override Java

Variables command. However, you can only change UGII_CLASSPATH after the JVM starts. The

fact that you cannot shut down the JVM and then restart it in the same OS process is due to a

limitation of Java itself.

Creating GUIs with Java

When running a program from within NX, System.exit terminates NX immediately, without

prompting you to save your changes. Do not use System.exit or anything that calls System.exit,

unless you want to terminate NX. In particular, in Java Swing, NX shuts down when your GUI is

closed if you use JFrame.EXIT_ON_CLOSE in JFrame.setDefaultCloseOperation(). You can use

DISPOSE_ON_CLOSE instead. On Windows, debugging a Java GUI that you run from within NX

can be difficult because Windows discards System.err because NX is not a console application.

For a solution, see the following information on redirecting System.err.

On Windows, debugging a multi-threaded application that you run from within NX is more difficult

than on Unix because the stack trace for uncaught exceptions in threads other than the main

thread is written to System.err and Windows discards System.err because NX is not a console

application. (This is not an issue on Unix. On Unix, System.err gets printed to the console in

which you started NX.) To see the stack trace, you can redirect System.err. For example, to

redirect System.err to the syslog, you can use the following code:

static class SyslogOutputStream extends OutputStream
{

private LogFile m_log;
private StringWriter m_buf;
public SyslogOutputStream(LogFile log)
{

super();
m_log = log;
m_buf = new StringWriter();

}
public void write(int c)
{

if (c != ’\n’)
m_buf.write(c);

else
{

try
{

m_log.writeLine(m_buf.toString());
}
catch (Exception e)
{

;
}
m_buf.getBuffer().setLength(0);

}
}
public static void main(String[] args) throws Exception
{

Session theSession = (Session)SessionFactory.get("Session");
if (

System.getProperty("os.name").toLowerCase().startsWith("windows"))
{

PrintStream newerr = new PrintStream(new
SyslogOutputStream(theSession.logFile()));

System.setErr(newerr);
}

...
}

To redirect System.err to a scrollable dialog, you can use this class:

// TODO: This class was created for debugging purposes
// If this class is used for non-debugging purposes,
// some work should be done on this class to optimize its

performance.
public class DialogOutputStream extends java.io.OutputStream
{

private JTextArea textArea;
public void write(int c)
{

if (textArea == null)
buildDialog();

textArea.append("" + (char)c);
}
private void buildDialog()
{

JFrame frame = new JFrame("err");
frame.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
textArea = new JTextArea(20, 80);
JScrollPane pane = new JScrollPane(textArea);
frame.getContentPane().add(pane, BorderLayout.CENTER);
frame.pack();
frame.setVisible(true);

}
}

Private Classes and Methods

Do not use implementation private classes and methods directly. In short, do not directly use NX

Open for Java classes ending in "_impl" or methods starting with an underscore. If you compile

your programs using the instructions in this guide, you do not need to worry about accidentally

using the "_impl" classes. Why shouldn't I use these classes and methods? The public API of NX

Open for Java is remotable interfaces. The classes that implement these interfaces are in

separate jars and have names ending in "_impl". Do not use these implementation classes

directly; always make calls using the remotable interfaces in the public API instead. Using the

"_impl" classes directly 5-2 NX Open for Java Programmer's Guide Contents will make it difficult

to convert an application into a remote application. The "_impl" classes are private to the

implementation of NX Open and are subject to change at any time without notice. There are a

few methods that should only be used by NX Open internally but which need to appear in the

public interface due to the remoting architecture. These methods start with an underscore and

are marked as deprecated in the API Reference Guide. Do not use these methods. These

methods are private to the implementation of NX Open and are subject to change at any time

without notice.

Release Upgrades

A primary goal of NX Open is to maintain your automation investments. This is done by adopting

policies which minimizes the amount of code changes which are required by you to migrate your

applications to new releases of NX. This section discusses these policies and how they impact

your ability to support the users of your applications. Also, discussed are the steps you should be

taking to successfully move your application to new releases of NX.

