CHAPTER 6

RESPONSE TO ARBITRARY
DYNAMIC LOADING

6.1 DUHAMEL INTEGRAL

The method described in Chapter 5 for determining the approximate
response of a short-duration impulse load can be used as the basis for
developing a method for evaluating the response to an arbitrary dynamic
load. First, consider an undamped oscillator subjected to a short-duration
rectangular pulse having an amplitude of P (¢) and a duration of dt that
ends at time ¢, as shown in Figure 6.1.

From Equation (5.18), the resulting incremental displacement is deter-
mined as

P(t)dt

dv(t) = sinw(t — T) (6.1)

The total displacement can then be determined by summing all of the
incremental displacements in the time interval:

t tP(‘L')
v(t) :/ dv(t) :f
0 0o Mmw

Equation (6.2) is generally known as the Duhamel integral for an
undamped elastic system. It may be used to evaluate the response of

sinw(t — 1)dt (6.2)
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Figure 6.1 Undamped Duhamel integral response (F. Naeim, The Seismic
Design Handbook , 2nd ed. (Dordrecht, Netherlands: Springer, 2001), reproduced
with kind permission from Springer Science+4Business Media B.V.)

an undamped single-degree-of-freedom (SDOF) system to any form of
dynamic loading. The technique, however, has two major limitations:

1. For arbitrary loadings, evaluation of the integral will have to be
done using numerical methods.

2. The solution applies only to elastic response because the principle
of superposition is used in the development of the method.

It must also be noted that the Duhamel integral is the particular solu-
tion for a system starting at rest. For conditions other than starting at rest,
the free-vibration response must be added to this solution, resulting in

sinw(t — 1)dt

(6.3)

: t
Vo .
v(t) =v, +v, = —0s1nwt+vocosa)t+/
0

w maw
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6.2 NUMERICAL FORMULATION OF THE EQUATION
OF MOTION

For most arbitrary loadings, the use of numerical methods will be required.
Therefore, it is generally expedient to go directly to a numerical solution of
the equation of motion that can be used for both linear and nonlinear sys-
tems. This section will consider SDOF systems, although the procedures
discussed can be readily adapted to multiple-degree-of-freedom (MDOF)
systems, as will be shown in Chapters 7 and 8. The applied force and the
stiffness are functions of time, whereas the mass and damping are con-
stant. The damping coefficient may also be considered to be a function of
time; however, general practice is to determine the damping characteris-
tics for an elastic system and then keep these constant for the complete
time history. In the nonlinear range, the primary mechanism for energy
dissipation is through inelastic deformation, and this is accounted for by
the hysteretic behavior of the restoring force.

Although several integration schemes are available in the literature, a
powerful method for doing this is the use of what is generally called the
step-by-step integration method. In this procedure, the time-dependent
equation of dynamic equilibrium is divided into a number of small time
increments, and equilibrium must be satisfied at every increment of time.
By considering the time at the end of a short time step, the equation of
motion can be written as

fi(t+At)+ 1, + At) +f,(t + At) = p(t + At) (6.4)

where f; (t + At) = mv(t + At)
fa(t + At) = co(t + At)

The restoring force can be written in incremental form as

fi =Y k(O AV (0) = r(6) + k() Av(r) (6.5)

i=1

where Av(t) = v(t + At) — v(¢t) = the incremental displacement
during the current time step

n—1
r(t) = Z k; (t)Av;(t) = the elastic restoring force at the
i=1 beginning of the time interval
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It should be noted that the incremental stiffness for a nonlinear system
is generally defined as the tangent stiffness at the beginning of the time
interval. Making these substitutions into Equation (6.2) results in the
following form of the equation of dynamic equilibrium:

mi(t + At) + cv(t + A + Y ki Av, =P(t+ A1) (6.6)

6.3 NUMERICAL INTEGRATION METHODS

Depending on the assumed variation of the acceleration during a small
time step, the method may also be referred to as either the linear acceler-
ation method or the constant acceleration method. If the acceleration is
assumed to be constant during the time interval, the equations for the con-
stant variation of the acceleration, the linear variation of the velocity, and
the quadratic variation of the displacement are indicated in Figure 6.2.
Evaluating the expression for the velocity and displacement at the end
of the time interval leads to the following two expressions for velocity
and displacement:

