ERRATA

FLUID MECHANICS for CHEMICAL ENGINEERS
 Second Edition - Second Printing
 Ron Darby

Page	Line	Correction
13	$\boldsymbol{D}_{\text {AB }}$ dimensions	should be [$\left.\mathrm{L}^{2} / \mathrm{t}\right]$
73	Eqn (3-38)	$\mathrm{T}_{\text {o }}$ in denominator should be T_{c}
122	$2^{\text {nd }}$ Eqn from top	$d x$ in last term should be $d z$
140	Problem 46	Problem 46 should read Problem 45
168	Eqn (6-60)	f on rhs should be f_{L} (laminar f)
170	Eqn (6-68)	the exponent on D in the denominator should be 5
179	4 from bottom	Fig. 3-7 should be Fig. 3-8
210	$(\mathrm{L} / \mathrm{D})_{\text {eq }}$ values for	$90^{\circ}: 2$ welds should be 30, 3 welds should be 24
	Mitered weld bends	45° : 2 welds should be 12
210	Mitered weld bends	for 2 welds, K_{i} should be 0.136 , and for 3 welds 0.105
211	Tees, Run Through, Flanged	K_{i} should be 0.05 instead of 0.017
212	$4^{\text {th }}$ Eqn $\left(N_{R e, 1}>2500\right)$	0.48 should be 1.92
212	3rd and $4^{\text {th }}$ Eqns	these Eqns apply for $\theta>45^{\circ}$
218	line 11 from top	Eq. (6-44) should be Eq. (6-47)
218	line 16 from top	Eq. (6-62) should be Eq. (6-65)
223	Eqn (7-64)	the term in [] should read: $\left[1-(1-\chi / \mathrm{R})^{2}\right]^{1 / 2}$
232	Problem 28	replace "..for a fluid with a viscosity of 10 cp.." by ".. for the water.""
233	Problem 35, $4^{\text {th }}$ line	should read "...leaving the tube is one foot above..."
265	Probs. 39 and 40	should be in Ch. 9.
267	Eqn (9-1)	should be $\rho=P M / R T$
271	Eqn (9-19)	$\mathrm{P}_{1} / \mathrm{P}_{2}$ should be $\mathrm{P}_{2} / \mathrm{P}_{1}$
316	Line 17 from Top	L_{2} should be L^{2}
318	Table 10-3	Equal Percentage, C_{v} for $3 \& 4 \times 3,20 \%$ travel: 51.7 should be 5.17
322	16 lines from top	a should be c
328	Eqn (10-47)	should read: $\mathrm{Y}=1-\frac{1.4 \mathrm{X}}{3 \mathrm{kX}}$
367	Eqn (12-4)	D should be d
402	Table 13-1	Units for the columns under Contact surface and Packing Factor should be $\mathrm{ft}^{2} / \mathrm{ft}^{3}$ and $\mathrm{m}^{2} / \mathrm{m}^{3}$
411	Prob. 8 (a)	(a) should read: The flow rate of the liquid (in gpm) that is 50% of that at which flooding would occur.

413

Prob. 13-22
Prob. 19, Table
Eqn (15-28) and
$2^{\text {nd }}$ line following
Eqn (15-34b)

Eqn (15-36)
line above Eqn (15-36)
Eqn (15-42)

Eqn (15-50)
Fig. 15-6 (b)
Eq. (15-62)

Eq. (15-84)
Table 15-3
line after Eq. (15-92)
Eq. (15-95)
omit part (b)
the $3^{\text {rd }}$ value for φ should be 0.1 (instead of 0.5) d should be D , the pipe diameter in mm .
ρ_{G} should be included in the middle form of the eqn, i.e.

$$
\tau_{\mathrm{wG}}=\frac{\mathrm{f}_{\mathrm{G}}}{2} \varepsilon_{\mathrm{m}} \rho_{\mathrm{G}} V_{G}^{2}=\frac{\Delta \mathrm{P}_{\mathrm{fg}}}{4 \mathrm{~L} / \mathrm{D}_{\mathrm{h}}}
$$

the term $\left(\frac{\rho_{S}}{\rho_{G}}\right)$ should read $\left(\frac{\rho_{G}}{\rho_{S}}\right)$
"Hinkel" should read "Hinkle"
should read:

$$
\lambda=\left[\left(\frac{\rho_{\mathrm{G}}}{\rho_{\mathrm{A}}}\right)\left(\frac{\rho_{\mathrm{L}}}{\rho_{\mathrm{W}}}\right)\right]^{1 / 2}
$$

rhs: $\frac{d P}{d x}$ should be $\frac{d P}{d X}$
x - axis legend: missing] on right of units third term omit 2 in denominator, last term V_{m} should be v_{m}
$\left(\rho_{L} / \rho_{G}\right)$ should be $\left(\rho_{G} / \rho_{L}\right)$
a_{2} values should all be + instead of value of a_{2} for Baroczy should be 0.75
all values for Lockhart-Martenelli should be shifted one column to the right
"diensionless" should be "dimensionless"
should read:

$$
-\frac{d P}{d X}=\frac{\left[\left(-\frac{\partial P}{\partial X}\right)_{f m}+G_{m}^{2} \frac{d x}{d X} A\left(\varepsilon_{m}, x\right)+\rho_{m} g \frac{d z}{d X}\right]}{1+G_{m}^{2}\left[\frac{x^{2}}{\varepsilon_{m}} \frac{d v_{g}}{d P}+\left(\frac{\partial \varepsilon_{m}}{\partial P}\right)_{x}\left(\frac{(1-x)^{2}}{\rho_{L}\left(1-\varepsilon_{m}\right)^{2}}-\frac{x^{2}}{\rho_{G} \varepsilon_{m}^{2}}\right)\right]}
$$

Eq. (15-96)
φ_{m} should be ε_{m} in all six places
line 7 after Eq. (15-96)
Table
Table F-1
next to last column
Eq. (15-87) should be Eq. (15-95)
${ }^{\circ} \mathrm{C}$ should be C
should read: US gal/min

