Table 26 Formulas for maximum deflection and maximum stress in flat plates with straight boundaries and constant thickness

Rectangular plate, three edges simply supported, one edge (b) free

Notation file Provides a description of Table 26 and the notation used.

Enter dimensions, Plate dimensions: properties and loading

$$
\begin{array}{ll}
\text { length: } & a \equiv 15 \cdot \mathrm{in} \\
\text { width: } & \mathrm{b} \equiv 12 \cdot \mathrm{in} \\
\text { thickness: } & t \equiv 0.25 \text { in }
\end{array}
$$

Uniformly distributed load: $\quad \mathrm{q} \equiv 100 \cdot \frac{\mathrm{lbf}}{\mathrm{in}^{2}}$

$$
\text { Modulus of elasticity: } \quad \mathrm{E} \equiv 30 \cdot 10^{6} \cdot \frac{\mathrm{lbf}}{\mathrm{in}^{2}}
$$

$$
\text { Poisson's ratio: } \quad v \equiv 0.3
$$

Calculation For a plate material with v approximately $=0.3$, the procedure maximum stress (σ) and deflection (y) are functions of α and β which are defined after these calculations.

$$
\begin{array}{ll}
\sigma_{\max }:=\frac{\beta \cdot \mathrm{q} \cdot \mathrm{~b}^{2}}{\mathrm{t}^{2}} & \sigma_{\max }=1.659 \times 10^{5} \frac{\mathrm{lbf}}{\mathrm{in}^{2}} \\
\mathrm{y}_{\max }:=\frac{-\alpha \cdot \mathrm{q} \cdot \mathrm{~b}^{4}}{\mathrm{E} \cdot \mathrm{t}^{3}} & \mathrm{y}_{\max }=-0.664 \mathrm{in}
\end{array}
$$

Interpolate data values

Table $\equiv\left(\begin{array}{ccc}0.5 & 0.36 & 0.08 \\ 0.667 & 0.45 & 0.106 \\ 1 & 0.67 & 0.14 \\ 1.5 & 0.77 & 0.16 \\ 2 & 0.79 & 0.165 \\ 4 & 0.8 & 0.167\end{array}\right) \quad \begin{aligned} & \text { The transpose of this } \\ & \text { data can be found in } \\ & \text { the file "d02a.prn". }\end{aligned}$

Table $^{\mathrm{T}}=\left(\begin{array}{cccccc}0.5 & 0.667 & 1 & 1.5 & 2 & 4 \\ 0.36 & 0.45 & 0.67 & 0.77 & 0.79 & 0.8 \\ 0.08 & 0.106 & 0.14 & 0.16 & 0.165 & 0.167\end{array}\right)$
α and β are interpolated from the above data table.
$\frac{\mathrm{a}}{\mathrm{b}}=1.25$
$\alpha \equiv \operatorname{linterp}\left(\right.$ Table $^{\langle 0\rangle}$, Table $\left.^{\langle 2\rangle}, \frac{a}{b}\right) \quad \alpha=0.15$
$\beta \equiv \operatorname{linterp}\left(\right.$ Table $^{\langle 0\rangle}$, Table $\left.{ }^{\langle 1\rangle}, \frac{a}{b}\right) \quad \beta=0.72$

Large deflection condition check

Table 26a
Notation file

References

Check to verify that the absolute value of the maximum deflection is less than one-half the plate thickness (an assumption stated in the notation file which must hold true):

$$
\frac{\mathrm{t}}{2}=0.125 \text { in } \quad\left|\mathrm{y}_{\max }\right|=0.664 \text { in }
$$

If $y_{\text {max }}$ is greater than $t / 2$ (large deflection), the equations in this table are subject to large errors. For large deflections, use the equations provided in Table 26a. Read the Notation file for more specific information.

Ref. 8. Wojtaszak, I. A.: Stress and Deflection of Rectangular Plates, ASME Paper A-71, J. Appl. Mech., vol. 3, no. 2, 1936.