: : . At At
v(t + At) =v() +v(t + At)7 + v(t)7 (6.7)

. i} At? Af?
v(t + Ar) =v(t) +v()At +v(t + AI)T + v(t)T (6.8)

Solving Equation (6.8) for the acceleration at the end of the time
interval results in

v(t + At) = AitzAv — Ait\')(t) — V(1) (6.9)

This can be written as

v(t 4+ At) = &Av + A(1) (6.10)

where Av = v(t + At) — v(t)
4
A(t) = ——v(t) — V(¢
(1) A tV( ) — V(1)
Equation (6.9) expresses the acceleration at the end of the time interval

as a function of the incremental displacement and the acceleration and
velocity at the beginning of the time interval. Substituting Equation (6.9)
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Figure 6.2 Increment motion (constant acceleration) (F. Naeim, The Seismic
Design Handbook, 2nd ed. (Dordrecht, Netherlands: Springer, 2001), reproduced
with kind permission from Springer Science+Business Media B.V.)

into Equation (6.7) results in the following expression for the velocity at
the end of the time increment:

2
v(t + At) = A_tAv —v(t) (6.11)
which can be written as
2
v(t + At) = A_tAv + B(t) (6.12)
where
B(t) = —v(t)

For the SDOF system, it is convenient to express the damping as a
linear function of the mass as

¢c =am = AC, = A2mw (6.13)
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Use of this equation allows the proportionality factor, «, to be
expressed as @ = 2Aw. Substituting Equations (6.10) and (6.12) into
Equation (6.6) results in the following form of the equation of motion:

4 2
m [A—tzAv —|—A(t)} + am [EAv—FB(t)} + ZkiAv,- = P(t + At)

(6.14)
Moving terms containing the response conditions at the beginning of

the time interval to the right side of the equation results in the following
so-called pseudostatic form of the equation of motion:

k. (Av) = p(t + At) (6.15)
where
P — 4dm n 2o0m Lk
TOAZ T At !
and
p(t+ At) =p(t + At) —r(t) —m[A(t) + aB(1)]
where

=t
r(t) = Zk,mt
7=0

and r(t) is the resistance at the beginning of the time interval. The incre-
mental displacement during the time increment can be written as

(6.16)

The displacement, velocity, and acceleration at the end of the time
increment can then be determined as

v(t + At) = v(t) + Av (6.17)
v(t + At) = é + B(t) (6.18)
. 4

v(t + At) = vl + A(t) (6.19)

These values become the initial conditions for the next time increment,
and the procedure is repeated. If the acceleration during a small time step
i1s assumed to have a linear variation, the following three expressions
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for the displacement, velocity, and acceleration at the end of the time
interval can be determined in a similar manner:

2 2

. . At . At
v(t + At) = v(t) +v(t) At + v(t)T + v(t + At)? (6.20)
. . . . At . At
v(t + At) =v(t) +v(t) At + v(t + At)7 — v(t)7 (6.21)
Vvt + At) = ALIZAV — A%v(t) — 2v(t) (6.22)

The equations for acceleration and velocity at the end of the time step
can also be written as

6
v(t + At) = A_tz(Av) +A(1) (6.23)

v(t + At) = %(Av) + B (1) (6.24)

where 6
A(t) = ——v(t) — 2v(1)
At

. Ar
B(t) = —2v(t) — 5 v(t)

6.4 NEWMARK’S NUMERICAL METHOD

Newmark' suggested a numerical procedure for structural dynamics that
1s similar to the step-by-step method discussed previously. This integra-
tion scheme has the following general form:

bt + A = v(t) + (1 — )¥(AL) + it + At)At (6.25)

v(t + At) = v(t) +v(t) At + (% — ,B) V(1) AL? + Bv(t + At)At?

(6.26)
If y = % and g = }‘, the Newmark method becomes the same as the
constant acceleration method. If y = % and g = %, the linear acceleration

during the time increment is obtained.

