Shear in Reinforced Concrete Slabs under Concentrated Loads close to Supports

Eva Lantsoght

Overview

Introduction

- Overview of experiments
- Beams vs. slabs
- Modified Bond Model
- Code extension proposal
- Application to practice
- Conclusions

Motivation (1)

Bridges from 60s and 70s

Increased live loads

heavy and long truck (600 kN > perm. max = 50ton)

The Hague in 1959

End of service life + larger loads

Motivation (2)

Motivation (3)

- First checks since mid-2000s
 - 3715 structures to be studied
 - 600 slab bridges shear-critical
- But: checks according to design rules
- => Residual capacity???

TUDelft

 Hidden reserves of the bearing capacity

Highways in the Netherlands

Project description (1)

- Capacity of existing bridges
 - TU Delft
 - Concrete Structures
 - Structural Mechanics
 - TNO
 - RWS

TUDelft

- Concrete Structures
 - Long-term tensile strength
 - Beam shear sustained loads
 - Continuous girders shear
 - Prestressed slabs punching
 - Slab bridges shear/punching

Concrete bridges

Shear Failure (1)

Shear failure of the de la Concorde bridge, Laval

Shear failures of bridges: rare but brittle failures

Shear Failure (2) Beam shear vs. Punching shear

Beam shear, one-way shear

Punching shear, two-way shear

amount of shear experiments done

TUDelft

Shear Failure (3) Beam shear

- Since 1899 (Ritter)1955: collapse of warehouse
- Most experiments:
 - Beams

TUDelft

- Heavily reinforced
- Small size
- Slender ($a/d \ge 2,5$)
- Basis for design codes

Influence of shear span

Shear Failure (4) Punching shear

TUDelft

Categories of methods for punching shear

Slabs under concentrated loads (1)

- Transverse load redistribution
- Additional dimension in slabs
- Expected higher capacity than beams
- First experiments: Regan (1982)

Slabs under concentrated loads (2)

- Shear stress over effective width
- Fixed width, eg. 1 m
- Load spreading method

Slabs under concentrated loads (2)

- Shear stress over effective width
- Fixed width, eg. 1 m
- Load spreading method

Goals

Assess shear capacity of slabs under concentrated loads
Determine effective width in shear

Experiments (1)

Size: $5m \times 2,5m$ (variable) $\times 0,3m =$ scale 1:2

Continuous support, Line supports

TUDelft

Concentrated load: vary a/d and position along width

Experiments (2)

• 2nd series experimental work:

- Slabs under combined loading
- Line load

TUDelft

- Preloading
- 50% of strength from slab strips
- Concentrated load until failure
- Conclusions from 1st series valid when combining loads?
- 26 experiments, 8 slabs
- Overall: 156 experiments, 38 slabs

Experiments (3)

Slabs vs. beams (1)

- Transverse load redistribution
- Geometry governing in slabs
- Location of load
 - result of different load-carrying paths
- Mid support vs end support
 - influence of transverse moment
- Wheel size

TUDelft

• more 3D action

20

Slabs vs. beams (2)

Modified Bond Model (1)

- Based on Bond Model (Alexander and Simmonds, 1990)
- For slabs with concentrated load in middle

Modified Bond Model (2)

Modified Bond Model (3)

- Adapted for slabs with concentrated load close to support
- Geometry is governing as in experiments

TUDelft

- Determine factor that reduces capacity of "radial" strip
- Maximum load: based on sum capacity of 4 strips

Modified Bond Model (4)

TUDelft

Modified Bond Model (5)

Modified Bond Model (6)

TUDelft

Modified Bond Model (7)

28

Modified Bond Model (8)

Modified Bond Model (9)

Experiments vs Eurocode shear

TUDelft

Experiments vs Modified Bond Model

30

Code extension proposal Limit State function

 $P_{f} = P \quad R < R_{d}$

Experiment vs. Design value

- Experiment
 - mean values
 - Test/Predicted ratio

Design value

Delft

characteristic values

Reliability analysis based on load and resistance

Code extension proposal Random variables

TUDelft

Code extension proposal Slabs subjected to Wheel Loads

$$V_{Rd,c,prop} = C_{Rd,c} k \ 100 \rho_l f_{ck}^{-1/3} b_{eff,red} d_l \left(1.9 - \frac{f_{ck}}{225} \right)$$
$$b_{eff,red} = \left(0.52 \frac{l_{sup}}{b} + 0.48 \right) b_{eff}$$

T 7

Delft

- Enhancement factor depends on f_{ck}
 - Experiments: f_{ck} not as in shear formula
- Effect of reduced support width
- Proposal for $a_{\nu} \leq 2.5 d_{\mu}$

Application to practice (1)

• Evaluating existing solid slab bridges:

- NEN-EN 1992-1-1:2005
- 25% reduction of contribution concentrated load close to support
- $\beta = a_v/2d$
- Combined: $\beta_{new} = a_v/2,5d$
- Effective width: French method and minimum 4*d*

Application to practice (3)

Checks at indicated sections

TUDelft

9 existing Dutch solid slab bridges

Application to practice (4)

• Shear **stresses**: influence of recommendations

- QS-EC2: wheel loads at $a_v = 2,5d_1$
- QS-VBC: wheel loads at $a_v = d_l$
- QS-EC2 18% reduction in loads

• Shear **capacity**:

- QS-EC2: *ν_{Rd,c}* ~ *ρ*, *d*
- low reinforcement + deep section = small shear capacity
- QS-VBC: *τ*₁ ~ *f*_{ck} only

QS-EC2 improved selection ability

Impact on Sustainability

Example replacement of 3-span slab bridge (deck only)

- Economic cost: 500k 640k €
- Environmental cost: 136 ton CO₂
 - Blast furnace cement: 74 ton CO₂
 - Portland slag cement: 122 ton CO₂
- Social cost: case-dependent
 - can be 9 times economic cost
- Scope: 600 slab bridges

Summary & Conclusions

- Slabs under concentrated loads behave differently in shear than beams
- Beneficial effect of transverse load redistribution
- Modified Bond Model improvement as compared to Eurocode
- Code extension proposal for transverse load redistribution

 Application to practice: reduction in loads

Delft

Contact:

Eva Lantsoght

E.O.L.Lantsoght@tudelft.nl

+31(0)152787449

