FE simulation: Consistent Units

Joel Cugnoni, LMAF / EPFL

March 3, 2010

Joel Cugnoni, LMAF / EPFL FE simulation: Consistent Units

・ロト ・回ト ・ヨト ・ヨト

Joel Cugnoni, LMAF / EPFL FE simulation: Consistent Units

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

 ABAQUS and most other simulation codes do not have a built-in unit system (except for rotation DOF & angles)

 ABAQUS and most other simulation codes do not have a built-in unit system (except for rotation DOF & angles)

- ABAQUS and most other simulation codes do not have a built-in unit system (except for rotation DOF & angles)
- It is the user's responsibility to ensure that the units chosen are self-consistent.

- ABAQUS and most other simulation codes do not have a built-in unit system (except for rotation DOF & angles)
- It is the user's responsibility to ensure that the units chosen are self-consistent.
- Consistent = derived units can be expressed in terms of the fundamental units without conversion factors.

- ABAQUS and most other simulation codes do not have a built-in unit system (except for rotation DOF & angles)
- It is the user's responsibility to ensure that the units chosen are self-consistent.
- Consistent = derived units can be expressed in terms of the fundamental units without conversion factors.
- Specifying model data in inconsistent units will yield results that are not physically meaningful

伺 とう ヨン うちょう

- ABAQUS and most other simulation codes do not have a built-in unit system (except for rotation DOF & angles)
- It is the user's responsibility to ensure that the units chosen are self-consistent.
- Consistent = derived units can be expressed in terms of the fundamental units without conversion factors.
- Specifying model data in inconsistent units will yield results that are not physically meaningful
- Inappropriate units may cause numerical problems during solution (round-off errors)

・回 ・ ・ ヨ ・ ・ ヨ ・

Fundamental Units: the SI system

The fundamental units used in the SI system are the following:

- Mass [M], specified in kilograms
- Length [L], specified in meters
- Time [T], specified in seconds
- Temperature $[\Theta]$, specified in degrees Kelvin (or Celsius)
- Electric current [A], specified in amperes

Derived Units

These quantities are derived from the fundamental units. Typical derived units in the SI system are:

- Force (in Newtons) = MassAcceleration = ML/T^2
- Density = Mass/Volume = M/L^3
- Stress or Pressure (in Pascals) = Force/Area = $(ML/T^2)/L^2 = M/LT^2$
- Work, Energy, or Unit of Heat (in Joules) = ForceLength = ML^2/T^2
- Power (in Watts) = Energy/Time = ML^2/T^3
- Electrical Charge (in Coulombs) = CurrentTime = AT

(日) (部) (注) (注) (言)

Typical consistent set of units

System:	MKS	mmNS	FPS	IPS
Length	m	mm	ft	in
Time	sec	sec	sec	sec
Mass	Kg	tonne	slug	lbf-sec ²
Force	N	N	lbf	lbf
Temperature	°C	°C	°F	°F
Area	m ²	mm ²	ft ²	in ²
Volume	m ³	mm ³	ft ³ (cu-ft)	in ³ (cu-in)
Velocity	m/sec	mm/sec	ft/sec	in/sec
Acceleration	m/sec ²	mm/sec ²	ft/sec ²	in/sec ²
Angle, rotation	rad	rad	rad	rad
Angular Velocity	rad/sec ²	rad/sec ²	rad/sec ²	rad/sec ²
Mass density	Kg/m ³	Tonne/mm ³	slug/ft ³	lbf-sec ² /in ⁴
Moment, torque	N-m	N-mm	ft-lbf	in-lbf
Line load	N/m	N/mm	lbf/ft	lbf/in
Surface load	N/m ²	N/mm ²	lbf/ft ²	lbf/in ²
Stress, pressure	Pa	MPa		Psi
Youngs modulus	Pa	MPa		Psi
Thermal exp. coef.	/°C	/°C	/°F	/°F
	(/K)	(/K)	(/K)	(/K)
Beam cross-section inertia I	m ⁴	mm ⁴	ft ⁴	in ⁴
Energy, Work, Heat	J	mJ	ft-lbf	in-lbf
Power, heat transfer rate \dot{Q}	W	mW	ft-lbf/sec	in-lbf/sec
Temperature gradient	°C/m	°C/mm	°F/ft	° F/in
Heat flux	W/m ²	mW/mm ²	lbf/ft-sec	lbf/in-sec
Therm. conductivity	W/m-°C	mW/mm-°C	lbf/sec- ^o F	lbf/sec-°F
Specific heat Cp	$J/Kg-^{\circ}C$	$mJ/tonne-^{\circ}C$	ft-lbf/slug- $^{\circ}$ F	$in^2/sec^2-^\circ F$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