NX Open API Change Policy

NX maintains the following three primary policies to protect your investments.

1. API changes should be designed to minimize any changes to your source code. As an

example, if the capabilities of a method are expanded which require new parameters then

NX may maintain the original method and add a new method which includes the new

capabilities. In this way existing applications do not require code changes unless they

want to take advantage of the new capabilities.

2. If an API change does require you to make source code changes, if at all possible, you are

given a one release warning. For example, if a method is going to be replaced by a new

method, the original method will be maintained for at least one release before it is

removed. The Release Notes and if possible compile time warnings are used to warn you

of changes made in the current release and changes coming in the next release (see the

next section on Finding New and Obsolete Methods and Properties).

3. Libraries should be upward compatible for all minor releases. This means that if you

compile and link your application with the libraries shipped with a major release of NX (e.g.

NX 5.0.0), then your application should continue to run with all future minor releases (e.g.

NX 5.0.2) without having to be recompiled and relinked. Which means that you do not

need to reship your applications to customers running various minor releases of NX.

Note:

NX development makes every effort to follow the above policies. However, there are time when the

policies must be violated due to the type of changes that are required. NX maintains and publishes

stability metrics which shows that for at least the last 10 years the stability of the NX Open API is

above 96% while the average is above 99%.

Finding New and Obsolete Methods and Properties

NX Open changes and planned changes are published in the following section of the Release

Notes.

Release Notes → Caveats and Product Notes → NX Open → Product Notes

This section contains detailed lists of changes organized by the NX Open libraries. For each

library deleted methods and properties are listed as well as methods and properties that are

marked as obsolete. Obsolete methods and properties are still available in the release but may

be deleted in the next release. The differences listed also contain information about other forms

of API changes, such as changes to: types, enums, class definitions, fields and method

signatures.

In addition to the library difference list published in the release notes, obsolete methods are also

marked as deprecated. Which means that you will get a compile warning when these functions

are used in your application. This is a warning that these functions are still valid in the current NX

release but may be deleted in the next release. In this way you will know which of your source

files will need to change to stay current with NX Open and you are given a one release warning.

Note:

Open C API changes are listed in the same NX Open Product Notes section of the Release Notes

under: "New Open C routines", "Newly retired functions" and "Deleted Open C routines" (maybe

denoted as "Obsolete" instead of "Deleted" in earlier versions of NX). Also, function declarations

that are newly retired (obsolete/deprecated) are moved to uf_retiring.h file, which contains a

complete list of Open C functions which could be deleted in the next NX release.

Your Expected Release Upgrade Process

For each major release of NX you should perform the following steps to migrate your application

to the release.

1. Review the NX Open Product Notes for the release to understand what changes are being

made in the release and what changes are planned for the next release.

2. For any methods or properties that have been deleted and for those which you have not

already replaced in your code, implement the replacement code.

3. Recompile your entire source base using the current compile time files and setting for the

given release.

4. For any methods or properties that produce deprecation warnings, decide if you are going

to replace this code now or in the next release. Implement the replacement code for any

deprecated methods you want to replace now and recompile.

5. Link your application with the appropriate NX Open libraries.

6. Perform a full suite of application testing in a stable NX environment.

7. Distribute your applications to your user base.

You can find information about compiling and linking with the current release of NX Open in the

Compiling and Linking section of this manual.

Wizard Setup

NX Open Visual Basic (VB) wizard
NX Open C# wizard
Visual Studio Application Wizard Setup

NX Open Visual Basic (VB) wizard

Creating a Visual Basic project using the NX Open VB wizard

The following topic describes how to develop an NX Open Visual Basic application using

Microsoft Visual Studio. It is recommended that all NX Open Visual Basic program development

on Windows be done from a Visual Basic project

Starting Visual Studio

You can start Visual Studio by typing "devenv.exe" from an NX command prompt window. Studio

will pick up the required NX environment variables necessary to compile and link a project.

