### AIR VALVES AND ENERGY SAVINGS

### D. Kim Sorensen, P.E.

Where Knowledge & Experience join with Innovation



# A.R.I. USA Inc.

### TOPICS

- Properties of Air and Water
  - Volume
  - Viscosity
  - Solubility
  - Vapor Pressure
- How Air Travels in Pipelines
- How Air Enters Pipelines
- Air Valves and Energy Savings
- Efficient Air Valve System Design



### **PROPERTIES OF AIR AND WATER**





### Volume

For ideal gasses: PV = nRT

#### For air:

V = T / P

Where T (temperature) is in Rankine (absolute)

P = Pressure

- V = Volume
- n = Number of moles
- **R** = Universal gas constant

| Temp.<br>°F | Temp.<br>ºR | Specific<br>Volume<br>Water<br>Ft <sup>3</sup> /lb | Specific<br>Volume<br>Air<br>Ft <sup>3</sup> /lb |
|-------------|-------------|----------------------------------------------------|--------------------------------------------------|
| 32          | 491.67      | 0.01602                                            | 12.392                                           |
| 50          | 509.67      | 0.01602                                            | 12.837                                           |
| 70          | 529.67      | 0.01605                                            | 13.351                                           |
| 90          | 549.67      | 0.01610                                            | 13.850                                           |
| 110         | 569.67      | 0.01617                                            | 14.368                                           |
| 130         | 589.67      | 0.01625                                            | 14.859                                           |
| 150         | 609.67      | 0.01634                                            | 15.361                                           |
| 170         | 629.67      | 0.01645                                            | 15.873                                           |
| 190         | 649.67      | 0.01657                                            | 16.393                                           |
| 210         | 669.67      | 0.01670                                            | 16.892                                           |
| 212         | 671.67      | 0.01671                                            | 16.938                                           |





### 14.7 PSI



### 29.4 PSI

### 147 PSI



### Air pocket possesses a great amount of dangerous potential energy







## Viscosity WATER has about 1000 times the viscosity of AIR Viscosity effects resistance and, thus,







### **SOLUBILITY of Air in Water**

### Volumetric Concentration

The capacity of water to hold dissolved air in solution

| Temperature |        | Gauge Pressure (psig) |        |        |        |        |  |
|-------------|--------|-----------------------|--------|--------|--------|--------|--|
| (°F)        | 0      | 20                    | 40     | 60     | 80     | 100    |  |
| 40          | 0.0258 | 0.0613                | 0.0967 | 0.1321 | 0.1676 | 0.2030 |  |
| 50          | 0.0223 | 0.0529                | 0.0836 | 0.1143 | 0.1449 | 0.1756 |  |
| 60          | 0.0197 | 0.0469                | 0 0742 | 0.1014 | 0.1296 | 0.1559 |  |
| 70          | 0.0177 | 0.0423                | 0.0669 | 0.0916 | 0.1162 | 0.1408 |  |
| 80          | 0.0161 | 0.0387                | 0.0614 | 0.0840 | 0.1067 | 0.1293 |  |
| 90          | 0.0147 | 0.0358                | 0.0589 | 0.0750 | 0.0990 | 0.1201 |  |
| 100         | 0.0136 | 0.0334                | 0.0536 | 0.0730 | 0.0928 | 0.1126 |  |
| 110         | 0.0126 | 0.0314                | 0.0501 | 0.0699 | 0.0877 | 0.1065 |  |
| 120         | 0.0117 | 0.0296                | 0.0475 | 0.0654 | 0.0833 | 0.1012 |  |
| 130         | 0.0107 | 0.0280                | 0.0452 | 0.0624 | 0.0796 | 0.0968 |  |
| 140         | 0.0098 | 0.0265                | 0.0432 | 0.0598 | 0.0765 | 0.0931 |  |
| 150         | 0.0089 | 0.0251                | 0.0413 | 0.0574 | 0.0736 | 0.0898 |  |
| 160         | 0.0079 | 0.0237                | 0.0395 | 0.0553 | 0.0711 | 0.0869 |  |
| 170         | 0.0068 | 0.0223                | 0.0378 | 0.0534 | 0.0689 | 0.0844 |  |
| 180         | 0.0055 | 0.0208                | 0.0361 | 0.0514 | 0.0667 | 0.0820 |  |
| 190         | 0.0041 | 0.0192                | 0.0344 | 0.0496 | 0.0647 | 0.0799 |  |
| 200         | 0.0024 | 0.0175                | 0.0326 | 0.0477 | 0.0628 | 0.0779 |  |
| 210         | 0 0004 | 0.0155                | 0.0306 | 0.0457 | 0.0607 | 0.0758 |  |



### Vapor Pressure

| Temp.<br>⁰F | Vapor<br>Pressure<br>psi | Temp.<br>°F | Vapor<br>Pressure<br>psi |
|-------------|--------------------------|-------------|--------------------------|
| 32          | 0.09                     | 130         | 2.22                     |
| 40          | 0.12                     | 140         | 2.89                     |
| 50          | 0.18                     | 150         | 3.72                     |
| 60          | 0.26                     | 160         | 4.74                     |
| 70          | 0.36                     | 170         | 5.99                     |
| 80          | 0.51                     | 180         | 7.51                     |
| 90          | 0.70                     | 190         | 9.34                     |
| 100         | 0.95                     | 200         | 11.52                    |
| 110         | 1.27                     |             |                          |
| 120         | 1.69                     | 212         | 14.70                    |

Source: Wastewater Engineering: Collection and Pumping of Wastewater by George Tchobanoglous



### **Vapor Pressure**







### **A PIPELINE IS NEVER EMPTY**

































### Air Entrainment

Dissolved air is not the only source of air in water/wastewater transmission systems.

