Hello DesertFox

I'm trying to model a spring that is used in one of our products. I visualized the free body diagram as a simply supported beam. I wanted to verify my experimental results with ANSYS and analytical results. Depending on what method gave me the best results as compared to the experimental results, I would then use that method for analyzing the spring in the product. My test setup used two dowel pins that supported the spring at preload and then when the handle is pressed. A Chatillion force gauge and dial indicator were used to measure the resulting force and deflection.

PRELOAD EXPERIMENTAL

TRIGGER EXPERIMENTAL

Material:AISI 1095 Steel, oil quenched from 800°C (1475°F), tempered at 480°C (900°F) (Approximate Blue Tempered) Spring Dimensions: 2.125"Lx0.34"Dx0.025"H

Spring in product:

The force required to deflect the spring to it's preloaded deflection of 0.625" is 3.5 lbf.

The force required to deflect the spring to it's handle deflection of 0.700" is 15 lbf.

PRELOAD	Exp Force	E s p Force	Exp Force	Ezp Force	Ezp Force	Ezp Force	Exp Force	Exp Force
	2	4	5.5	6	6.2			
	Dial Defl	Dial Defl	Dial Defl	Dial Defl	Dial Defl	Dial Defl	Dial Defl	Dial Defl
	0.10	0.20	0.30	0.40	0.43			
	Actual Defi	Actual Defi	Actual Def	Actual Defi	Actual Defi	Actual Defi	Actual Defi	Actual Defl
PRELOAD	0.09	0.18	0.28	0.38	0.40			
				1				
TRIGGER	Exp Force	Exp Force	Exp Force	Ezp Force	E z p Force	Exp Force	Exp Force	Ezp Force
	4.25	i 6.5	8.25	10	11	11.75	12.25	12.25
	Dial Defl	Dial Defl	Dial Defl	Dial Defl	Dial Defl	Dial Defl	Dial Defl	Dial Defl
	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45
Similar To	Actual Defi	Actual Defi	Actual Def	Actual Defi	Actual Defi	Actual Defi	Actual Defi	Actual Defi
Trianer	0.00	0.12	0.17	0.21	0.25	0.20	0.25	0.4.0

The data above shows the required force to deflection for preloading setup and the trigger setup.

Spring Analysis 9/20/08 Comparing Simply supported beam to experimental results:

Comparing Castigiliano's Method to experimental results:

Comparing Strain Energy Method to experimental results:

Comparing Curved Beam Stress at largest Moment to ANSYS results:

Comparing Curved Beam Stress at largest Moment to ANSYS results:

