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Abstract

The Melnikov criterion is used to examine a global homoclinic bifurcation and transition to chaos in the case of a quar-
ter car model excited kinematically by the road surface profile. By analyzing the potential an analytic expression is found
for the homoclinic orbit. By introducing an harmonic excitation term and damping as perturbations, the critical Melnikov
amplitude of the road surface profile is found, above which the system can vibrate chaotically.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of rough surface road profiles and its influence on vehicle unwanted vibrations due to kine-
matic excitations is still a subject of research among automotive manufacturers and research groups, whose
objective is to minimize their effects on the driver and passengers [1–6]. Past studies focused on the dynamics
of a passive car suspension, the nonlinear characteristics of tyres and the effect of shimming in vehicle wheels
[7–9]. Recently many new applications of active and semi-active control procedures and special devices to min-
imize vehicle vibrations have been developed [10–12]. Consequently, old mechanical quarter car models [8,9]
have been re-examined in the context of active damper applications. Dampers based on magnetorheological
fluid with typical hysteretic characteristics have significant promise for effective vibration damping in many
applications [13–15]. New ideas in vehicle vibration damping, such as ‘Sky hook’ control [16] or H1 control
[15,17] have already been implemented and tested in several car and motorcycle applications. Efforts have
focused on studies of the excitation of the automobile by a road surface profile with harmful noise components
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[3,4]. However, due to various nonlinearities in the vehicle dynamics, the chaotic behaviour may produce noise
like responses [6,18,19].

In the present paper the model of Li et al. [6] is used, with the addition of a gravitational term that changes
the equilibrium point and therefore the external potential. This paper uses Melnikov theory [20–23] to estimate
the critical amplitude of the road surface profile above which the system can vibrate chaotically. The gravita-
tional term changes the topology of the heteroclinic orbit (in the case of a symmetric reversed ‘Mexican hat’
potential) into a homoclinic one (with a broken symmetry potential). Systems with Duffing characteristics hav-
ing non-symmetric potentials and a linear repulsive force term are a wide class of mechanical systems and have
been the subject of previous investigations in the context of the appearance of chaotic solutions [24–26,29].
This paper applies the results obtained in [29] to a quarter car model with a nonlinear damper [6–8,13–15]
and an hysteretic loop.
2. The quarter-car model

The equation of motion of a single degree of freedom quarter-car model (Fig. 1) is [6]
m
d2x
dt2
þ k1ðx� x0Þ þ mg þ F h

d

dt
ðx� x0Þ; x� x0

� �
¼ 0; ð1Þ
where Fh is an additional nonlinear hysteretic suspension damping and stiffness force dependent on relative
displacement and velocity, given by
F h

d

dt
ðx� x0Þ; x� x0

� �
¼ k2ðx� x0Þ3 þ c1

d

dt
ðx� x0Þ þ c2

d

dt
ðx� x0Þ

� �3

ð2Þ
and
x0 ¼ A sinðXtÞ; ð3Þ
where the excitation frequency is X ¼ 2pv0=k, v0 is the velocity of the car, and A and k are the amplitude and
wavelength of the harmonic road profile.

Defining a new variable for the relative displacement as
y ¼ x� x0; ð4Þ
we get
d2y
dt2
þ x2y þ B1y3 þ B2

dy
dt
þ B3

dy
dt

� �3

¼ �g þ AX2 sinðXtÞ; ð5Þ
mg
m.

x

x =Asin (t)0

Fig. 1. The quarter-car model subjected to kinematic excitation with nonlinear damping and stiffness.
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where x2 ¼ k1=m, B1 ¼ k2=m, B2 ¼ c1=m, B3 ¼ c2=m. Following Li et al. [6] the system parameters are defined
as
Fig. 2.
y0 ¼ �
m ¼ 240 kg; k1 ¼ 160000 N=m; k2 ¼ �300000 N=m3; c1 ¼ �250 N s=m; c2 ¼ 25N s3=m3: ð6Þ
The corresponding dimensionless equation of motion can be written for a scaled time variable s ¼ xt as
€y þ y þ ky3 þ a _y þ b _y3 ¼ �g0 þ AX02 sinðX0sÞ; ð7Þ
where k ¼ B1=x2 ¼ k2

