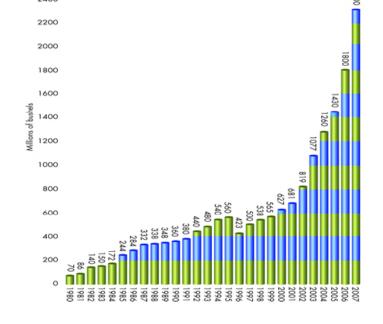
ETHANOL AND STRESS CORROSION CRACKING IN PETROLEUM STORAGE TANKS AND PIPELINES

Presentation by Dr. Russell D. Kane; iCorrosion LLC Honeywell Process Solutions - Consultant

Acknowledgements

- Contributors to the API Ethanol SCC Effort and Information in this Presentation:
 - Honeywell Process Solutions
 - Experience surveys, technical oversight, lab & field testing/monitoring, guidelines development
 - Southwest Research Institute
 - R&D on parametric effects in ethanolic environments and evaluation of samples retrieved from the field
 - CC Technologies (DNV)
 - Identification of key testing variables, role of steel grades and confirmational tests
 - API Committee Leadership
 - Leigh Klein (BP) and Jim Edmondson (Shell)

Organization


- Background
 - Production/Demand for Fuel Ethanol; What is SCC?
- □ Review of API 939D Research Report
 - Major conclusions
- □ Summary of subsequent R&D work:
 - Conclusions.... Correlations.... Impact
 - Source/production methods
- □ Update on 939E Technical Bulletin
 - Guidelines for protecting infrastructure
- □ Future/subsequent R&D work

U.S. Fuel Ethanol Production / Demand

- U.S. production has been growing since 1980's, especially since
 2000
- Increased demand for ethanol as fuel oxygenate, extender, and
 U.S. government policies

□ Future will require increases due to US government mandates for 2012 and 2020.

U.S. Distribution System for Fuel Ethanol

- Fuel ethanol has been delivered mainly by batch movements to oil company blending facilities for conventional (E10) blends involving:
 - Barge
 - Tank truck
 - Rail tanker car
 - Hold up at intermediate liquids terminals
 - Sometimes short dedicated pipeline segments
 - Blending facility tanks and loading/blending rack piping to produce E10 gasoline blends.
- E85 blends are not widely transported.
 - Usually, blended during final transport to consumer distribution point.
- As volumes for fuel ethanol increase, pipelines are a natural means of transport – new in the U.S.

API Effort on SCC in Fuel Ethanol

- Started in 2003 API Refining Committee (Subcommittee on Corrosion & Materials) started with an experience survey and white paper – API 939D (1st Edition - 2003)
 - Included ethanol users, producers and mid-stream distribution
 - Performed with assistance by the Renewable Fuels Association
 - Focus was to determine the extent of existing SCC problem & better explain its basis
- Followed by additional survey, lab research and testing and field monitoring – results in API 939D (2nd Edition – 2007)
 - Develop a better explanation for SCC occurrences and process variables that might be used for control

API Effort on SCC in Fuel Ethanol - 2

- While the API research effort continued, the emphasis was augmented to include the dissemination and use of program information thru development of 939E – Technical Bulletin
- Guidelines for identification, mitigation and repair of ethanol SCC.
- API 939E has completed second balloting
 - Final version to be published by API within the next 60 days.

Ballot 939E-01-07

Identification, Repair, and Mitigation of Cracking of Steel Equipment in Fuel Ethanol Service

API BULLETIN 939-E FIRST EDITION, XXXXX

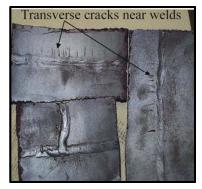
This draft standard is for committee balloting purposes only.

Helping You Get The Job Done Right.

API 939D - What We Know - 1

- Over 20 field cases of SCC were identified in the survey & documented in API 939-D:
 - No cases of SCC were reported in manufacturer facilities, tanker trucks, railroad tanker cars or barges
 - SCC in mid-stream fuel ethanol distribution storage tanks, oil company storage and blending facilities (steel tanks, rack piping and components); one short pipeline segment.
 - No cases of SCC following blending of fuel ethanol into conventional E10 gasoline.