Creating a Visual Basic project

Use the Visual Basic wizard whenever you need to create a new NX Open automation program

in Visual Studio with the Visual Basic language. The wizard automatically adds the required

references to NX Open libraries in the new project.

Using the NX Open VB wizard

To use the NX Open VB wizard:

Step
1.

Select the File→New→Project menu item to activate the New dialog box.

Step
2.

Under Project Types, expand Other languages and select Visual Basic.

Step
3.

Select NX5_VB from the list of Templates.

Step
4.

Enter a project name into the "Project name:" dynamic input box. By default this becomes the
name portion of the program being built. For instance, a project named "MyNXOpenApp"
produces either a "MyNXOpenApp.dll" or "MyNXOpenApp.exe". You can override this later, if
necessary.

Step
5.

Click OK and follow the on-screen instructions to create your Visual Basic project.

NX Open C# wizard

Creating a C# project using the NX Open C# wizard

The following topic describes how to develop an NX Open C# application using Microsoft Visual

Studio. It is recommended that all NX Open C# program development on Windows be done from

a Visual C# project

Starting Visual Studio

You can start Visual Studio by typing devenv.exefrom the NX Command Prompt window. Visual

Studio uses the required NX environment variables to compile and link a project.

Creating a Visual C# project

Use the C# wizard whenever you need to create a new NX Open automation program in Visual

Studio with the C# language. The wizard automatically adds the required references to NX Open

libraries in the new project.

Using the NX Open C# wizard

To use the NX Open C# wizard:

Step
1.

Choose File→New→Project menu item to activate the New dialog box.

Step
2.

Under Project Types, expand Other languages and select Visual C#.

Step
3.

From the Templates list. Select NX5_VCS .

Step In Project Name, enter a project name.

4. By default this becomes the name portion of the program being built. For example, a project
named MyNXOpenApp produces either a MyNXOpenApp.dll or MyNXOpenApp.exe. You
can override this later, if necessary.

Step
5.

Click OK and follow the on-screen instructions to create your C# project.

Visual Studio Application Wizard Setup

Microsoft Visual Studio can be used to compile, link and debug programs on the Windows

platform. There are currently three NX Wizards that have been integrated into Visual Studio and

available for use with the Common API. They are:

NX Open Wizard for use with C and C++ programs (found under the VC directory)

NX Open VB Wizard for Visual Basic programs (found under the VB directory)

NX Open C# Wizard for C# programs (found under the VC# directory)

If Visual Studio has been installed on a workstation and then NX is installed locally (on the same

workstation), the available NX Wizards will be installed automatically. Otherwise the following

steps need to be taken to set up each of the NX Wizards on the local workstation.

∑ Make sure the appropriate version Microsoft Visual Studio has been installed

∑ Copy all files from the NX kit to the corresponding directories of the local Visual Studio

installation. The kit is located in:

%UGII_BASE_DIR%\ugopen\vs_files\

To determine the correct location of the Visual Studio installation, look at the productdir registry

key for each language. The key for C and C++ is

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\VisualStudio\version#\Setup\VC/productdir

(where version# would be 7.1, 8.0, etc). For other languages replace the VC with either VB or

VC#.

∑ For each wizard, copy any files and/or folders under each subdirectory from the kit to the

Visual Studio installation. This example is for the C language so substitute VB or VC# and

the appropriate subdirectory for the other languages. Copy:

%UGII_BASE_DIR%\UGOPEN\vs_files\VC\VCWizards\

to

C:/program Files\Microsoft Visual Studio 8\VC\VCWizards\

and

%UGII_BASE_DIR%\UGOPEN\vs_files\VC\vcprojects\

to

C:/program Files\Microsoft Visual Studio 8\VC\vcprojects\

Repeat for each language.

