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For a single output- input system the the feedback law is defined so that s
and ṡ have different signs. To ensure that the sliding mode s = 0 is achieved
V̇ should strongly be bounded from zero.

4.2 Observability

Consider the nonlinear system defined by:
�

ẋ = f(x, u)
y = h(x). (4.12)

where x ∈ Rn is the state, u ∈ Rm the input and y ∈ Rp the output.
It’s assumed that u is bounded and measured. System 4.12 is said to be
observable if there is no distinct initial state that cannot be separable by
analyzing the system output. Furthermore a system is observable if states
of the system can be expressed as a function of output and input and a finite
number of their derivatives i.e

x = X(y, ẏ , ..., yj , u, u̇, .., uj). (4.13)

where j is real integers that denote the derivatives. Assume further that
system 4.12 is locally observable which means for any x ∈ M ⊂ Rn and
u ∈ U ⊂ Rp:

Rang
�
dy dẏ ... dy(n−1)

�T
= n. (4.14)

An matching criterion applies on χ that defines a transformation of states

χ =
�
dy dẏ ... dy(n−1)

�T
. (4.15)

4.15 is said to be locally observable if

det
�

∂χ

∂x

�
�= 0. (4.16)

4.2.1 Analysis of Standard Canonical Form

Dynamics of a tire will in the rest of this chapter have following nonlinear
form �

ẋ = f(x) + Δf(x, t) + Ψ(y, u)
y = h(x). (4.17)

where u ∈ U and x ∈ M and Δf(x, t) is a bounded uncertainty and well
known measurable variables are collected in Ψ(y, u). Consider following
assumptions
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Assumption 1. The bounded term Δf(x, t) does not effect the observabil-
ity. The uncertainty Δf is unknown. Consider system 4.17 without the
uncertainty and further assume that following assumption holds as well.
Assumption 2. The input output injection Ψ(y, u) does not effect the ob-
servability which is based on well known variables [23]. System 4.17 without
the input output injection takes a simple standard form by

�
ẋ = f(x)
y = h(x). (4.18)

Assumption 3. Consider p integers {k1, k2, ..., kp} defined as:
p�

i=1
ki = n and k1 ≥ k2 ≥ ... ≥ kp the number of output components.

The integers p are called observability indices [24]. The function χ(x) is
then defined by:

χ(x) =




[y1(x) · · · y
(k1−1)
1 (x)]T

...

[yp(x) · · · y
(kp−1)
p (x)]T




. (4.19)

which verifies
det

�
∂χ

∂x

�
�= 0 (4.20)

Consider all assumptions above fulfilled and a state transformation matrix
of system above is defined as φ = χ(x). Consequently following is obtained

φ̇ = Aφ +




0
0
...

Θ(φ)




y = Cφ.

(4.21)

where:

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
0 0 0 · · · 0




, C =
�

1 0 0 · · · 0
�

, Θ(φ) = y(n).

where Θ(φ) can be written in two components. One is the nominal part that
is derived from known dynamics of 4.17 and the uncertain component that
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has its origin from the unknown components in the same equation. Thus
4.21 can be written as

φ̇ = Aφ +




0
0
...

Θn(φ)




+




0
0
...

ΔΘ




. (4.22)

An observer for 4.22 is defined by [25]:

˙̂
φ = Aφ̂ +




0
0
...

Θn




+ K(y, φ̂). (4.23)

Where the correction term k forces the estimate state φ̂ to φ ans is meant
to be calculated using sliding mode approach. The dynamic of error regard
to 4.23 is presented by

ė = Ae +




0
0
...

Θn(φ̂) − Θn(φ)




−




0
0
...

ΔΘ




+ K(y, φ̂). (4.24)

The aim to ensure that the error e = φ̂ − φ converges to zero in finite time
despite the uncertainty ΔΘ. It’s essential to choose K in such way that this
is fulfilled. Now regarding the main problem in 4.17, Jacobian of χ is used.
As the assumption of invertibility is fulfilled following is obtained

˙̂
φ = ∂χ

∂x̂
˙̂x → ˙̂x =

�
∂χ

∂x

�−1 ˙̂
φ. (4.25)

From 4.23 and 4.25 an observer can be obtained for 4.18 by

˙̂x = f(x̂) +
�

∂χ

∂x

�−1
k(y, x̂). (4.26)

Applying the input-output injection back given an observer for 4.18 with
input output injection:

˙̂x = f(x̂, y) + Ψ(y, u) +
�

∂χ

∂x

�−1
k(y, x̂). (4.27)

In the design of the observer it is assumed that for every φ ∈ Mφ

|Θn(φ)| ≤ Lθ (4.28)
|ΔΘ| ≤ LΔΘ. (4.29)

where LΘ is a positive Lipschitz constant and 0 < LΔΘ < ∞ [25].
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4.3 Higher Order Sliding Mode Differentiation

There are multiple ways available to implement the observer 4.27. Since the
controller in previous chapter is based on slide mode, an idea of slide mode
is also implemented on observers. In order to reduce the chattering and
oscillation that the 1th order slide mode observer can have, a second order
sliding mode observer is applied instead. The technique in higher order slide
mode differentiation is based on the technique of differentiation which seems
appropriate for such system designed here.
Recall from equation 4.23:

˙̂
φ = Aφ̂ +




0
0
...

Θn




+ K(y, φ̂). (4.30)

Further assume the invertiballity requirement is fulfilled and the correction
term K should be chosen in such way the error e converges to zero in finite
time despite the uncertainties and initial error. Constructing an higher gain
sliding mode observer for 4.23 and consequently implement it on 4.27 gives
following final observer [26].

˙̂x = f(x̂, y)+Ψ(y, u)+
�

∂χ

∂x

�−1




υ1 := α1L
1

n+1 |y − x̂1| n
n+1 sgn(y − â1)

υ2 := α2L
1
n |υ1| n−1

n sgn(υ1)
...

υn := αnLsgn(υn−1)


 . (4.31)