k1
, a ¼ B2=x ¼ c1ffiffiffiffiffiffi

k1m
p , b ¼ B3x ¼ c2

ffiffiffiffi
k1

m3

q
, g0 ¼ g

x2, X0 ¼ X=x. The overdots in Eq. (7) denote

the corresponding derivative with respect to s ( _� d=ds).
The simplicity of this model enables the full examination of the parameters of the mechanical system vibra-

tion and the transition to a chaotic regime. Although this simple model cannot simulate the detailed motion of
a real vehicle, it can approximate the dynamics sufficiently to enable the results of analytic procedures per-
formed on the simple nonlinear model to provide insight into the dynamics of the real vehicle.

Note that in our model, Eq. (5), we use both a complicated non-symmetric potential and also non-trivial
damping of the Rayleigh type. Similar damping terms have been used before in the context of Melnikov theory
[30,31]. Litak et al. [30] considered the Froude pendulum, with polynomial damping to model a dry friction
phenomenon. Trueba et al. [31] performed systematic studies for basic nonlinear oscillators including those
with combined damping. Here the motivation in using a complicated damping term is different, and arises
from the use of magnetorheological dampers in vehicle suspensions [13–15]. The signs of the ci coefficients
(Eqs. (1) and (2)) have changed compared to Ref. [6], in order to recover the usual Rayleigh term
c2v3 þ c1v, where v ¼ dy=dt is the system velocity and c1 < 0, c2 > 0 (defined Eq. (6)). This term is able to drive
the system into a stable limit cycle solution, being dissipative for a large enough velocity v v >

ffiffiffiffiffiffiffiffiffiffiffi
c1=c2

p� �
and

increasing energy for a small velocity v <
ffiffiffiffiffiffiffiffiffiffiffi
c1=c2

p� �
.

In Eq. (7), the nonlinear stiffness force has the potential
V ðyÞ ¼ g0y þ 1

2
y2 þ k

4
y4: ð8Þ
Fig. 2 shows this potential, and highlights the characteristic fixed points. Note the non-symmetry is caused by
the gravitational term g0y, and that k < 0.

In Fig. 3a and b we show the results of calculations in the interesting region of the main resonance for the
system parameters given in Eq. (6) and a realistic amplitude of road profile excitation, namely A ¼ 0:11 m. In
this case the vehicle vibration amplitude, AOUT, plotted in Fig. 3a, has been determined numerically. For sim-
plicity it has been defined as
AOUT ¼ ðymax � yminÞ=2; ð9Þ
where ymax and ymin are the maximum and minimum response of the vehicle model in the steady state. The
resonance curve was calculated by tracking the solution for decreasing X 0, and indicates that the main reso-
nance occurs at X0 � 0:85. The response curve is inclined to the left, as expected for a nonlinear system with
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Fig. 3. Vibration amplitude AOUT ¼ ðymax � yminÞ=2 (a) and bifurcation diagram (b). The amplitude of a road profile has been taken as
A ¼ 0:11 m. The arrows indicates X 0 reduces in the simulations. For each new smaller X 0 the initial conditions ½y in; vin� were taken as the
final position and velocity for the previous X 0.
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softening stiffness characteristic. Clearly, a jump between large and small vibration amplitudes exists at
X0 � 0:8. Below this frequency we also observe a second, but much smaller, maximum of AOUT (at
X0 � 0:75) which indicates that something interesting is occurring at this frequency. To examine this effect
in more detail Fig. 3b shows a bifurcation diagram over the same range of excitation frequencies. Interestingly
Fig. 4. Phase diagrams (velocity v ¼ _y versus displacement y plotted by lines) and corresponding Poincare sections (plotted by points) for
A ¼ 0:11 m and different X 0: X0 ¼ 0:6 (a), X0 ¼ 0:8 (b) and X0 ¼ 1:1 (c). The corresponding hysteresis curves are shown in (d), where ‘1’, ‘2’
and ‘3’ represent X 0 = 0.6, 0.8 and 1.1, respectively. vx is scaled in m/s, y in m, while the renormalized Fh is presented in dimensionless
units F h ¼ a _y þ b _y3 þ ky3 (see Eq. (7)).
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X0 � 0:75 is a point of dramatic change in the system behaviour. For any frequency below this point we see a
black bounded region while above it there are singular points. One can easily see that the local change in AOUT