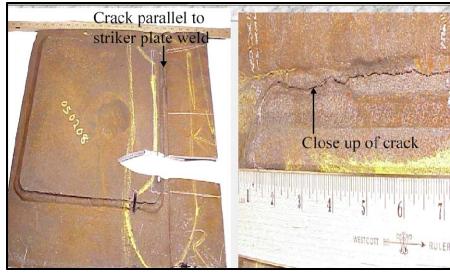
API 939D - What We Know - 2


Locations of SCC failures/leaks


- Tank bottoms, lower shell and floating roofs
- Loading rack piping (butt and tack welds)
- In-line equipment (air eliminator head)

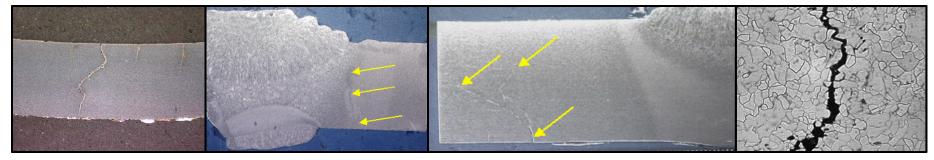
Important aspects of SCC

- High/variable stress locations
- Normally near but not in welds
- Within D4806 specification, in domestic production, & coast-to-coast
- More often in aerated or turbulent conditions
- Many steel grades
- Coatings & PWHT are preventives



API 939D – Other Cases of SCC

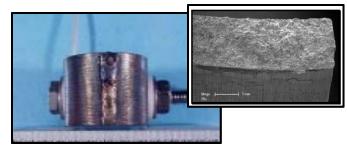
Rack Piping

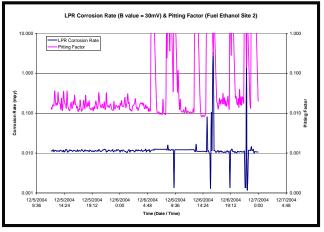

Tanks

High stress locations

Near but not in welds

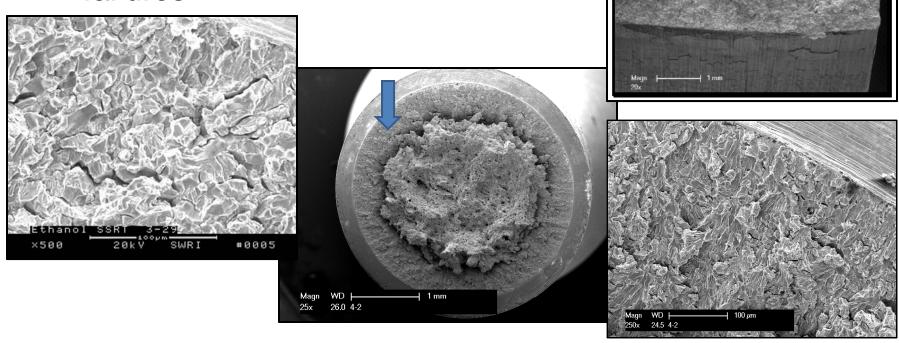
Mostly intergranular SCC

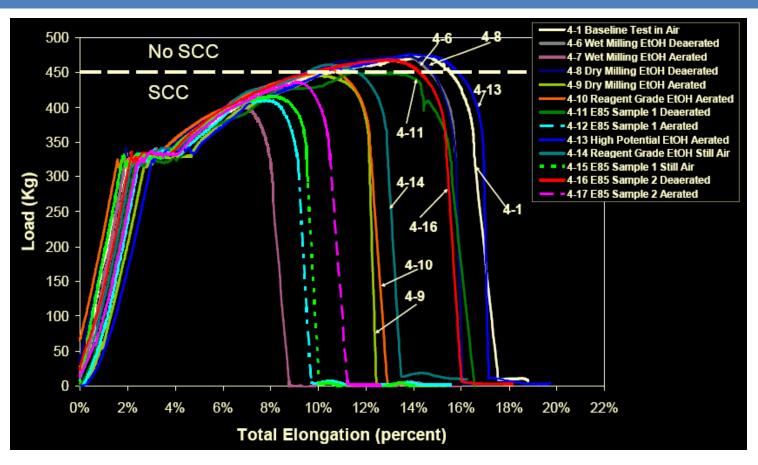



"No SCC in some locations, but more than one episode of cracking at a facility was reported in several cases"

API 939D - Conventional Monitoring

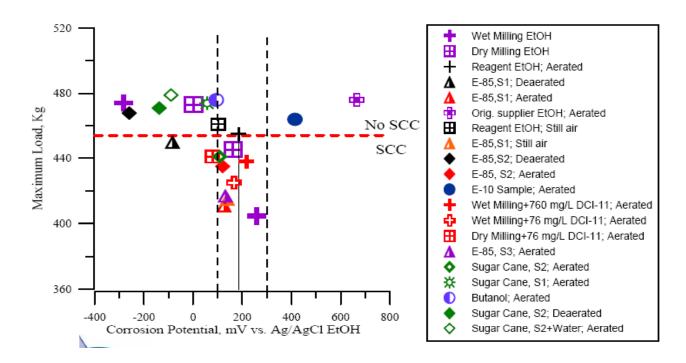
- Conducted two types of monitoring:
 - "Passive" monitoring U-bend SCC specimens
 - No cracking over 12 months
 - Did not successfully re-create weld profile, stress concentration, and mill scaled/clean surfaces
 - Eventually overcome
 - "Active" monitoring using electrochemical techniques
 - High corrosion rate & pitting associated with aeration & turbulence.





