Example 8.2: “Introduction to Heat Transfer”, Incropera, Edition 5E

-> rﬁ,TmO

Known: Internal flow through thick-walled tube having uniform heat generation.

Find:
1. Length of tube needed to achieve the desired outlet temperature
2. Local convection coefficient at the outlet

Assumptions: Steady-state, uniform heat flux, incompressible fluid, adibatic outer tube surface



1. Since the outer surface of the tube is adiabatic, the rate at which energy is generated
within the tube wall must equal the rate at which it is convected to the water.
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2. From Newton’s law of cooling, the local convection coefficient at the tube exit is
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Modification of Example 8.2

Insulation (local temperature-dependent
q(T)=aT +b electrical heating)

-> rﬁ,Tm,O

Known: Internal flow through thick-walled tube having NON-uniform heat generation.

Find:
1. Temperature of pipe wall as a function of axial distance (x direction)
2. Find current density

Assumptions: Steady-state, uniform heat flux, incompressible fluid, adibatic outer tube surface.
It can also be assumed that though the temperature changes with x, it does not change with r.



The heat generated by electrical heating can be calculated from Ohm’s power law:
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P= R =V°G where Pis power in watts, Vis voltage, R is resistance and G is conductance

It is common for R or G to be given in Ohms/meter and Siemens/meter respectively.
Therefore the uniform heat generation rate is
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_ V(D ~Di)g where lower-case g is conductance per meter. The top termis
”(DOZ _ Di2)|_ in watts, and the bottom term resolves to volume.
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The original Example 8.2 treats the heat generation rate as a constant. However, a situation
may arise where g is no longer independent, but is dependent on temperature (such asin a
material with a high temperature coefficient). If g is linearly modeled, then the above
equation becomes

is now also temperature dependent. It is unclear to me
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q(T) = where to go from here, since neither the convection heat
ﬂ(DOZ _ Diz)dx flux nor the internal surface temperature of the pipe is
4 constant.
2
dxq(T) :V (D, —D;)(aT +b) It also seems to make sense to me that L must become

Z(DO2 - Diz) an incremental part of x because temperature also changes
with x.



