

JFE SAWL PIPE

JFE Steel Corporation

Contents

Introduction1
Pipe Manufacturing Process
Overview of the manufacturing process
West Japan Works (Fukuyama) Pipe Mill
History
Manufacturing process of SAWL pipe
SAWL Pipe Production Equipment
Inspection and Test of SAWL Pipe10
Ultrasonic inspection of plates
Ultrasonic inspection of welds10
X-ray inspection (radiographic inspection)11
Pipe end magnetic particle inspection
Hydrostatic test12
Dimensional inspections12
Mechanical test
Specifications15
Available Size Range16
Steel Solution for Energy16

Introduction .

JFE Steel Corporation takes full advantage of advanced technologies, a wealth of experience acquired over many years, and state-of-the-art facilities to meet customer needs for high grade, high quality pipes. We produce a complete line of tubular products in a wide size range, and have an ample production capacity.

Among the many pipe and tubular products which JFE Steel produces, this catalog features large diameter welded pipes manufactured by SAWL methods, i.e. the UOE process and press bending (NEO Press™) process. SAWL means Longitudinal submerged arc-welding.

We produce pipes with following features;

- odd size pipe in addition to standard outside diameter pipe,
- heavy wall thickness pipe,
- high grade pipe up to grade X100.

All JFE Steel products are manufactured by an integrated production system under strict quality control. JFE SAWL pipes including UOE pipes and NEO Press[™] pipes meet even your most specialized requirements in a variety of applications, including high tensile strength line pipe for gas and petroleum transportation, pipes for power plants and chemical plants, pipes for waterworks/sewerage, structural pipe for offshore platform and building, and steel pipe piles. These products are used in Japan and overseas, and have earned an outstanding reputation for quality, economy, and service.

Pipe Manufacturing Process

Overview of the manufacturing process

JFE Steel is one of the world's preeminent integrated steel makers, and manufactures and supplies virtually all types of steel products. JFE Steel's East Japan Works includes two integrated production sites, Chiba and Keihin, both located near Tokyo. West Japan Works, in western Japan, also consists of two large integrated production sites, Kurashiki and Fukuyama. JFE Steel also has a specialty pipe mill at Chita Works. Pipe manufacturing is performed under totally controlled conditions from the starting material through the finished product, using outstanding technology and state-of-the-art equipment, as shown below.

West Japan Works (Fukuyama) Pipe Mill

History

February 1965	Nippon Kokan Fukuyama Works established
February 1968	Started operations of plate mill
February 1970	Started operations of UOE mill
May 1971	Obtained JIS G 3457 (STPY), and JIS G 3444 (STK) certifications
September 1971	Started operations of internal coating mill
August 1977	Started operations of external coating mill
April 1990	Obtained API 5L certification (shifted from API 5LX)
April 1991	Obtained API 2B certification
November 1993	Obtained ISO9001 certification
July 1997	Started operations of column fabrication shop
September 1997	Obtained ISO14000 certification
November 2000	Reached cumulative production of 9million tons
April 2003	JFE Steel Corporation established
October 2003	Reached cumulative production of 10 million tons
January 2007	Reached cumulative production of 11 million tons
August 2009	Stopped operations of column fabrication shop
July 2010	Reached cumulative production of 12 million tons
July 2011	Stopped operations of Chiba UOE Mill
October 2011	Started operations of Press Bending (NEO Press™) process
October 2013	Reached cumulative production of 13 million tons

Manufacturing process of SAWL pipe

Pipes are manufactured at the Fukuyama SAWL pipe mill by the following series of processes, as shown in the flow chart at the right:

1	Preparatory processes for pipemaking (edge preparation, crimping press)
2	Pipemaking process (U-ing, O-ing) • U-ing, O-ing • Press Bending (NEO Press™)
3	Welding process (inside/outside welding)
4	Pipe expansion and product finishing process
5	Inspection process (hydrostatic test, various nondestructive inspections, appearance and dimensional inspection)