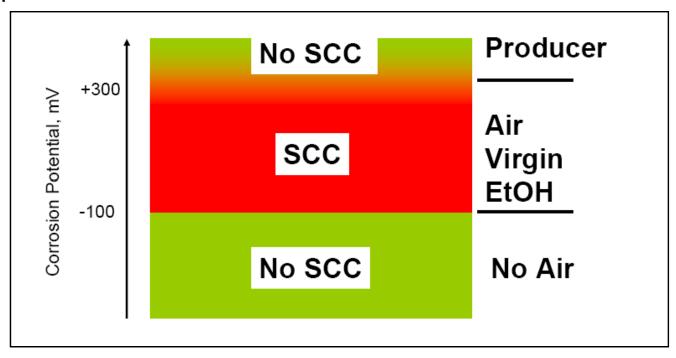
API 939D - From Research

 Lab ethanol SCC tests produced similar cracking modes to field ethanol SCC failures.



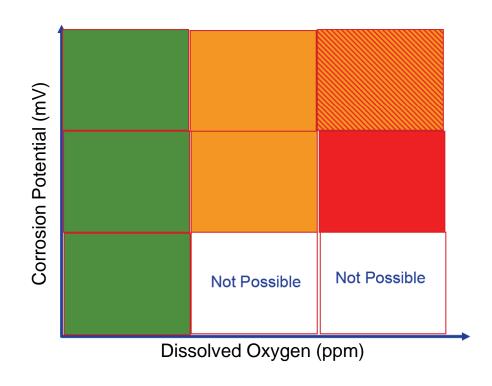
Ongoing API Research

 Based on a simple lab evaluation, a range of SCC susceptibility was identified in field ethanol samples and in E-85 fuel.

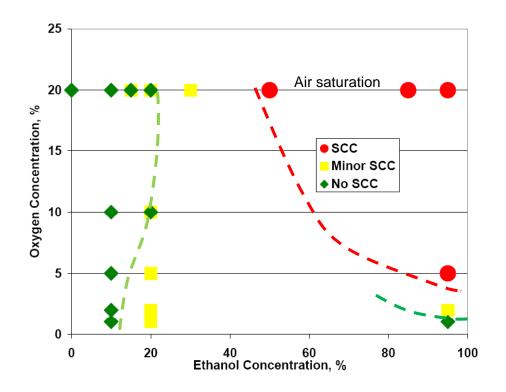

Evaluation Criteria for SCC Failures

 Ethanol processing methods (wet vs. dry milling), ethanol source (corn vs. sugarcane), aeration and water content can affect SCC susceptibility.

From Ongoing API Research


- In lab testing, cracking in fuel ethanol samples occurs over a limited range of electrochemical potential
 - Approx. -100 mV to +300 mV with chlorides per ASTM D4806
 - Approx. +100 mV to +300 mV without chlorides

Potential vs. Ag/AgCl(EtOH) reference electrode

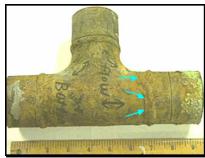

API 939D - New Monitoring Efforts

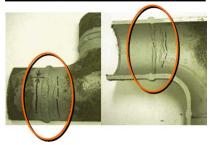
- SCC can occur in ethanolic environments with the ASTM D4806 specification!
 - Oxygen from aeration is the most significant promoter
 - Chloride and methanol increase SCC susceptibility, but were not essential for SCC to occur.
 - Galvanic contact of the SCC specimens with pre-corroded steel also exacerbated SCC.
 - Corrosion potential and dissolved oxygen may be an indicators of susceptibility to SCC in fuel ethanol. API to start a tank monitoring task.

From Other Research Programs

- Pipeliners are particularly interested in the effects of aeration and transmixtures common for batch pipeline transport with other hydrocarbon fuels
- Data indicates prevention of SCC can be obtained at 5 -10 percent of air saturation levels and in <20% ethanol blends.
- More data is needed to complete this picture.

API 939E - Ethanol SCC Guidelines


- This effort is based on "lessons learned" from API survey and research in a form more accessible and usable for field personnel.
- The focus of this document is on:
 - Identification, Repair, and Mitigation of Cracking of Steel Equipment in Fuel Ethanol Service
 - It is based on current engineering practices involving other forms of SCC in carbon steel equipment and insights from the API research effort.


API 939E – Ethanol SCC Guidelines Important

- Older equipment may not conform exactly to API 939E, but this does not imply that such equipment is being operated in an unsafe or unreliable manner
- It is recognized that facilities may vary and may need to be modified depending on specific operating conditions, inspection and maintenance experience
- Each user company is ultimately responsible for its own safe and reliable operations.