IN. M. Newmark, “A Method of Computation for Structural Dynamics,” Trans. ASCE, Vol. 127,
1962.
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Based on his studies, Newmark reached the following conclusions
regarding the proposed integration method:

1. Ify # l, the integration procedure will introduce a spurious damp-
ing into the system even without real damping in the problem.
2. If y =0, negative damping results, and this induces self-excited
vibration solely as a result of the numerical integration procedure.
3. If y>1, a positive damping is introduced that will reduce the
response.
In order to carry out numerical integration with the Newmark method,
a step-by-step procedure would be useful. The following is one such
procedure.’

1. Perform the initial calculations:
P(0) — cv(0) — kv(0)

a. ¥(0) =
m
bokmk g Ve
. = — m
BarC T B(AL?
Ae my?
C. = — —
par T Be
A B=tmaar(X 1

2. Calculate for each time step i:
a. AP; = AP; + Av; + BV,

AP,
b. AVZ' = —
k
. 14 Y. Yo\ ..
C. Avi = MA\/‘Z‘ — Evi + At (1 — ﬁ) V;
4 A 1 A 1. 1.
. V., — V) — — Y. — — .
oBAan? Tt BAr !t 2B

€ Vipg = Vi T AV, Vi =V A+ AV =0 4 AV
3. Repeat step 2, replacing i with i 4+ 1 and continue.

Example 6.1(M) A tower can be modeled as an SDOF system with
a weight of 386.4 kips, a stiffness of 39.48 kips/in, and 10 percent
critical damping. The tower is subjected to a dynamic load of P () =

2A. K. Chopra, Dynamics of Structures, 3rd ed. (Upper Saddle River, NJ: Pearson Education, 2007).
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Figure 6.3

100sin(4mt), where 0 <t < 0.25 sec, as shown in Figure 6.3. Use MAT-
LAB with a time step of At = 0.01 sec to calculate the displacement of
the tower during its first 6 sec of response.

a. Use MATLAB'’s built-in integration function and ODE45.

b. Use Newmark’s method with y = % and g = }1 (constant acceler-
ation method).

c. Use Newmark’s method with y = % and 8 = % (linear acceleration
method).

d. Compare the results obtained in parts (a)—(c).

386.4 X 39.48
m=" =227 100 o=, =] =628
g 386.4 m 1.00

a. Use MATLAB’s built-in integration function and ode45.
All we need to do is to modify the script developed for Example
5.5(M) to include damping and the new definition of external load.
Recalling

P
V4 2600 + 0’y = —
m

and using the same variable substitution we used before:
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Converting our equation to the following two first-order equations:

dVl
dt

de o)
—2 = —olv = 2bwvy + —
’ w V| SC()Vz

_V2

where
p_ { 100sin(4xr) t < 0.25

0 t>0.25

We have to modify the function DLSDOFP that we used in
Example 5.5(M) accordingly. We call this new function DLSDOFP2
and denote P /m as P.

function v = DLSDOFP2 (t, V)
define the forcing function

o°

o°

=1;

k=39.48;

zeta =0.10
omega=sqgrt (k/m) ;

%

=

if t<=0.25
P=100*sin (4*pi () *t) /m;
else
P=0
end
v= [v(2); -omega*omega*v(l)-2*zeta*omega*v(2)+P];

You can experiment with various time steps to get a feel for
how many of them are necessary to obtain accurate results. For this
problem, probably any number above 200 time steps will provide
you with good results. Because we wanted a very smooth curve
for our plots, we have gone overboard and have divided the time
between 0 and 6 sec into 10,000 equal time steps. Even with these
many time steps, MATLAB solves the problem in an instant. The
time array is defined as follows:

tspan=linspace(0,6,10000);
Next, we call the ode45 solver and plot the displacements:

[t, v] = oded4b5 (@GDLSDOFP2, tspan, [0 01', [1);
plot(t,v(:,1));
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The complete script is as follows:

tspan=1linspace(0,6,10000) ;

[t, v] = o0ded5(@DLSDOFP2, tspan, [0 O0]', [1);
plot(t,v(:,1));

% Create xlabel

xlabel ('t', 'FontSize',24, 'FontName', 'Times New Roman',
'FontAngle', 'italic');