is associated with a Hopf bifurcation. This transition is usually connected with a synchronization phenomenon
between the system vibration frequency and the external excitation frequency. It is also connected with a slight
change of the size of the attractor, reflected in the plot of AOUTðX0Þ (Fig. 3a).

To show the changes in the dynamics caused by this resonance and Hopf bifurcation, Fig. 4a–c shows the
phase portraits and Poincare maps of the system for three chosen frequencies. One can easily identify Fig. 4a
(X0 ¼ 0:6) as a quasi-periodic solution with a limit cycle attractor. On the other hand the solutions presented in
Fig. 4b (X0 ¼ 0:8) and Fig. 4c (X0 ¼ 1:1) show synchronized motion represented by singular points. The range
of the vibration amplitudes is the highest for the last case examined (X0 ¼ 1:1), which is consistent with Fig. 3a.

Fig. 4d shows the hysteresis of the function F hð _y; yÞ, defined by Eq. (2) and obtained during the same sim-
ulation sweeps as the phase portraits. The corresponding hysteresis loops differ in size. Starting with ‘1’ plotted
for X0 ¼ 0:6 then increasing in size for X0 ¼ 0:8 (‘2’) the largest size is reached for X0 ¼ 1:1 (‘3’). Note this
sequence matches the changes in the vibration amplitude, where X0 ¼ 1:1 has the largest amplitude, AOUT.

3. Melnikov analysis

Melnikov analysis starts with the renormalization of the potential (Eq. (8), Fig. 2) [29]. If we let y ¼ zþ y0,
where y0 is the fixed point given in Fig. 2, and V 1ðzÞ ¼ V ðyÞ � V ðy0Þ, then
Fig. 5
z1 � 1:
V 1ðzÞ ¼
k
4

z2ðz� z1Þðz� z2Þ; ð10Þ
where z1 ¼ 1:298 and z2 ¼ 1:593. Fig. 5 shows this normalized potential. Notice that the left peak (the saddle
point) of the potential V 1ðzÞ occurs at z ¼ 0 < z1 < z2 and that V 1ð0Þ ¼ 0.

Looking for a homoclinic orbit we introduce a small parameter � (formally �~a ¼ a, �~b ¼ b and �eA ¼ A). The
equation of motion then has the following form:
€zþ �~a_zþ �~b_z3 þ k z3 � 3

4
ðz1 þ z2Þz2 þ 1

2
z1z2z

� �
¼ �eAX0

2

sinðX0sÞ: ð11Þ
Rewriting this second-order differential equation as two first-order differential equations yields
_z ¼ v;

_v ¼ �kz3 þ 3k
4
ðz1 þ z2Þz2 � k

2
z1z2zþ �ð�~av� ~bv3 þ eAX0

2

sinðX0sÞÞ:
ð12Þ
Note that the unperturbed equations (for � ¼ 0) can be obtained from the gradients of the Hamiltonian
H 0ðz; vÞ
_z ¼ @H 0

@v
; _v ¼ � @H 0

@z
; ð13Þ
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where H 0 is defined as
H 0 ¼ v2

2
þ k

4
ðz� z1Þðz� z2Þz2: ð14Þ
The homoclinic orbits are obtained from the unperturbed Hamiltonian, Eq. (14), as
s ¼
ffiffiffiffiffiffiffi
2

