Given:

(1)

$$
\begin{aligned}
& f(x)=\operatorname{Sin}(2 x) \\
& g\left(x, s_{i}\right)=1+\operatorname{Sin}\left(2 x+s_{i}\right)
\end{aligned}
$$

subject to two conditions being satisfied simultaneously

$$
\begin{align*}
& f(x)=g\left(x, s_{i}\right) \\
& f^{\prime}(x)=g^{\prime}\left(x, s_{i}\right) \tag{2}
\end{align*}
$$

Find $s_{i} \ldots$

Solution:

Combining (1) and (2) we have

$$
\begin{align*}
& \operatorname{Sin}(x)=1+\operatorname{Sin}\left(2 x+s_{i}\right) \\
& \operatorname{Cos}(x)=2 \operatorname{Cos}\left(2 x+s_{i}\right) \tag{1}
\end{align*}
$$

but $\operatorname{Sin}^{2} \phi+\operatorname{Cos}^{2} \phi=1$, so this can be expressed as

$$
\begin{equation*}
\operatorname{Sin}^{2}\left(2 x+s_{i}\right)-\frac{2}{3} \operatorname{Sin}\left(2 x+s_{i}\right)-\frac{4}{3}=0 \tag{2}
\end{equation*}
$$

With a change of variable $\xi_{i}=\operatorname{Sin}\left(2 x+s_{i}\right)$, we now have a quadratic equation and a solution given by

$$
\begin{equation*}
\xi_{i}=\frac{1}{3}(1 \pm \sqrt{13}) \tag{3}
\end{equation*}
$$

In other words

$$
\begin{equation*}
\operatorname{Sin}\left(2 x+s_{i}\right)=\frac{1}{3}(1 \pm \sqrt{13}) \tag{4}
\end{equation*}
$$

Returning to the original equation (1), we now have

$$
f(x)=\operatorname{Sin}(2 x)
$$

$$
\begin{equation*}
g\left(x, s_{i}\right)=1+\frac{1}{3}(1 \pm \sqrt{13}) \tag{5}
\end{equation*}
$$

since this is subject to $f(x)=g\left(x, s_{i}\right)$ we can solve for x to locate the points satisfying the constraints in (2). QED