SI to other metric units

	SI (m, k, s)	Metric (mm, k, s)	Metric (cm, g, s)
Time	second (s)	second (s)	second (s)
Length meter	1 meter (m)	1000 millimeter (mm)	100 centimeter (cm)
Velocity	1 m/s	1000 mm/s	100 cm/s
Acceleration	1 m/s^2	1000 mm/s ²	100 cm/s^2
Mass	1 kilogram (kg)	1.0e-3 tonnes	1000 gram (g)
Density	1 kg/m3	1.0e-12 tonnes/mm ³	$1.0e-3 g/cm^{3}$
Force	1 Newton (N)	1 Newton (N)	1.0e5 dyne (dyn)
Moment	1 N · m	1000 N · mm	1.0e7 dyn · cm
Stress/Pressure	1 Pascal (Pa)	1.0e-6 N/mm ²	10 dyn/cm ²
Energy	1 Joule (J)	1000 millijoule (mJ)	1.0e7 erg
Power	1 Watt (W)	1000 milliwatt	1.0e7 erg/s

◆□ > ◆□ > ◆臣 > ◆臣 > ○

SI to English units

SI (m, k, s)	English (inch, lbf, s)	English (foot, lbf, s)
second (s)	second (s)	second (s)
1 meter (m)	39.370 inches (in)	3.2808 feet (f)
1 m/s	39.370 in/s	3.2808 f/s
1 m/s ²	39.370 in/s ²	3.2808 f/s ²
1 kilogram (kg)	5.7100e-3 lbf s ² /in	6.8522e-2 slugs
1 kg/m ³	9.3572e-8 lbf s ² /in ⁴	1.9403e-3 slug/ft ³
1 Newton (N)	0.22481 lbf	0.22481 lbf
1 N·m	8.8508 lbf.in	0.73756 lbf·ft
1 Pascal (Pa)	1.4504e-4 lbf/in ²	2.0885e-2 lbf/ft ²
1 Joule (J)	8.8507 lbf.in	0.73756 lbf·ft
	SI (m, k, s) second (s) 1 meter (m) 1 m/s 1 m/s ² 1 kilogram (kg) 1 kg/m ³ 1 Newton (N) 1 N·m 1 Pascal (Pa) 1 Joule (J)	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Note: lbf = pound force

Joel Cugnoni, LMAF / EPFL FE simulation: Consistent Units

◆□ > ◆□ > ◆臣 > ◆臣 > ○

 Most CAD systems use "mm" units internally (by default) and the user can usually choose different "display" units.

- Most CAD systems use "mm" units internally (by default) and the user can usually choose different "display" units.
- However, units may be modified when exporting the CAD model into STEP/IGES/SAT files

- Most CAD systems use "mm" units internally (by default) and the user can usually choose different "display" units.
- O However, units may be modified when exporting the CAD model into STEP/IGES/SAT files
- So ALWAYS CHECK THE PART DIMENSIONS when importing a CAD file for FE analysis

- Most CAD systems use "mm" units internally (by default) and the user can usually choose different "display" units.
- O However, units may be modified when exporting the CAD model into STEP/IGES/SAT files
- So ALWAYS CHECK THE PART DIMENSIONS when importing a CAD file for FE analysis
- **(**) In Abaqus: use Tool \Rightarrow Query \Rightarrow Distance to verify the units

同 と く き と く き と