�k

r Z
dz

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� z1Þðz� z2Þ

p ; ð15Þ
which may be evaluated in the following form:
s� s0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�z1z2k

s
ln

2z1z2 � ðz1 þ z2Þzþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z1z2ðz� z1Þðz� z2Þ

p
z

�����
�����; ð16Þ
where s0 is a time like constant of integration.
Thus, the single homoclinic orbit is given by the inverse of the above expression and the corresponding

velocity ðz�ðs� s0Þ; v�ðs� s0ÞÞ, as [29]
z� ¼
4z1z2 exp ðs� s0Þ

ffiffiffiffiffiffiffiffiffiffi
�kz1z2

2

q� �
�ðz1 � z2Þ2 � exp 2ðs� s0Þ

ffiffiffiffiffiffiffiffiffiffi
�kz1z2

2

q� �
þ 2ðz1 þ z2Þ exp ðs� s0Þ

ffiffiffiffiffiffiffiffiffiffi
�kz1z2

2

q� � ;
v� ¼

�4z1z2

ffiffiffiffiffiffiffiffiffiffi
�kz1z2

2

q
exp ðs� s0Þ

ffiffiffiffiffiffiffiffiffiffi
�kz1z2

2

q� �
ðz1 � z2Þ2 � exp 2ðt � t0Þ

ffiffiffiffiffiffiffiffiffiffi
�kz1z2

2

q� �� �
�ðz1 � z2Þ2 � exp 2ðs� s0Þ

ffiffiffiffiffiffiffiffiffiffi
�kz1z2

2

q� �
þ 2ðz1 þ z2Þ exp ðs� s0Þ

ffiffiffiffiffiffiffiffiffiffi
�kz1z2

2

q� �� �2
: ð17Þ
Now suppose that
s0 ¼ s01 þ s02; where s01 ¼ � ln

ffiffiffi
2
p
ðz2 � z1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�kz1z2

p
 !

: ð18Þ
s01 has been fixed to guarantee the proper parity (under the time transformation s! �s), and hence
zð�sÞ ¼ zðsÞ and vð�sÞ ¼ �vðsÞ: ð19Þ
s02 is an arbitrary constant to be determined later in the minimization of the Melnikov integral Mðs02Þ. The
corresponding orbit ðz�ðs� s0Þ; v�ðs� s0ÞÞ is plotted on the phase plane in Fig. 6.

The distance between perturbed stable and unstable manifolds and their possible cross-sections may be
examined by means of the Melnikov integral Mðs02Þ, given by [21]
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Fig. 6. A homoclinic orbit for the given potential (Eq. (9) and Fig. 5). z is expressed in m while vx is given in m/s.
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Mðs02Þ ¼
Z þ1

�1
hðz�ðs� s01 � s02Þ; v�ðs� s01 � s02ÞÞ ^ gðz�ðs� s01 � s02Þ; v�ðs� s01 � s02ÞÞds; ð20Þ
where the wedge product for two dimensional vectors is defined as h ^ g ¼ h1g2 � h2g1. The corresponding
vector h is the gradient of unperturbed Hamiltonian (Eq. (13))
h ¼ k �z�3 þ 3

4
ðz1 þ z2Þz�2 �

1

2
z1z2z�

� �
; v�

� 	
; ð21Þ
while the vector g consists of the perturbation terms to the same Hamiltonian (Eq. (10))
g ¼ �~av� � ~bv�3 þ eAX0
2

sinðX0sÞ; 0
h i

: ð22Þ
Thus, shifting the time coordinate s! sþ s02 under the integral (Eq. (20)), gives
Mðs02Þ ¼
Z 1