Size Availability

Forming Process	Outer diameter mm (in.)	Thickness mm (in.)	Length mm (ft)
UOE	Min. 400.0 (15.7) Max. 1422.4 (56)	Min. 6.0 (0.236) Max. 50.8 (2.000)	Max.18 300 (60)
NEO Press™	Min. 500.0 (19.7) Max. 1422.4 (56)	Min. 6.0 (0.236) Max. 50.8 (2.000)	Max.12 700 (41.7)

Fukuyama SAWL pipe mill can produce;

- odd size pipe,

- heavy wall thickness pipe,

- high grade pipe up to grade X100.

SAWL Pipe Production Equipment

Crimping press

O-ing press

● Press bending (NEO Press[™])

• Automatic inside submerged arc welder

Mechanical expander

External plastic coating

Automatic outside submerged arc welder

• Automatic continuous tack welder

Shipping yard

Inspection and Test of SAWL Pipe

Ultrasonic inspection of plates

Ultrasonic inspection of steel plates used as material for pipemaking is performed as necessary. Inspection is performed by the pulse echo method using a probe arrangement which provides 100% coverage of the center and surrounding areas. Flaw detection results are recorded automatically for each plate.

Ultrasonic tester for plate

Ultrasonic inspection of welds

Welds in SAWL pipes are inspected by angle beam UT by the pulse echo method as necessary. Probes are arranged to enable inspection of welds in the longitudinal and circumferential direction, providing improved detection accuracy. Results are recorded automatically and marking is performed on the product at the instructed location.

Ultrasonic tester for pipe welds

X-ray inspection (radiographic inspection)

X-ray inspections of welds are performed as necessary. Digital radiography method is applied for the inspection of welds at pipe ends.

An example of X-ray inspection is shown below.

Digital radiography test

Pipe end magnetic particle inspection

Pipe ends (bevel surface and weld seam) are inspected by magnetic-field (magnaflux) flaw detection as necessary.

Inspections of the bevel surface and weld seam are performed by positioning magnetic yokes inside and outside the pipe end.

X-Ray equipment for pipe ends

X-Ray equipment for middle portion

Magnetic particle inspection equipment for pipe ends

Hydrostatic test

After pipes have been finished to the specified outer diameter by the pipe expanding machine, a hydrostatic test is performed by filling the pipe with water at a specified pressure, holding in a specified test time, and checking for leaks.

• Hydrostatic tester

Dimensional inspections

Length, outer diameter, inner diameter, roundness, and wall thickness are measured accurately by automatic dimensional measuring equipment, and the measured results and pass/fail judgment are displayed immediately on the CRT. At the same time, these results are input to the computer. These data are used as shipping data and in quality control.

Automatic size measurement equipment

Mechanical test

Tensile tester

Charpy impact tester

39kJ class DWTT tester

120kJ class DWTT tester

• Large diameter pipe bending tester

Ring expansion tester

Burst tester

Specifications

Applicable specifications

JFE Steel Corporation produces tubular products to the specifications listed below. Other specifications can be also supplied.

