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ABSTRACT 
 
The severity of damage possible in unreinforced brick masonry (hereafter termed ‘masonry’) construction 
subjected to high levels of out-of-plane loading has been well demonstrated in recent times. Due to the large 
global building stock of masonry structures, it is essential that efficient methods for retrofit of masonry structures 
be developed. The use of efficient fibre-reinforced polymer (FRP) strips has been shown to improve the load-
carrying and displacement capacities of masonry sections subjected to out-of-plane loading. This paper presents 
principles for design of masonry elements strengthened with vertically oriented FRP strips and subjected to out-
of-plane bending. Design considerations are given, along with recommendations based on experimental 
observations. Design variables discussed include retrofitting technique (i.e. externally bonded or near-surface 
mounted), FRP material (i.e. carbon or glass) and FRP placement (i.e. relative to mortar joints). A design 
methodology for masonry retrofitted with vertical FRP strips with intermediate crack (IC) debonding as the 
failure mode is also presented. 
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INTRODUCTION 
 

Background 
 
Inadequate out-of-plane bending strength of walls near the tops of buildings has been identified as of one of the 
governing weak links in the seismic load path for unreinforced brick masonry (hereafter termed ‘masonry’) 
buildings (e.g. Klopp and Griffith 1998). For this failure mode, the top storeys are generally critical due to the 
combination of increased earthquake induced accelerations (and therefore out-of-plane loading) with building 
height and reduced vertical compressive stress (e.g. Priestley 1985). This has been demonstrated in the analysis 
of structural damage after significant earthquake events, e.g. Whittier Narrows, California earthquake in 1987 
(e.g. Deppe 1988; Moore et al. 1988).  Recent catastrophic earthquake events in Italy (Pescaro, April 2009) and 
China (Sichuan, May 2008) have further demonstrated the severity of damage possible in masonry construction 
and again highlighted the need for retrofit of masonry structures. Efficient fibre-reinforced polymer (FRP) 
retrofitting technologies were initiated with reinforced concrete (RC) structures and have been adopted for use 
with masonry construction. Research (e.g. Oehlers and Seracino 2004) indicates that intermediate crack (IC) 
debonding is the most ductile, and therefore preferred, failure mechanism for FRP strengthened flexural 
members. 
 
The application of externally bonded (EB) and near-surface mounted (NSM) FRP reinforcement to the tension 
face of masonry sections under flexure has been shown to effectively increase the maximum strength and 
displacement capacity. This paper discusses key design considerations for FRP retrofitted modern clay brick 
masonry based on experimental observations (i.e. FRP retrofitting technique, material and placement). A design 
methodology for masonry retrofitted with vertical FRP strips with IC debonding as the design failure mode is 
presented.  The methodology uses the generic IC debonding model developed by Seracino et al. (2007) for RC 
and subsequently modified for use with masonry by Yang (2006). 
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MASONRY RETROFITTED WITH VERTICAL FRP STRIPS 
 

Vertical Bending Moment Capacity 
 
Consider a masonry wall supported along all four edges. If the wall length is sufficient compared to its height 
then, under out-of-plane bending, the central strip of the wall is predominantly under vertical bending and first 
cracking will occur along a horizontal bed joint at wall mid-height (Figure 1). The Australian Masonry Code, AS 
3700 (Standards Australia 2001), uses the virtual work method for the design and analysis of masonry walls 
under out-of-plane loading and subject to two-way bending. The method assumes that this initial horizontal 
crack occurs at such a low level of applied loading that the vertical bending moment capacity, Mcv, does not 
contribute significantly to the flexural resistance of the wall when it reaches its maximum strength. This has 
provided the impetus for the application of vertical FRP strips to strengthen such walls, which has been shown to 
improve the vertical bending capacity and thus the maximum wall capacity (e.g. Willis et al. 2009). 
 

out-of-plane
loading

supports

 
Figure 1. Wall supported along all four edges (Griffith et al. 2005) 

 
The remainder of this paper discusses the use of vertically oriented FRP strips to strengthen masonry walls under 
out-of-plane bending. It is recognised that the use of horizontal FRP strips is most effective in the resistance of 
in-plane shear forces. Walls where this failure mode is critical are typically at the ground level in multi-storey 
buildings, which is the opposite of out-of-plane bending where top storey walls are generally critical. Discussion 
of this retrofitting arrangement is beyond the scope of this paper. 
 