API 939E – Major Components

- Ethanol background, definitions & specifications
- Citing of SCC examples
 - Failure listing from 939D; also mention a short terminalrefinery pipeline segment that failed by SCC
- Summary of likely SCC locations and conditions
- Guidelines for new construction & fabrication
 - Minimize the use of lap seam welds
 - Minimize cold working and plastic deformation
 - Use of PWHT mainly piping welds
 - Use of ethanol immersion coatings for tanks
 - Use adequate foundations and pipe supports to reduce tensile stresses and flexural loading.

API 939E – Major Components - 2

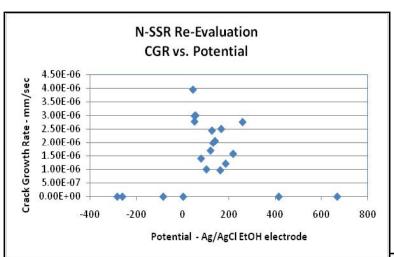
- Inspection of existing equipment
 - References to API 653, API 574, API 510 and API 570 as relevant to specific equipment
 - Inspection for SCC is complicated cracks are tight and can not be easily seen; leakage
 - Inspection intervals versus risk cases of SCC have been observed in less than 12 months
 - Prioritization based on severity of service, location, prior cracking experience
 - Inspection methods include:
 - Visual, WFMT, SW-UT, EM-ACFM, eddy current
 - Destructive sampling & testing (ethanol SCC confirmation is recommended) where possible.

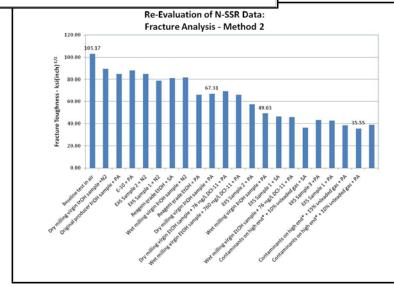
API 939E - Major Components - 3

Assessment & Repair of SCC Damaged Equipment

- Assessment of fitness-for-service and risk Methods of API 579 applicable. Similar to other forms of SCC in steel.
- Temporary patches and permanent repairs (PWHT &/or coatings)
- With and without SCC mitigation
- Repairs by grinding, flame or arc gouging/cutting, welding

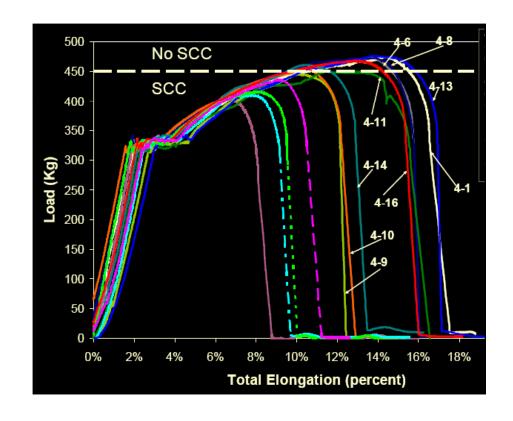
Monitoring


- Sampling of ethanol per ASTM D4806 has limitations
- Monitoring corrosion, SCC, corrosion potential, dissolved oxygen.


Topics of Interest for API Research

- Fuel ethanol source and composition
 - Differences in source & manufacturing method (e.g. corn, sugarcane, other ethanol feedstocks)
 - Are there natural inhibition or promoter compounds?
- Field monitoring of corrosion potential & dissolved oxygen as indicator of SCC conditions
- Threshold stresses for SCC vs. specification of PWHT (time/temperatures)
- SCC crack growth rates & driving forces
- Standardized test method(s) for SCC

Crack Growth & Fracture Mechanics


- Recent crack growth
 rate tests suggest time
 to leak/failure from
 ethanol SCC is months
 not years for susceptible
 conditions
- Fracture studies indicate stresses to initiate SCC are higher versus other SCC mechanisms
- PWHT or coatings are the current best practices.

Standard Test for Ethanol SCC

- Efforts have been initiated for a standard SCC test method
- This procedure will allow for rapid evaluation of ethanol samples for severity of SCC on standard materials of construction
- Can be used to evaluate sources of supply, mitigation methods (chemical treatments inhibitors, oxygen scavengers, etc.).

Conclusions: Take Aways

- Ethanol SCC occurs at high stress and variable stress locations
- SCC observed in lab tests in fuel ethanol & blends
- Aeration is a major factor in ethanol SCC
- Fuel ethanol is not a commodity
 - Differences in SCC have been identified related to source and manufacturing method - Need more data
- Field failures only in a particular portion of the fuel ethanol distribution system
- PWHT and ethanol immersion coatings have been useful in mitigating SCC.