Appendices

NX Open System Requirements
Terms and Acronyms
Example Programs
Entry Points

NX Open System Requirements

Supported Platforms

For supported platforms certified to run NX6, see Release Notes

NX Open for .NET
NX Open for Java

NX Open for .NET

Running NX Open for .NET Executables and DLLs

Running NX Open for .NET executables and .DLLs requires that you have the following installed:

∑ The Microsoft .NET Framework 2.0, which comes with Visual Studio. You can also download

it from the Microsoft .NET Framework Version 2.0 Redistributable Package page.

Creating NX Open for .NET Executables and DLLs

Creating NX Open for .NET executables and .DLLs requires that you have the following installed:

∑ Microsoft Visual Studio .NET 2005 SP1

∑ The Microsoft .NET Framework 2.0, which comes with Visual Studio.

Adjusting intranet zone security

By default, the .NET platform is set to a high security configuration. This means that the journal

replay mechanism checks the intranet security status before it attempts to execute a journal. By

default, this high level security does not allow journals to execute from network-mounted drives. If

your security settings are too strict, you may receive this warning:

Insufficient permission to load library. If your installation is on a network drive you may need to

adjust .Net security settings. See the Release Notes for more information.

In order for journals to access libraries that are mounted on internal network drives, you must

reset the default security level. You can accomplish this using the user interface or a command

line. The following sections explain each method.

Using the user interface

Note:

This option may not display on systems in which the .NET SDK is not installed. If the option for

Microsoft .NET Framework 2.0 Configuration is not available on the control panel, you can still

adjust intranet security using a command line.

1. Click Start → Settings → Control Panel.

2. Select Administrative Tools → Microsoft .NET Framework 2.0 Configuration. This

displays the Microsoft .NET Framework 2.0 Configuration page.

3. Click Runtime Security Policy.

4. Select Adjust Zone Security. This displays a wizard that asks if you want to configure for

the computer or current user. The default is Make changes to this computer.

5. Accept the default and click Next.

6. Select Local Intranet and adjust its trust level to Full Trust.

7. Click Next.

8. Click Finish.

9. Close the Microsoft .NET Framework 2.0 Configuration page.

Using a command line

To adjust intranet zone security using a command line, type the following at a command line

prompt and press Enter:

caspol -q -m -cg LocalIntranet_Zone FullTrust

Note:

You can set the security in two areas. The user interface exposes only one. On some systems,

the one exposed in the user interface is the 32-bit security and the 64-bit security is not

exposed. If you change the zone security, but cannot play a Visual Basic file due to the

Insufficient permission, try this command:

$SystemRoot\Microsoft.NET\Framework64\v2.0.50727\caspol.EXE -q -m

-cg LocalIntranet_Zone FullTrust

NX Open for Java

NX Open for Java is designed to be used with Java version 1.6 or higher. You must use the 64-

bit version of Java on Linux and the 64-bit version of Windows.

Runtime Environment

The Java runtime environment distributed and installed with NX does not include the Software

Development Kit (SDK) tools for compiling and debugging Java programs. You can obtain these

tools for Linux, WNTI32, and WNTX64 platforms from Java SDK.

Terms and Acronyms

API — Application Programming Interface. An NX Open API is defined by a set of

functions/methods which provide access to the NX run time data model and user interface. NX

Open includes several different APIs (see What is NX Open and Available Toolkits).
Application — This document uses the term "application" to refer to automation solutions that

provide general solutions to a given problem domain. An application lets a user create objects

based on general inputs from a user. The inputs may be in the form of data files or an interactive

user interface. The objects created may be reports, data files, geometric models, NC programs,

CAE models or just about anything imaginable. A Journal is used to refer to a single source file

as it is recorded by NX. A Journal may be turned into an application by adding a user interface to

generalize the user inputs (see Turning Journals Into Applications).
Common API — A common API is a programming interface that supports multiple language

binding where each language supports the same set of classes, methods and properties. The NX

architecture now supports a Common API that NX developers are required to define when adding

new capabilities. There is then an automated process which produces the NX Open language

binding for C++, .NET and Java. In this way all NX Open language bindings have the same set of

capabilities defined by a common API. There are many advantages to the common API approach

(see Available Toolkits).