Prediction of IC Debonding Resistance 
 
The axial force in the FRP strip required to cause the onset of IC debonding, PIC, is given by Equation (1) 
developed by Seracino et al. (2007). This IC debonding force, PIC, is a function of the area under the shear stress, 
τ, versus local slip curve, δ, i.e. the fracture energy, Gf. This curve (Figure 2(a)) is commonly referred to as the 
bond-slip relationship and may be determined experimentally using the monotonic pull test (Figure 2(b)). In 
Equation (1), τf and δf are defined in Figure 2(a), Lper is the failure perimeter (units of mm) and (EA)p is the 
flexural rigidity of the FRP strip. 
 
To remove reliance on bond-slip data, Seracino et al. (2007) used regression to express Equation (1) in terms of 
readily available material parameters, namely the compressive strength of the concrete, fc. Modification of the 
model for use with masonry by Yang (2006) replaced fc with the lateral modulus of rupture, fut, of a brick unit 
using a material transformation based on theory by MacGregor (1988). The resulting generic model for use with 
masonry is given by Equation (2) and its accuracy has been verified against 29 pull tests (Yang 2006) (where b 
and t are the width of thickness of the FRP strip, respectively). 
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(a) Bond-slip relationship (b) Pull test set-up 

Figure 2. Bond-slip relationship and pull test (Yang et al. 2006) 
 
Table 1 indicates the key parameters needed for design of vertical reinforcement of masonry walls in bending for 
the most commonly used FRP materials, i.e. carbon (CFRP) and glass (GFRP). In terms of FRP material and 
retrofitting technique, NSM CFRP strips are more efficient than the EB retrofitting technique for masonry due to 
the increased fracture energy, Gf, indicated in Figure 1(a). 
 

Table 1. Typical values for design parameters for FRP retrofitted masonry (all units of N/mm2) 
Parameter Carbon FRP Glass FRP 

Modulus of elasticity of FRP, Ep 165 x 103 70 x 103 
Tensile strength of FRP, fup 2700 3400 

Lateral modulus of rupture of the brick unit, fut 3.5 
Modulus of elasticity of masonry, Em 3500 

 
Design for Vertical Bending 
 
The design process for a masonry wall strengthened with vertical FRP strips is based on the aim that the 
preferred wall behaviour will be governed by IC debonding of the FRP strip rather than any of the other more 
brittle failure modes. These include FRP rupture, horizontal bending failure of masonry between vertical FRP 
strips, or masonry crushing. The methodology presented is generic for either FRP material (CFRP or GFRP) 
therefore final selection is up to the discretion of the design engineer. The critical design parameters for the FRP 
retrofitting scheme include: (i) material (i.e. the modulus of elasticity of the FRP, Ep); (ii) cross-sectional 
dimensions (i.e. the width, b, and thickness, t, giving a cross-sectional area, Ap); and, (iii) horizontal spacing 
between vertical FRP strips (i.e. wall design strip width, s). The FRP cross-section and the spacing between 
strips determine the reinforcement ratio. 
 
The usual flexural theory design assumptions for the cross-sectional analysis of an FRP reinforced section (as 
illustrated in Figure 3) are: 
(1) plane section remains plane after bending; 
(2) full composite action exists between the FRP strip and the masonry interface (i.e. no slips or opening-up at 

the interface); and, 
(3) the tensile resistance of the masonry is neglected (i.e. the FRP does not contribute to strength until the 

masonry has fully cracked). 
 
The design process for earthquake (or wind) loading depends on the horizontal acceleration (or wind pressure) 
that the wall is subject to in the out-of-plane direction. For a given load demand, wd, the required flexural 
strength (i.e. vertical moment demand, Md) for a wall spanning vertically between simple supports at its top and 
bottom edges is given by 
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which can be written in terms of the design inertial acceleration (demand), ad, as 
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where  
ad = demand acceleration in terms of the acceleration due to gravity, g; (that is, units of ‘g’, i.e. acceleration 

normalised by the acceleration of gravity) 
h = clear span of the masonry wall in the vertical direction (i.e. height of the masonry wall); 
s = horizontal spacing between the vertical FRP strips; 
tm = thickness of the masonry wall; and, 
γ = specific weight of the masonry. 
 

  
(a) FRP retrofitted masonry section (b) Stress and strain profiles 

Figure 3. Design for IC debonding (EB shown) (Willis et al. 2007) 
 
Step 1:  Select the horizontal spacing, s, of the vertical FRP reinforcement so that the strengthened masonry wall 
does not fail in horizontal bending between the strips due to the inertial load caused by ad.  To do this, calculate 
the horizontal bending capacity of the masonry wall, Mch, (e.g. using AS 3700 to determine Mch for a unit length 
of wall in the vertical direction in units of kNm/m) and then choose a strip spacing, s, such that 
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In effect, rearrange Equation (5) and calculate ‘s’ such that the following is satisfied 
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Step 2:  Assume a cross-section for the FRP (i.e. choose b and t) and then calculate its IC debonding capacity, 
PIC, given by Equation (2).  Check that PIC is less than the tensile rupture capacity of the FRP strip, Prupture (= fup 
Ap). If not, adjust the FRP cross-section, usually by increasing the thickness, t, and start over at Step 2. 
 