Spe	cification	Title
API	5L	Line pipe
	2B	Specification for the Fabrication of Structural Steel Pipe
ASTM	A53	Welded and Seamless Steel Pipe
	A134	Electric-Fusion (Arc)-Welded Steel Plate Pipe
	A139	Electric-Fusion (Arc)-Welded Steel Pipe
	A252	Welded and Seamless Steel Pipe Piles
	A671	Electric-Fusion-Welded Steel Pipe for Atmospheric and Lower Temperatures
	A672	Electric-Fusion-Welded Steel Pipe for High Pressure Service at Moderate Temperatures
	A691	Carbon and Alloy Steel Pipe, Electric-Fusion-Welded for High-Pressure Service at High Temperatures
BS	3601	Steel Pipes and Tubes for Pressure Purpose Carbon Steel: Ordinary Duties
	3602	Steel Pipes and Tubes for Pressure Purpose Carbon Steel High Duties
	3604	Steel Pipes and Tubes for Pressure Purpose Low and Medium-alloy Steel
DIN	1626	Welded Circular Unalloyed Steel Tubes Subject to special requirement
	1628	High performance Welded Circular Unalloyed Steel Tube
	17172	Steel Pipes for Pipe lines for the Transport of Combustible Fluids and Gases Technical
		Conditions of Delivery
JIS	G 3444	Carbon Steel Tubes for General Structural Purposes
	G 3457	Electric-Arc-Welded Carbon Steel Pipe
	G 3475	Carbon steel tubes for building structure
CSA	Z245.1	General Requirements for Plain-End Welded and Seamless Steel Line Pipe
AWWA	C200	Steel Water Pipe 6 Inches and Larger
GOST	10704	Electric-Welded Steel Tubes
ISO	3183	Petroleum and natural gas industries - Steel pipe for pipeline transportation systems
DNV	OS-F101	Submarine Pipeline Systems
EN	EN10210	Hot finished structural hollow sections of non-alloy and fine grain steels
	EN10225	Weldable structural steels for fixed offshore structures

Available Size Range

Wall thickness (in.)		0.236	0.250	0.312	0.375	0.438	0.500	0.563	0.625	0.688	0.750	0.812	0.875	0.938	1.000	
O. (in.)	D. (mm) (mm)	6.0	6.4	7.9	9.5	11.1	12.7	14.3	15.9	17.5	19.1	20.6	22.2	23.8	25.4	
16	406.4	O	0	O	O	O	O	0	O	0	0	0				
18	457.2	O	O	0	O	O	O	O	O	O	0	0	0		\triangle	
20	508.0	☆	☆	☆	☆	☆	☆	☆	☆	O	O	O	0	0	0	
22	558.8	☆	☆	☆	☆	☆	☆	*	☆	O	O	0	0	0	0	
24	609.6	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	O	O	0	O	
26	660.4	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	O	0	0	O	
28	711.2	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	O	0	0	O	
30	762.0	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	0	O	
32	812.8	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	0	O	
34	863.6		☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	0	O	
36	914.4			☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	O	O	
38	965.2			☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	0	O	
40	1016.0			☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	
42	1066.8			☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	
44	1117.6			☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	
46	1168.4				\$	\$	☆	☆	☆	☆	☆	☆	☆	☆	☆	
48	1219.2				☆	\$	☆	☆	☆	☆	☆	\$	☆	☆	☆	
50	1270.0															
52	1320.8				☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	
54	1371.6															
56	1422.4					☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	

note2

 $\Rightarrow : Gr X100 \quad \bigcirc : Gr X80 \quad \bigcirc : Gr X70 \quad \square : Gr X65 \quad \triangle : Gr X60 \quad \bigtriangledown : Gr X52 \quad \diamondsuit : Gr X42$

Steel Solution for Energy

JFE Steel provides reliable steel solution for energy industry challenging harsher environments. URL : http://www.jfe-steel.co.jp/ENERGY

