
Tremie Concrete seal design

Based on tremie concrete and piles method 2:	F _b =	<mark>36</mark> psi	5184 psf
Resistance per pile = (F_b) (p) (D), or (F_b) (p) (d)	if D < d, use D		
Minimum "D" is 24 inches, or 2 feet	if D≥d, use d		
Method 2 uses a maximum bonding depth of "D" or "d	", since D will be ta	aken as 24" minimum,	"d" will control.
Total pile resistance = 451258 lbs			
Net left over for tremie = 826675 -	451258 =	= 375417 lbs	
375417 = 57114 D			
D = 6.57 feet			

Gudance for Method 2:

The assumed weight of the concrete shall be 140 lb/ft³. The resistance force due to friction on the pile shall be equal to F_bDp , if $D \leq d$, or F_bdp , if $D \geq d$, where F_b is the allowable friction, or bond, stress, d is the H-pile-section depth or the pipe-pile diameter, p is the perimeter, and D is the depth of the seal slab. The allowable service-load bond stress between the steel H-pile or pipe pile and the seal concrete shall be taken as 36 psi.