Step 3:  Solve for the neutral axis location, c, using Equation (7) to satisfy axial force equilibrium (where Cm is 
the masonry compressive force, Tp is the FRP tensile force and εm is the masonry strain) and Equation (8) 
corresponding to plane sections remaining plane (where εdb is the FRP debonding strain). 
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For simplicity, it is assumed that for the EB case, tm is negligible compared to t, and for the NSM case the level 
of embedment is also small compared to t. Therefore the neutral axis location, c, may be approximated by 
substituting Equation (8) into (7) to give: 
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Step 4:  Check that the masonry compressive stress is less than its capacity, fmc, using Equation (8). If not, return 
to Step 2 and decrease the FRP cross-section.  Otherwise, continue to Step 5. 
 
Step 5:  Calculate the vertical bending capacity of the FRP reinforced section, Mcv, using Equation (10) to check 
if its capacity is greater than the demand. If not, then go back to Step 2 and increase the FRP cross-section, 
and/or decrease the FRP spacing and restart the procedure.  If OK, then the design is complete. 

dICcv MzPM >⋅=        (10) 
 
Vertical Strip Location 
 
Vertically oriented NSM FRP strips can either be placed through the brick units or the perpend joints. Due to 
aesthetics and ease of placement it is likely that in most applications the strip would be run through the perpend 
joints. However, it should be noted that positioning vertical NSM FRP strips through the perpend joints can 
cause a reduction in bond strength in the order of 10% (Yang et al. 2006). However, such level of reduction may 
not be deemed significant given the beneficial effects of the relative ease of placement (i.e. cutting through half 
the amount of brick units) and the reduced aesthetic impact. 
 
Verification of Design Procedure 
 
Full scale wall tests conducted by Yang (refer Willis et al. 2009) were designed to have approximately equal 
probability of three failure modes occurring, i.e. (1) horizontal bending failure; (2) vertical IC debonding failure; 
and, (3) FRP rupture. Three walls were retrofitted using EB strips (with varying strip spacing, cross-section and 
FRP material), and all behaved in a similar manner (refer Figure 5). Wall 1 (CFRP) failed by IC debonding, 
while Walls 2 and 3 (GFRP) failed by horizontal bending between the FRP strips. The maximum FRP strain, 
εmax, for each retrofitted wall test was within 10% of the experimental debonding strain obtained from pull tests. 
For Wall 1 (CFRP), εmax was approximately 30% of the rupture strain, while for Walls 2 and 3 (GFRP) εmax was 
less than 90% of the rupture strain.  Figure 4 indicates the load-displacement behaviour for each wall test and 
demonstrates the relative increase in strength possible from the design procedure presented in this paper. The 
load-carrying capacity of the unstrengthened wall (specimen ‘Control A’) was approximately doubled. It should 
be noted that the strengthened walls all had peak capacities in excess of 8 kN/m2. For the 110 mm thick walls 
tested here, this corresponds to an equivalent inertial acceleration capacity of nearly 4g, i.e. four times the 
acceleration of gravity. 
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CONCLUDING REMARKS 
 
The following observations and conclusions are presented for this paper: 
(1) A design methodology for masonry retrofitted with vertical FRP strips with IC debonding as the failure mode 

was presented. The design procedure was verified using the results of three full scale wall tests for 
externally bonded glass and carbon FRP applications.  From this it appears that it is possible to design FRP 
retrofits for unreinforced masonry walls that can be optimised to use the minimum FRP material required in 
terms of both cross-section and maximum spacing. 

(2) There was little observable difference in the strength of the three walls as there should not have been given 
that they were all designed to fail at similar loads.  However, the displacement capacity of the GFRP 
retrofitted walls which both failed by horizontal bending of the masonry between the vertical FRP strips was 
substantially greater (approximately double) than the displacement at failure for the CFRP retrofitted wall. 

(3) Many questions remain regarding the behaviour of FRP strengthened walls including the performance of 
NSM FRP and the effects of in-plane shear deformations on flexural FRP application, particularly EB FRP 
where it is oriented in its strong direction and may be more prone to premature debonding. 
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