1.062	1.125	1.189	1.250	1.312	1.375	1.438	1.500	1.563	1.626	1.689	1.750	1.878	2.000	Wall thickness (in.)	
27.0	28.6	30.2	31.8	33.3	34.9	36.5	38.1	39.7	41.3	42.9	44.5	47.7	50.8	(mm) O (mm)	.D. (in.)
														406.4	16
\bigtriangledown	\bigtriangledown	\diamond	\diamond											457.2	18
	\triangle	\bigtriangledown	\bigtriangledown	\bigtriangledown	\diamond									508.0	20
0		\triangle	\triangle	\bigtriangledown	\diamond	\diamond	\diamond							558.8	22
0		\triangle	\triangle	\bigtriangledown	\bigtriangledown	\diamond	\diamond	\diamond						609.6	24
0		Δ	Δ	\bigtriangledown	\bigtriangledown	\diamond	\diamond	\diamond						660.4	26
0	0		Δ	\bigtriangledown	\bigtriangledown	\diamond	\diamond	\diamond						711.2	28
O	O	O	0	0	\triangle	\bigtriangledown	\diamond	\diamond	\diamond	\diamond				762.0	30
O	0	O	0	0		\bigtriangledown	\bigtriangledown	\bigtriangledown	\diamond	\diamond	\diamond			812.8	32
O	0	0	0	0	0	\bigtriangledown	\bigtriangledown	\bigtriangledown	\diamond	\diamond	\diamond			863.6	34
O	O	O	0	0	0	0	0	\bigtriangledown	\diamond	\diamond	\diamond	\diamond		914.4	36
O	O	O	0	0	0	0	0	0	\diamond	\diamond	\diamond	\diamond		965.2	38
☆	☆	O	O	O	O	O	O	O	\diamond	\diamond	\diamond	\diamond		1016.0	40
☆	☆	O	O	O	O	O	O	O	0	\diamond	\diamond	\diamond		1066.8	42
☆	☆	O	O	O	O	O	O	O	0	\diamond	\diamond			1117.6	44
☆	*	0	O	O	O	O	O	O	0	\diamond	\diamond			1168.4	46
☆	☆	O	O	O	O	O	O	O	0					1219.2	48
														1270.0	50
☆	☆	O	O	O	O									1320.8	52
														1371.6	54
☆	☆	O	O	O	O									1422.4	56

JFE Steel Corporation

HEAD OFFICE

Hibiya Kokusai Building, 2-3 Uchisaiwaicho 2-chome, Chiyodaku, Tokyo 100-0011, Japan

■ ASIA PACIFIC

SEOUL

JFE Steel Korea Corporation 16th Floor, 41, Chunggyecheon-ro, Jongno-gu, Seoul, 03188 Korea

(Youngpung Building, Seorin-dong) Phone: (82)2-399-6337 Fax: (Fax: (82)2-399-6347

BEIJING

JFE Steel Corporation Beijing 1009 Beijing Fortune Building No.5, Dongsanhuan North Road, Chaoyang District, Beijing, 100004, P.R.China Phone: (86)10-6590-9051 Fax: (86)10-6590-9056

SHANGHAI

JFE Consulting (Shanghai) Co., Ltd. Room 801, Building A, Far East International Plaza, 319 Xianxia Road, Shanghai 200051, P.R.China Phone: (86)21-6235-1345 Fax: (86)21-6235-1344 Fax: (86)21-6235-1346

GUANGZHOU

GUANGZHOU JFE Consulting (Guangzhou) Co., Ltd. Room 3901 Citic Plaza, 233 Tian He North Road, Guangzhou, 510613, P.R.China Phone: (86)20-3891-2467 Fax: (86)20-3891-2469

MANILA

JFE Steel Corporation, Manila Office 23rd Floor 6788 Ayala Avenue, Oledan Square, Makati City, Metro Manila, Philippines Phone: (63)2-886-7432 Fax: (63)2-886-7315

HO CHI MINH CITY

JFE Steel Vietnam Co., Ltd. Unit 1704, 17th Floor, Kumho Asiana Plaza, 39 Le Duan Street, Dist 1, HCMC, Vietnan Phone: (84)8-3825-8576 Fax: (84)8-3825-8562

HANOI

JFE Steel Vietnam Co., Ltd., Hanoi Branch Unit 1501, 15th Floor, Cornerstone Building, 16 Phan Chu Trinh Street, Hoan Kiem Dist., Hanoi, Vietnam Phone: (84)4-3855-2266 Fax: (84)4-3533-1166