�1
v�ðs� s01Þ �~av�ðs� s01Þ � ~bv�3ðs� s01Þ þ eAX02 sinðX0ðsþ s02ÞÞ

� �
ds: ð23Þ
Finally, a sufficient condition for a global homoclinic transition corresponding to a horseshoe type of stable
and unstable manifold cross-section (for the excitation amplitude A > Ac), can be written as
_

s02

Mðs02Þ ¼ 0 and
oMðs02Þ

os02

6¼ 0: ð24Þ
From Eqs. (23) and (24)
Ac ¼
I1

X0
2
I2ðX0Þ

; ð25Þ
where
I1 ¼
Z 1

�1
ðaðv�ðsÞÞ2 þ bðv�ðsÞÞ4Þds

���� ���� ð26Þ
and
I2ðX0Þ ¼ sup
s022R

Z 1

�1
v�ðs� s01Þ sinðX0ðsþ s02ÞÞds

���� ���� ¼ Z 1

�1
v�ðs� s01Þ sinðX0sÞds

���� ����; ð27Þ
where sup means supremum for various s02, and is practically realized by
cosðX0s02Þ ¼ �1: ð28Þ
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Eq. (27) has been obtained by using a trigonometric identity: sinðw1 þ w2Þ ¼ sinðw1Þ cosðw2Þ þ cosðw1Þ sinðw2Þ
where w1 ¼ X0s and w2 ¼ X0s02. We left only the term cosðw2Þ (Eq. (28)) because of the odd parity of the veloc-
ity function v�ðs� s01Þ under the integral. Of course, such a simplification requires the parity of v* to be de-
fined (Eq. (20)) and a proper choice of the constant s01 (Eq. (19)).

Note, the above integrals may be, in principle, evaluated analytically [32] but here, because of their com-
plicated form is difficult to handle, we decided to combine analytic expressions of homoclinic orbits (Eq.
(17)) and numerical calculations of the Melnikov integrals (Eqs. (26) and (27)) using a procedure described
recently by Litak and Borowiec in Ref. [29]. Fig. 7 shows Ac as a function of X 0 for a ffi �0:04 and
b ffi 2:69 (see Eqs. (6) and (7)) given by the curve labeled ‘1’ and b ffi 2:69=2 given by the curve labeled ‘2’.
One can see the characteristic double sack-like shape, similar to the structure observed by Lenci and Rega
[26]. This structure is governed by the oscillating term sinðX0sÞ in the denominator of the integral I2ðX0Þ
(Eq. (25)).
4. Results of simulations

To illustrate the influence of a global homoclinic transition on the system dynamics, simulations were per-
formed for interesting values of the system parameters, using Eq. (7) for the model in Fig. 1. Knowing the
critical value of the road profile amplitude Ac (Fig. 7) and looking at a typical homoclinic bifurcation [23],
the effect on the resonance curves was examined first. Fig. 8 shows the sequence of resonance curves for
A = 0.11, 0.16, 0.21, 0.26, 0.31 and 0.36 m, respectively. Apart from a typical shift of the maximum response
to the right, all of these curves are very similar, up to A ¼ 0:31 m. For A ¼ 0:41 m the synchronized solution is
not stable in the region of resonance. The other difference in the system behaviour occurs to the left side of the
resonance peak where multiple solutions of the nonlinear system appear (in this case resonant and non-reso-
nant solutions) in the region of the resonance. One can observe that starting from A ¼ 0:26 m the curves in
Fig. 8 show a discontinuity signaling jumps between the resonant and non-resonant vibration amplitude
AOUT. Note in all cases a series of simulations were performed to calculate the system response, with X 0