There are numerous ways for atmospheric air to enter the system



## Air Entrainment Vortex











## Air Entrainment Entrainment by a plunging jet









- Real air pocket behavior is much more complicated than described before.
- Behavior is affected by Buoyancy, Drag and Surface Tensions (water / air / walls).
- Lubbers, Christof L. and Clemens, Francois H.L.R, April 2005





Small bubbles move with the water stream





Larger air pockets move against the water stream





Very large pockets break up, large parts of the pocket move against the water stream, while small air bubbles move with the water flow





Side view of air pocket breaking up





# Air pocket building up at a small bend





### **Air Valves and Energy Savings**



### A.R.I. USA Inc.

The Energy Star Program of the **EPA estimates that about <u>\$4 billion are spent annually for energy costs</u> <b>to run drinking water and wastewater utilities.** If the sector could reduce energy use by just 10% through investment in energy efficiency collectively, it would **save about \$400 million annually.** 



















#### **EFFECTS of TRAPPED AIR on HYDRAULIC GRADE LINE**



Pump records for a wastewater lift station in **Denton County, Texas,** with 5 conventional wastewater air valves on its force main.

Pump run





2 of the 5 conventional Valves were replaced by 2 new innovative wastewater **Air Valves** Long pump runs Change of flow rate scale





### **A Month Later**





#### **Option 1: Without A.R.I. Air Valves**

#### **Option 2: With A.R.I. Air Valves**

| Years of operation           | 20           | years                       | Years of operation           | 20           | years             |
|------------------------------|--------------|-----------------------------|------------------------------|--------------|-------------------|
| Days of operation (lifetime) | 7300         | days                        | Days of operation (lifetime) | 7300         | days              |
| Daily operating time         | 7.36         | hours                       | Daily operating time         | 2.65         | hours             |
| Operating time (annual)      | 2,686        | hours per year              | Operating time (annual)      | 967          | hours per year    |
| Operating time (lifetime)    | 53,728       | hours                       | Operating time (lifetime)    | 19,345       | hours             |
| Flow                         | 100          | gpm                         | Flow                         | 430          | gpm               |
| Flow                         | 44,160       | gallons per day             | Flow                         | 68,370       | gallons per day   |
| Flow                         | 16,118,400   | gallons per year            | Flow                         | 24,955,050   | gallons per year  |
| Electricity cost             | \$ 0.1120    | per kilowatt-hour           | Electricity cost             | \$ 0.1120    | per kilowatt-hour |
| TDH                          | 56           | feet                        | TDH                          | 37           | feet              |
| Pump efficiency              | 19%          |                             | Pump efficiency              | 66%          |                   |
| Motor efficiency             | 85%          |                             | Motor efficiency             | 85%          | . ·               |
| Cost per thousand gallons    | \$ 0.1223    | · ·                         | Cost per thousand gallons    | \$ 0.0233    |                   |
| Cost per year                | \$ 1,971.81  | 6                           | Cost per year                | \$ 580.67    | 6                 |
| Lifetime cost                | \$ 39,436.29 |                             | Lifetime cost                | \$ 11,613.31 |                   |
| Cost per hour                | \$ 0.7340    |                             | Cost per hour                | \$ 0.6003    |                   |
| Cost per year                | \$ 1,971.81  | n. 22                       | Cost per year                | \$ 580.67    | 28                |
| Lifetime cost                | \$ 39,436.29 | -                           | Lifetime cost                | \$ 11,613.31 |                   |
| Option one cost per year     | \$ 1,971.81  |                             |                              | 1            |                   |
| Option two cost per year     | \$ 580.67    |                             |                              |              |                   |
| Option two will save         | \$ 1,391.15  | per year                    |                              |              |                   |
| Option one 20-year cost      | \$ 39,436.29 |                             |                              |              |                   |
| Option two 20-year cost      | \$ 11,613.31 |                             |                              |              |                   |
| Option two will save         | \$27,822.98  | over the 20-year life cycle |                              |              |                   |
|                              |              |                             |                              |              |                   |
|                              |              |                             |                              |              |                   |

Assuming pump in use is similar to EBARA 100DLMF67.5 (10HP - 7.5kW), Synchronous speed: 1800 RPM, 3" discharge

### Rule of thumb – Air valve specification and

A.R.I. USA Inc.



Figure 3-1. Sample piping system profile illustrating typical valve locations.

## AWWA



AWWA

#### Where:



C = Chezy Coefficient (110 for iron, 120 for concrete, 130 for steel, 190 for PVC)



INFLOW OF AIR, SCFM





PROFILES FOR LINES "E" & "F"

## **Very Complicated Projects**





### The pipeline profile should not follow overly undulating ground surfaces









A VENTED CAV IN A MANHOLE SUSCEPTIBLE TO FLOODING



#### A.R.I. Recommended Offset Design for Wastewater Applications He offset pipe is longer than 5', air valve should be Non-Slam type

Minimum rising slope of 2% - Higher slope strongly recommended

Minimum diameter 3" - preferable 4" and greater

Air trap riser minimum half of pipe diameter and half diameter above the crown of the pipe

Always – minimum offset diameter will be greater than the air valve inlet diameter and air/vacuum orifice diameter!



 Tel.
 801-254-2226

 Cell
 801-875-9155

 kim@ariusa.com

 www.ariusa.com

D. Kim Sorensen, P.E. Applications Engineer

## Thank You