7 TANK ANCHORAGE (OVERTURNING STABILITY)

7.1 Design Code

EN14015:2004, Section 12 Demineralised Water

- 7.2 Fluid
- 7.3 Concept

7.3.1 Uplift due to Wind (Horizontal & Vertical)

7.3.1.1 Free Body Diagram of tank

7.3.1.2 Wind Pressure

7.3.1.3 Calculation

(a)	note.	

For the shell, its projected area A_1		H₁D	
	=	136.4	m²
For the roof, its projected area ${\rm A}_2$	=	1∕₂H₂D	
	=	6.05	m²

(b) Overturning Moment about Shell and Bottom Joint, M_{W}

Moment due to wind on Shell, $M_1 = A_1 P_w(H_1/2)$	
= 909.9	kN m
Mercart due to wind on Doof M	、 、
Moment due to wind on Root, $M_1 = A_2 P_w C_d (H_1 + H_2/3)$)
= 83.1	kN m
$M_W = M_1 + M_2$	
= <u>993.0</u>	kN m

7.3.2 Uplift due to Internal Pressure

7.3.2.1 Free Body Diagram of tank

7.3.2.2 Calculation

Internal Cross Sectional Area, A _{int}	=	$\pi D^2/4$	m²
	=	95.0	m ²
Internal Design Pressure, P	=	50	kPa
Uplift Force, F _{uplift}	=	4751.7	kN
Thus, the uplift moment, M _{pi}	=	½D F _{uplift}	
	= _	26134.1	kN m

7.3.3 Seismic Loading

From Annex G.2 of EN14015:2004, The overturning moment applied to the bottom of the tank is calculated as:

$$M_{SL} = 0.009803[Z(T_{t}X_{s}+T_{r}H_{L}+T_{1}X_{1})+ZT_{2}X_{2}]$$

$$M_{SL} = 3949.1 \text{ kN m}$$

where,

- Z = Seismic Factor (in accordance to UBC 1997)
- Z' = Seismic Factor due to sloshing of contents and soil conditions
- T_t = weight of tank shell, kg
- T_r = weight of tank roof, kg
- T_1 = effective weight of tank contents, kg
- T_2 = effective weight of tank contents when sloshing, kg
- X_{S} = height from shell bottom to centre of gravity of tank shell, m
- X_1 = height from shell bottom to centroid of seismic force applied to T_1 , m
- X_2 = height from shell bottom to centroid of seismic force applied to T_2 , m
- H_L = height of tank shell, m

7.3.4 Resistive Moments due to Nominal Shell and Roof Structure Supported by the Shell, M_{DL}

(excluding roof plates and structures attached to roof plates, and in corroded condition)

$$M_{DL} = W_2 D/2$$

 $M_{DL} = 1123.3$ kN m

 W_2 = total weight of the nominal shell and roof structures

7.3.5 Resistive Moments due to Roof Plates and Appurtenances, $\mathrm{M}_{\mathrm{DLR}}$

(excluding roof structures supported by the shell, and in corroded condition)

(excluding reer endetaree supported by the energy	anai		
M _{DLR} :	=	W ₃ D/2	
M _{DLR} .	M _{DLR} =		kN m
where,			
W ₃	=	total weight of the roof's	s plates and appurtenances
7.3.6 Resistive Moments due to Fluid Weig	jht		
Wf	=	$0.1t_a \sqrt{(F_{by} HW_s)}$, except that $w_f < 0.2W_s HD$
	=	41.8	kN/m of shell circumference
except that W_f	<	25.6	kN/m
Hence, w _f is taken as		25.6	kN/m
where,			
W _f	=	moment of the force the	at resists uplift in the annular region (kN/m)
t _a	=	annular plate thickness	s (mm)
F _{by}	=	min specified yield stre	ngth of bottom annulus (MPa)
Н	=	height of liquid till over	flow (m)
Ws	=	maximum density of liq	uid, not less than 1g/cm ³
M _f	=	½A _{int} w _f	
	=	1215.0	kN m
7 2 7 Conclusion			
7.3.7 Conclusion			
M_{W}	=	993.0	kN m
M _{Pi}	=	26134.1	kN m

IVIPi	_	20134.1	
M_{SL}	=	3949.1	kN m
M_{DL}	=	1123.3	kN m
M_{DLR}	=	292.1	kN m
M_{f}	=	1215.0	kN m

In accordance with Clause 12.1, Unanchored Tanks shall satisfy these criteria:

- (i) Uplift of an empty tank due to internal design pressure is lower than the effective weight of the corroded roof, shell and permanent attachments.
- (ii) Uplift due to internal design pressure plus wind loads is lower than the effective weight of the corroded roof, shell and permanent attachments plus effective weight of products in tank
- (iii) Uplift of an empty tank due to wind loads is lower than the effective weight of the corroded roof, shell and permanent attachments.
- (iv) If required by Annex G (Overturning Moments due to Seismic Forces)

(i) $M_{Pi} < M_{DL} + M_{DLR}$	=	26134.1	<	1415.4
Safety factor	=	0.1		
(ii) $M_W + M_{Pi} < M_{DL} + M_{DLR} + M_f$	=	27127.1	<	2630.4
Safety factor	=	0.1		
(iii) $M_w < M_{DL} + M_{DLR}$	=	993.0	<	1415.4
Safety factor	=	1.4		
(iv) $M_{SL} + M_{Pi} < M_{DL} + M_{DLR} + M_{f}$	=	30083.2	>	2630.4
Safety factor	=	0.1		

Criteria are not met, therefore, Anchor bolts are required.