% Create ylabel

yvlabel ('v', 'FontSize',24, 'FontName', 'Times New Roman',

'FontAngle', 'italic');

oe

% Display maximum value of displacement response
vmax=max (v(:,1))

%

function v = DLSDOFP2 (t, V)
% define the forcing function
%
m=1;
k=39.48;
zeta =0.10
omega=sqgrt (k/m) ;
%
if t<=0.25
P=100*sin (4*pi()*t) /m;
else

nd

0}

v= [v(2); -omega*omega*v(l)-2*zeta*omega*v(2)+P];

Once executed, the graph shown in Figure 6.4 will be displayed,
and the maximum dynamic displacement value will be shown on
the MATLAB workspace as

vmax =
2.0652.

. Use Newmark’s method with y = % and B = }r
First, define the time array, time step, mass, stiffness, and damp-
ing coefficient as well as y and B:

t=linspace(0,6,10000) ;
Dt= t(2)-t(1);

m=1;
k=39.48;
zeta =0.10;

omega=sqgrt (k/m) ;
c=2*m*omega*zeta;
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Figure 6.4

Next, define the forcing function, P, and using the MATLAB function
diff, an array containing changes in P during each time step:

for i = 1:1length(t)
if t(1)<=0.25
P(i)=100*sin(4*pi () *t (1)) ;
else

Now we can implement the step-by-step procedure:

o°

o

Initial calculations

o°

v(l) =0;
vdot (1) = 0;
vdotdot (1) = (P(1l) - c*vdot(l) -k*v(1l))/m;
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kbar = k + gamma*c/ (beta*Dt) + m/ (beta*Dt*Dt) ;
A = m/ (beta*Dt) + gamma*c/beta;
B= m/ (2*beta) +Dt*c*((0.5*gamma/beta)-1) *c;

o

oe

Loop over each time step

o

for i = 1:(length(t)-1)
DPbar = DP(i) + A*vdot(i)+B*vdotdot (i) ;
Dv = DPbar/kbar;

Dvdot = gamma*Dv/ (beta*Dt) - gamma*vdot (i) /beta +
Dt*vdotdot (1) * (1-0.5*gamma/beta) ;

Dvdotdot= Dv/ (beta*Dt*Dt) - vdot (i) / (beta*Dt)
-vdotdot (1) / (2*beta) ;

v(i+l) = v(i) + Dv;

vdot (1+1) = vdot (i) + Dvdot;

vdotdot (i+1) = vdotdot (i) +Dvdotdot;

end

Finally, we calculate and display the maximum value and plot the dis-
placement:

%
% Find the maximum value of displacement

o

vmax = max(v)

o°

% Plot displacement

o°

plot(t, v);
% Create xlabel
xlabel ('t', 'FontSize', 24, 'FontName', 'Times New Roman',

'FontAngle', 'italic');

% Create ylabel

yvlabel ('v', 'FontSize', 24, 'FontName', 'Times New Roman',
'FontAngle', 'italic');

Execution of this script results in vmax =2.0600 and the dis-
placement graph shown in Figure 6.5.
¢. Use Newmark’s method with y = % and B = é.
All we need to do is to substitute y = % and 8 = % for gamma
and beta in the script developed in part (b), resulting in vmax

=2.0974 and the displacement graph shown in Figure 6.6.
d. Compare the results obtained in parts (a)—(c).

Obviously, the results obtained are virtually identical. The maximum
difference among the displacement results obtained is less than 2 percent.
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PROBLEMS
Problem 6.1(M)

Solve Example 6.1(M) assuming the following values of damping. Com-
pare the results and explain the differences. Recall that we have solved
this problem for & = 10%.

a. £ =0%

b. £ =5%

c. £=20%

d. £ =50%

e. £ =100%
Problem 6.2(M)

Solve Example 6.1(M) using the following Ar values. Recall that we
have solved this problem using At = 0.01 sec. What is the largest value
of At that we can use to obtain results within 90 percent accuracy?

a. At = 0.005 sec
b. At =0.02 sec
c. At =0.05 sec
d. At =0.10 sec



