## Background

- Material is carbon steel A516 Grade 70.
- Horizontal cracking 2-3 ft below a stiffener ring almost in line with nozzle L2.
  - Pinhole observed near the corner of the baffle weld.
  - Additional cracks forming.



| DATE       | рН  | Cond. | Iron | MOo4 | Microbio |
|------------|-----|-------|------|------|----------|
| 11/20/2015 | 9.4 | 445   | 0.59 | 280  | 10       |
| 10/2/2015  | 9.1 | 588   | 1.1  | 320  | 10       |
| 7/21/2015  | 8.4 | 245   | 1.1  | 120  | 10       |
| 6/10/2015  | 8.2 | 345   | 0.75 | 190  | 10       |
| 4/9/2015   | 8.5 | 325   | 1.1  | 225  | 10       |
| 3/20/2015  | 7.8 | 210   | 0.99 | 20   | 10       |
| 3/6/2015   | 8.9 | 299   | 0.7  | 110  | 10       |
| 2/26/2015  | 8.9 | 290   | 0.7  | 100  | 10       |
| 2/12/2015  | 8.8 | 320   | 0.79 | 80   | 10       |
| 1/30/2015  | 8.6 | 460   | 0.6  | 100  | 10       |
| 1/8/2015   | 8.6 | 510   | 0.8  | 140  | 10       |



#### **As-Received Section of the Water Jacket**



As-received jacket wall section showing through wall crack. Arrow indicates the "top" of the vessel.



### **As-Received Section of the Water Jacket**



|                | 1    | 2    | 3    | 4    | 5    | 6    |
|----------------|------|------|------|------|------|------|
| Thickness (in) | 0.25 | 0.23 | 0.25 | 0.26 | 0.25 | 0.25 |
| Thickness (mm) | 6.35 | 5.84 | 6.35 | 6.60 | 6.35 | 6.35 |



## **Chemical Composition Analysis**

| Element (wt%)           |      | ASTM A516-Gr. 70 | Base Metal | Weld  |
|-------------------------|------|------------------|------------|-------|
| Carbon                  | (C)  | 0.31             | -          | -     |
| Iron                    | (Fe) | 98.32            | 97.68      | 97.65 |
| Manganese               | (Mn) | 0.85 - 1.2       | 1.02       | 1.01  |
| Phosphorous             | (P)  | 0.035            | -          | -     |
| Silicon                 | (Si) | 0.15 - 0.40      | 0.304      | -     |
| Sulfur                  | (S)  | 0.040            | -          | -     |
| Zinc                    | (Zn) |                  | 0.139      | -     |
| Low Elements Correction | LEC  |                  | 0.75       | 1.29  |

## Inside Surface of the Water Jacket Section Post Partial Cleaning



Cracking occurred near stitch weld.

- Metal thinning (grooving) observed at cracked location.
- Additional corrosion and metal thinning observed.





#### **EDS Characterization of Scale**





| Element (wt%)   | Intensity | Error  | Concentration |
|-----------------|-----------|--------|---------------|
|                 | (c/s)     | 2-sig  | (wt%)         |
| Oxygen (O)      | 160.58    | 4.504  | 13.693        |
| Molybdenum (Mo) | 21.44     | 2.790  | 0.843         |
| Calcium (Ca)    | 3.97      | 2.355  | 0.149         |
| Iron (Fe)       | 961.06    | 10.335 | 85.315        |

Analysis of scale product removed from the interior surface of the water jacket showed that the scale was mostly iron oxide (Fe<sub>2</sub>O<sub>3</sub>) with minor concentration of molybdenum (Mo)—should be noted that sulfur (S) and Mo peaks overlap in the EDS spectrum and if S is present is difficult to differentiate the species.



## **Metallography**



Etched cross-section taken at the location where cracking was present, near the baffle welds.

- Microstructure of the base metal (BM) plate is ferrite and pearlite. The weld heat affected zone (HAZ) showed microstructure typical of as-welded material.
- Cracking was not localized within the HAZ of the weld.







### **Metallography**



Cracks were branched and transgranular with initiation at corrosion pits on the surface of the plate. Crack extension is preceded by corrosion of exposed metal and formation of a thick corrosion scale.

# DRAFT

#### **Characterization of Scale**



- Scanning electron micrographs of a crack near the baffle weld showing corrosion of the crack surface as the crack propagated into the base metal.
- Crack branching is observed at location of manganese sulfide inclusion, which are typically susceptible to corrosion due to lower corrosion potential.



### **EDS Characterization of Scale**



| Location | Element (wt%) |       |       |       |        |        |
|----------|---------------|-------|-------|-------|--------|--------|
|          | Ο             | Si    | Ca    | Mn    | Fe     | Мо     |
| #1       | 15.981        | 1.043 | 0.385 | 0.474 | 63.879 | 18.239 |
| #2       | 11.188        |       | 0.227 | 0.827 | 24.368 | 63.390 |
| #3       | 10.062        | 0.291 |       | 0.661 | 88.767 | 0.219  |



Corrosion scale on crack surface showed characteristic energy peaks for Mo, Fe, Mn, and O. Additional peaks for Ca and Si observed. Location #1 showed peaks for Mo, Fe, and O likely due to the formation of FeMoO<sub>4</sub>. Location #2 showed high concentration of Mo coated on the surface due to absorption into the corrosion product.

## DRAFT

### **Metallography**



Etched cross-section taken away from the location where cracking was present but showing corrosion pits.

Thick porous scale filled the cavity of the pit.







#### **EDS Characterization of Scale**



- Increased Mocontent observed in the porous regions of the scale (Locations #1 & #6).
  - Mo content increased towards the base metal, where protective molybdenum oxide formation is promoted.
  - Element concentration measure by EDS.



![](_page_11_Picture_6.jpeg)