decreasing as in Fig. 3a and b. For most of curves the same initial conditions were used for large X 0, namely
½xin; vin� ¼ ½0:15; 0:1�. However, if the system escaped from the potential well initial conditions of
½xin; vin� ¼ ½�0:15; 0:1� and [0,0.1] were used to avoid this effect. For A ¼ 0:36 m this was not possible in the
vicinity of the resonance peak where the system escaped from the potential well for any initial conditions.
Moreover, just before this escape (for A ¼ 0:36 m � Ac) we observe a further increase in the vibration ampli-
tude AOUT. Examining the related bifurcations diagrams, a period doubling phenomenon occurs in this region,
which may be classified as a precursor of chaotic vibrations. Indeed alternative criteria to the Melnikov
approach (Eq. (24)) are based on the period doubling cascade [27,28]. For larger amplitudes the unstable
vibration region, where escape from the potential is possible, increases. On the other hand, at A ¼ Ac the bor-
der between the basins of attraction belonging to different solutions disappears. To avoid these difficulties for
further analysis the synchronized solution for X0 ¼ 0:8 at A ¼ 0:31 m (Fig. 8) was used, and then the excitation
amplitude was increased slightly to A ¼ 0:41 m, crossing the critical amplitude of Ac ffi 0:35 m. Fig. 9a and b
shows the phase portraits (by lines) and Poincare maps (by points) for these two cases. Fig. 9a shows a
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synchronized motion while Fig. 9b corresponds to a chaotic attractor. The dominant Lyapunov exponents cal-
culated for these responses are k1 ¼ �0:1625 (Fig. 9a) and k1 ¼ 0:03540 (Fig. 9b). Note, the chaotic attractor
is very similar to that studied by Thompson [33] where the harmonic potential has been supplemented by a
nonlinear term with displacement to the power 3 (z3). Fig. 9 also shows the time histories for the two cases:
A ¼ 0:31 m (Fig. 9c) and A ¼ 0:41 m (Fig. 9d). In this figure the difference between the periodic and chaotic
responses is clear.

Our principal analytic result is shown in Fig. 7 where we present the critical value of the road excitation
amplitude Ac for a global homoclinic bifurcation leading to chaotic vibrations. Note that this result is valid
also for a damping force Fd defined with an opposite sign (Fig. 10) due to the absolute values in the Melnikov
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Fig. 10. Renormalized damping force Fd versus velocity v ¼ _y, F d ¼ �av� bv3: for the examined case (see Eqs. (6) and (7)) – ‘1’
(c1 = �250 N s/m, c2 = 25 N s3/m3) and for opposite signs of the damping coefficients – ‘2’ (c1 = 250 N s/m, c2 = �25 N s3/m3).
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integrals (Eqs. (26) and (27)) giving the same critical amplitude Ac (Eq. (25)). Our numerical calculations show
that the choice of damping force ‘2’ in Fig. 10 leads to unstable solutions for forcing amplitudes close to the
critical value, A � Ac.
5. Summary and conclusions

We have studied the vibrations of a quarter-car model with a softening stiffness of the Duffing type, focus-
ing on the potential for chaotic behaviour. The model and parameters used were taken from the paper by Li
et al. [6], with the addition of the gravity force. The addition of this gravity force breaks the symmetry of the
potential, so that V ð�xÞ 6¼ V ðxÞ. The hysteretic nature of the damper caused a range of interesting system
behaviour, such as quasi-periodic, synchronized and chaotic motion. This had a substantial effect on the het-
eroclinic orbits, which transformed into homoclinic orbits. We examined the global homoclinic bifurcations
that appear as instabilities at the boundaries of the basins of attraction, and the cross-sections of stable
and unstable manifolds, by the perturbation approach using Melnikov theory. A critical amplitude was found
for which the system can exhibit chaotic vibrations. The analytic results have been confirmed by numerical
simulations. In particular, the chaotic strange attractor was found for an excitation amplitude A at the critical
value, Ac, and a period doubling precursor for A ¼ 0:36 m. The transition to chaos appears to be present for
Ac ffi 0:36 m but could be lowered significantly for a smaller damping coefficient c2 (Fig. 7). Fortunately this
region is beyond the usual amplitude of road profile excitation. The chaotic solution appears just before the
escape from the potential well, which is similar to the system with a non-symmetric potential described by
Thompson [33].

The model used in this paper is very simple and would not be sufficient to simulate the detailed response of
a vehicle. In particular, the one degree of freedom model assumes that the unsprung mass is significantly smal-
ler than the sprung mass. However, this simple model is able to capture the major nonlinear effects that occur
in vehicle dynamics and has demonstrated the transition to chaotic vibrations and synchronization phenom-
ena. Indeed the nonlinear synchronization may also lead to a reduction in the number of degrees of freedom
required in an effective model. Because of the simplifications in the model, the results cannot be directly com-
pared to experimental results from real vehicles. The results of more sophisticated models will be reported in a
separate paper.
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