.dlg — The file extension used for UI Styler Dialog definition files. See (UI Styler Guide).

.dlx — The file extension used for Block Styler Dialog XML definition files. See (Block Styler

Guide).

Entry Point — To execute a program it must first be loaded into memory and then execution

control must be passed to the program. An entry point is the function or method within the

program that control is first passed to for it's execution. An entry point may also be a standard

way of accessing a capability that the application may provide. NX Open defines several different

entry points. For instance, the Ask Unload Options entry point (see Unload Options) is a method

that may be used to instruct NX when to unload a program when the program returns control to

NX. See Entry Points for a summary of all entry points available to NX Open programs.
External Program — An execution mode for an NX Open programs, also called Batch Mode.

When an NX Open program is executed in an external mode, a session of NX is running without

the NX user interface (see Execution Modes).

IDE — Integrated Development Environment. An IDE contains all of the tools that are required for

applications development integrated into a single system. For instance, an IDE will typically

contain a code editor, a compiler, a linker, a debugger and access to user documentation. A

application developer can code and test their applications all within a single environment. An

example IDE is Microsoft's Visual Studio.

Internal — An execution mode for NX Open programs, sometime called Interactive Mode. When

an NX Open program is executed in an internal mode, a session of NX is running with the full NX

user interface. The user is interacting with NX and using NX to invoke the NX Open program (see

Execution Modes).
Journals — A Journal is source code which is generated interactively by NX during the normal

execution of an NX session (see Journals).

.men — the file extension used for Menu definition files. See (MenuScript Guide).

NX Data Model — The NX Data Model is defined by all of the information that is maintained by

NX during an active session. The data model is used to maintain the current state of all open

parts including the assembly relationship, the analysis configuration, the manufacturing

information and many other product definition data. The data model in the active session also

maintains the current state of the user interface options. NX Open provides access to a

significant portion of the NX Data Model.

NX Part — An NX Part is all of the information that is stored in a single part file and maintained

during an active NX session as a loaded part.

Object Model — An object model is defined by the relationship between the classes for a given

systems library and more importantly, by the relationships between the objects within the classes.

The object relationships define how the methods and properties of those objects are used to

create a useful application. A common API is defined by multiple language bindings that all share

a common Object Model.

.prt — The file extension used for NX Part files.

Part Corruption — A corrupt NX Part is typically a part which cannot be loaded by NX, which

means the data in the part file is lost. Coding errors in an NX Open application may produce

corrupt parts. NX attempts to detect and provide warning when a corrupt part is saved. However,

there are some types of errors which cannot be detected until NX attempts to load a part. To

ensure that corrupt parts are not produced, NX Open applications must take steps to detect,

report and correct unexpected behaviors (See Error Handling)

Programs — Any set of compute instruction that are executed by a compute. This document

discusses Journals and Applications, which are both compute programs.

Session Corruption — A corrupt session is an NX session which is in an unexpected state. A

corrupt session may product unexpected results including: corrupted parts, a hung session (does

not respond) or a session exit. Coding errors in an NX Open application may result in a corrupted

NX session. To ensure that corrupt sessions are not produced, NX Open applications must take

steps to detect, report and correct unexpected behaviors (See Error Handling).

Signature — A signature is the formal set of parameters that are used to define the inputs and

outputs of a function or method. An entry point is defined by the function or method's name and

it's signature. It is possible to define different signature for the same method. The signature used

by the calling program is used to find the entry point which is defined by the matching signature.

.tbr — The file extension used for Tool Bar definition files. See (MenuScript Guide).