BANGKOK

JFE Steel (Thailand) Ltd. 22nd Floor, Abdulrahim Place 990, Rama IV Road, Silom, Bangrak, Bangkok 10500, Thailand Phone: (66)2-636-1886 Fax: (66)2-6 Fax: (66)2-636-1891

SINGAPORE

JFE Steel Asia Pte. Ltd. 16 Raffles Quay, No.15-03, Hong Leong Building, 048581, Singapore Phone: (65)6220-1174 Fax: (65)6224-8357

JAKARTA

JFE Steel Corporation, Jakarta Office 6th Floor Summitmas II, JL Jendral Sudirman Kav. 61-62, Jakarta 12190, Indonesia Phone: (62)21-522-6405 Fax: (62)21-522-6408

NEW DELHI

JFE Steel India Private Limited 806, 8th Floor, Tower-B, Unitech Signature Towers, South City-I, NH-8, Gurgaon-122001, Haryana, India Phone: (91)124-426-4981 Fax: (91)124-426-4982

MUMBAI

JFE Steel India Private Limited, Mumbai Office 603-604, A Wing, 215 Atrium Building, Andheri-Kurla Road, Andheri (East), Mumbai-400093, Maharashtra, India

Phone: (91)22-3076-2760 Fax: (91)22-3076-2764

CHENNAI

JFE Steel India Private Limited, Chennai Office No.86, Ground Floor, Polyhose Towers(SPIC Annexe), Mount Road, Guindy, Chennai-600032, Tamil Nadu, India

Phone: (91)44-2230-0285 Fax: (91)44-2230-0287

BRISBANE

JFE Steel Australia Resources Pty Ltd. Level28, 12 Creek Street, Brisbane QLD 4000 Australia Phone: (61)7-3229-3855 Fax: (61)7-3229-4377

Phone: (81)3-3597-3111 Fax: (81)3-3597-4860

http://www.jfe-steel.co.jp/en/

■ EUROPE and MIDDLE EAST

LONDON

JFE Steel Europe Limited 15th Floor, The Broadgate Tower, 20 Primrose Street, London EC2A 2EW. U.K Phone: (44)20-7426-0166 Fax: (44)20-7247-0168

DUBAI

JFE Steel Corporation, Dubai Office P.O.Box 261791 LOB19-1208, Jebel Ali Free Zone Dubai, U.A.E. Phone: (971)4-884-1833 Fax: (971)4-884-1472

NORTH, CENTRAL and SOUTH AMERICA

NEW YORK

JFE Steel America, Inc. 600 Third Avenue, 12th Floor, New York, NY 10016, U.S.A

Phone: (1)212-310-9320 Fax: (1)212-308-9292

HOUSTON

JFE Steel America, Inc., Houston Office 750 Town & Country Blvd., Suite 705 Houston, Texas 77024, U.S.A. Phone: (1)713-532-0052 Fax: (1)713-532-0062

MEXICO CITY

JFE Steel America, Inc., Mexico Office Ruben Dario #281, 1404 Col. Bosque de Chapultepec, C.P. 11580, Mexico, D.F. Mexico Phone: (52)55-5985-0097 Fax: (52)55-5985-0099

RIO DE JANEIRO

JFE Steel do Brasil LTDA Praia de Botafogo, 228 Setor B, Salas 508 & 509, Botafogo, CEP 22250-040, Rio de Janeiro-RJ, Brazil Phone: (55)21-2553-1132 Fax: (55)21-2553-3430

Notice

While every effort has been made to ensure the accuracy of the information contained within this publication, the use of the information is at the reader's risk and no warranty is implied or expressed by JFE Steel Corporation with respect to the use of information contained herein. The information in this publication is subject to change or modification without notice. Please contact the JFE Steel office for the latest information.

Copyright © JFE Steel Corporation. All Rights Reserved. Any reproduction, modification, translation, distribution, transmission, uploading of the contents of the document, in whole or in part, is strictly prohibited.