

FIGURE 7-23
Schematic for Example 7-5.

TABLE 7-1

Empirical correlations for the average Nusselt number for forced convection over circular and noncircular cylinders in cross flow (from Zukauskas, Ref. 14, and Jakob, Ref. 6)

Cross-section of the cylinder	Fluid	Range of Re	Nusselt number
Circle	$0.4-4$ $4-40$	$\mathrm{Nu}=0.989 \mathrm{Re}^{0.330} \mathrm{Pr}^{1 / 3}$ $\mathrm{Nu}=0.911 \mathrm{Re}^{0.385} \mathrm{Pr}^{1 / 3}$ $\mathrm{Nu}=0.683 \mathrm{Re}^{0.466} \mathrm{Pr}^{1 / 3}$	
$\mathrm{Nu}=0.193 \mathrm{Re}^{0.618} \mathrm{Pr}^{1 / 3}$			
$\mathrm{Nu}=0.027 \mathrm{Re}^{0.805} \mathrm{Pr}^{1 / 3}$			

EXAMPLE 7-5 Heat Loss from a Steam Pipe in Windy Air

A long $10-\mathrm{cm}$-diameter steam pipe whose external surface temperature is $110^{\circ} \mathrm{C}$ passes through some open area that is not protected against the winds (Fig. 7-23). Determine the rate of heat loss from the pipe per unit of its length
when the air is at 1 atm pressure and $10^{\circ} \mathrm{C}$ and the wind is blowing across the pipe at a velocity of $8 \mathrm{~m} / \mathrm{s}$.

SOLUTION A steam pipe is exposed to windy air. The rate of heat loss from the steam is to be determined.
Assumptions 1 Steady operating conditions exist. 2 Radiation effects are negligible. 3 Air is an ideal gas.
Properties The properties of air at the average film temperature of $T_{f}=$ $\left(T_{s}+T_{\infty}\right) / 2=(110+10) / 2=60^{\circ} \mathrm{C}$ and 1 atm pressure are (Table A-15)

$$
\begin{array}{ll}
k=0.02808 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C} & \operatorname{Pr}=0.7202 \\
v=1.896 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s} &
\end{array}
$$

Analysis The Reynolds number is

$$
\operatorname{Re}=\frac{\mathscr{V} D}{v}=\frac{(8 \mathrm{~m} / \mathrm{s})(0.1 \mathrm{~m})}{1.896 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}}=4.219 \times 10^{4}
$$

The Nusselt number can be determined from

$$
\begin{aligned}
\mathrm{Nu} & =\frac{h D}{k}=0.3+\frac{0.62 \mathrm{Re}^{1 / 2} \mathrm{Pr}^{1 / 3}}{\left[1+(0.4 / \operatorname{Pr})^{2 / 3}\right]^{1 / 4}}\left[1+\left(\frac{\mathrm{Re}}{282,000}\right)^{5 / 8}\right]^{4 / 5} \\
& =0.3+\frac{0.62\left(4.219 \times 10^{4}\right)^{1 / 2}(0.7202)^{1 / 3}}{\left[1+(0.4 / 0.7202)^{2 / 3}\right]^{1 / 4}}\left[1+\left(\frac{4.219 \times 10^{4}}{282,000}\right)^{5 / 8}\right]^{4 / 5} \\
& =124
\end{aligned}
$$

and

$$
h=\frac{k}{D} \mathrm{Nu}=\frac{0.02808 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}}{0.1 \mathrm{~m}}(124)=34.8 \mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}
$$

Then the rate of heat transfer from the pipe per unit of its length becomes

$$
\begin{aligned}
A_{s} & =p L=\pi D L=\pi(0.1 \mathrm{~m})(1 \mathrm{~m})=0.314 \mathrm{~m}^{2} \\
\dot{Q} & =h A_{s}\left(T_{s}-T_{\infty}\right)=\left(34.8 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{C}\right)\left(0.314 \mathrm{~m}^{2}\right)(110-10)^{\circ} \mathrm{C}=1093 \mathbf{W}
\end{aligned}
$$

The rate of heat loss from the entire pipe can be obtained by multiplying the value above by the length of the pipe in m.
Discussion The simpler Nusselt number relation in Table 7-1 in this case would give $\mathrm{Nu}=128$, which is 3 percent higher than the value obtained above using Eq. 7-35.

EXAMPLE 7-6 Cooling of a Steel Ball by Forced Air

A 25 -cm-diameter stainless steel ball ($\rho=8055 \mathrm{~kg} / \mathrm{m}^{3}, C_{p}=480 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$) is removed from the oven at a uniform temperature of $300^{\circ} \mathrm{C}$ (Fig. 7-24). The ball is then subjected to the flow of air at 1 atm pressure and $25^{\circ} \mathrm{C}$ with a velocity of $3 \mathrm{~m} / \mathrm{s}$. The surface temperature of the ball eventually drops to $200^{\circ} \mathrm{C}$. Determine the average convection heat transfer coefficient during this cooling process and estimate how long the process will take.

FIGURE 7-24
Schematic for Example 7-6.