Unload Options — Options set by an NX Open program which tell NX when to unload the

program after the program exits (see Unload Options)

Example Programs

There are various example programs supplied with NX. The programs are in

UGII_BASE_DIR\ugopen\SampleNXOpenApplications

There is a folder for each language for e.g. .NET examples are in

UGII_BASE_DIR\ugopen\SampleNXOpenApplications\.NET, C++ examples are in

UGII_BASE_DIR\ugopen\SampleNXOpenApplications\C++ and Java examples are in

UGII_BASE_DIR\ugopen\SampleNXOpenApplications\Java

Most examples have a Readme.txt which explains what the example is supposed to do and how

to use it.

Entry Points

The following table shows entry points for various user exits in all supported languages. For

details on how to use the entry points, see User Exits

NX Event User Exit Environment
Variable

C/C++ Entry Point VB Entry Point Java Entry Point

Execute Custom Program (initialization) N/A ufusr Main main

Execute Custom Program (after init) N/A ufusr_ask_unload GetUnloadOption getUnloadOption

Unload Program N/A ufusr_clean_up UnloadLibrary onUnload

Open Part USER_RETRIEVE ufget ufget ufget

New Part USER_CREATE ufcre ufcre ufcre

Save Part USER_FILE ufput ufput ufput

Save Part As USER_SAVEAS ufsvas ufsvas ufsvas

Import Part USER_MERGE ufmrg ufmrg ufmrg

Execute GRIP Program USER_GRIP ufgrp ufgrp ufgrp

Add Existing Part USER_RCOMP ufrcp ufrcp ufrcp

Export Part USER_FCOMP uffcp uffcp uffcp

Component Where-used USER_WHERE_USED ufusd ufusd ufusd

Plot File USER_PLOT ufplt ufplt ufplt

2D Analysis Using Curves USER_AREAPROPCRV uf2da uf2da uf2da

User Defined Symbols USER_UDSYMBOL ufuds ufuds ufuds

Open CLSF USER_CLS_OPEN ufclso ufclso ufclso

Save CLSF USER_CLS_SAVE ufclss ufclss ufclss

Rename CLSF USER_CLS_RENAME ufclsr ufclsr ufclsr

Generate CLF USER_CL_GEN ufclg ufclg ufclg

Postprocess CLSF USER_POST ufpost ufpost ufpost

Create Component USER_CCOMP ufccp ufccp ufccp

Change Displayed Part USER_CDISP ufcdp ufcdp ufcdp

Change Work Part USER_CWORK ufcwp ufcwp ufcwp

Remove Component USER_DCOMP ufdcp ufdcp ufdcp

Reposition Component USER_MCOMP ufmcp ufmcp ufmcp

Substitute Component Out USER_SCOMP1 ufscpo ufscpo ufscpo

Substitute Component In USER_SCOMP2 ufscpi ufscpi ufscpi

Open Spreadsheet USER_SPRD_OPN ufspop ufspop ufspop

Close Spreadsheet USER_SPRD_CLO ufspcl ufspcl ufspcl

Update Spreadsheet USER_SPRD_UPD ufspup ufspup ufspup

Finish Updating Spreadsheet USER_SPRD_UPF ufspuf ufspuf ufspuf

Replace Reference Set USER_RRSET ufrrs ufrrs ufrrs

Rename Component USER_NCOMP ufncp ufncp ufncp

NX Startup USER_STARTUP ufsta Startup startup

Access Genius Library Management
System

USER_GENIUS ufgen ufgen ufgen

Execute Debug GRIP USER_GRIPDEBUG ufgrpd ufgrpd ufgrpd

Execute User Function USER_UFUNC ufufun ufufun ufufun

Initialize new operation USER_CREATE_OPER ufnopr ufnopr ufnopr

CAM Startup USER_CAM_STARTUP ufcams ufcams ufcams

Signatures

C/C++ VB.NET Java

void xyz(char *s, int *retcode, int rlen) Function xyz(s As String()) As Integer int xyz (String[])

