Table 26 Formulas for maximum deflection andmaximum stress in flat plates with straight boundariesand constant thickness

Case 2a Rectangular plate, three edges simply supported, one edge (b) free; uniform load over entire plate

Rectangular plate, three edges simply supported, one edge (b) free

Notation file

Provides a description of Table 26 and the notation used.

Enter dimensions, properties and loading	Plate dimensions:	
	length:	$a \equiv 15 \cdot in$
	width:	$b \equiv 12 \cdot in$
	thickness:	$t \equiv 0.25$ in
	Uniformly distributed load:	$q = 100 \frac{lbf}{in^2}$
	Modulus of elasticity:	$E = 30.10^{6} \cdot \frac{lbf}{in^2}$
	Poisson's ratio:	$v \equiv 0.3$

Calculation procedure

For a plate material with v approximately = 0.3, the maximum stress (σ) and deflection (y) are functions of α and β which are defined after these calculations.

$$\sigma_{\max} \coloneqq \frac{\beta \cdot q \cdot b^2}{t^2} \qquad \qquad \sigma_{\max} = 1.659 \times 10^5 \frac{\text{lbf}}{\text{in}^2}$$
$$y_{\max} \coloneqq \frac{-\alpha \cdot q \cdot b^4}{\text{E} \cdot t^3} \qquad \qquad y_{\max} = -0.664 \text{ in}$$

Interpolate data values	$Table \equiv \begin{pmatrix} 0.5 & 0.36 & 0.08 \\ 0.667 & 0.45 & 0.106 \\ 1 & 0.67 & 0.14 \\ 1.5 & 0.77 & 0.16 \\ 2 & 0.79 & 0.165 \\ 4 & 0.8 & 0.167 \end{pmatrix}$ The transpose of this data can be found in the file "d02a.prn".		
	$\text{Table}^{\mathrm{T}} = \begin{pmatrix} 0.5 & 0.667 & 1 & 1.5 & 2 & 4 \\ 0.36 & 0.45 & 0.67 & 0.77 & 0.79 & 0.8 \\ 0.08 & 0.106 & 0.14 & 0.16 & 0.165 & 0.167 \end{pmatrix}$		
	α and β are interpolated from the above data table.		
	$\frac{a}{b} = 1.25$		
	$\alpha \equiv \text{linterp}\left(\text{Table}^{\langle 0 \rangle}, \text{Table}^{\langle 2 \rangle}, \frac{a}{b}\right) \qquad \alpha = 0.15$		
	$\beta \equiv \text{linterp}\left(\text{Table}^{\langle 0 \rangle}, \text{Table}^{\langle 1 \rangle}, \frac{a}{b}\right) \qquad \beta = 0.72$		
Large deflection condition check	Check to verify that the absolute value of the maximum deflection is less than one-half the plate thickness (an assumption stated in the notation file which must hold true):		
	$\frac{t}{2} = 0.125 \text{ in}$ $ y_{\text{max}} = 0.664 \text{ in}$		
<u>Table 26a</u> <u>Notation file</u>	If y_{max} is greater than t/2 (large deflection), the equations in this table are subject to large errors. For large deflections, use the equations provided in Table 26a. Read the Notation file for more specific information.		
References	Ref. 8. Wojtaszak, I. A.: Stress and Deflection of Rectangular Plates, <i>ASME Paper</i> A-71, <i>J. Appl. Mech.</i> , vol. 3, no. 2, 1936.		