
H E W L E T T - P A C K A R D

June 1991 Volume 42 â€¢ Number 3

Articles

6 The Evolution, William Scientific Expandable Calculator: Innovation and Evolution, by William
C. Wickes and Char les M. Pat ton

â € ¢ 4 O H P 4 8 S X I n t e r f a c e s a n d A p p l i c a t i o n s , b y T e d W . B e e r s , D i a n a K . B y r n e , G a b e L
 O E i s e n s t e i n , R o b e r t W . J o n e s , a n d P a t r i c k J . M e g o w a n

22
H P S o l v e E q u a t i o n L i b r a r y A p p l i c a t i o n C a r d , b y E r i c L . V o g e l

r \ r~ Hardware Des ign o f t he HP 48SX Sc ien t i f i c Expandab le Ca lcu la to r , by Mark A . Smi th ,
Â£ O Lester S. Moore, Preston D. Brown, James P. Dickie, David L. Smith, Thomas B. LJndberg,
and M. Jack Muranami

27 Indust r ia l Des ign o f the HP 48SX Ca lcu la tor
30 HP 48SX Cus tom In tegra ted C i rcu i t
32 Mechan ica l Des ign o f the HP 48SX Memory Card and Memory Card Connector

3 5
T h e H P 4 8 S X C a l c u l a t o r I n p u t / O u t p u t S y s t e m , b y S t e v e n L . H a r p e r a n d R o b e r t S .
Worsley.

A f \ M a n u f a c t u r i n g t h e H P 4 8 S X C a l c u l a t o r , b y R i c h a r d W . R i p e r

A 1 0 - H z - t o - 1 5 0 - M H z S p e c t r u m A n a l y z e r w i t h a D i g i t a l I F S e c t i o n , b y K i r s t e n C .
Car lson, James H. Cauthorn, T imothy L. H i l ls t rom, Roy L. Mason, Joseph F. Tarant ino,

Jay M. Ward le , and Er ic J . Wick lund.

47 Spect rum Ana lyzer Se l f -Ca l ib ra t ion
5 1 A d a p t i v e D a t a A c q u i s i t i o n
5 3 H e l p S y s t e m w i t h H y p e r t e x t
5 7 U s e r I n t e r f a c e C o m p i l e r

Editor, Sadoff P. Dolan â€¢ Associate Editor, Charles L. Leath â€¢ Assistant Editor. Gene M. Sadoff â€¢ Art Director, Photographer, Arvid A. Danielson
Suppor t Anne Susan E . Wr igh t â€¢ Admin is t ra t i ve Serv i ces , D iane W. Woodwor th â€¢ Typography , Anne S LoPres t i

2 HEWLETT-PACKARD JOURNAL JUNE 1991 C Hewlet t -Packard Company 1991 Pr inted in U.S. A

© Copr. 1949-1998 Hewlett-Packard Co.

The HP 48SX Scientific Expandable
Calculator: Innovation and Evolution
Many of the features of this advanced handheld calculator
have evolved f rom i ts predecessors, the HP 41 C and HP
28S. Others, such as its unit management system, are new.

by Wil l iam C. Wickes and Charles M. Patton

SINCE THE INTRODUCTION OF THE HP 65 in 1974,
Hewlett-Packard has developed a succession of cus
tomizable scientific calculators of ever expanding

capability. The HP 48SX scientific expandable calculator
(Fig. 1) maintains this trend with an unprecedented com
bination of features and flexibility. Its major features
include:
â€¢ An RPN-style calculator interface with a dynamic stack

of arbitrary depth for operations on eighteen types of
mathematical or logical objects (plus twelve additional
object types used by system programs).

â€¢ Numerous arithmetic, transcendental, and statistical
functions, applied uniform
ly wherever meaningful to
complex as well as real
numbers.

â€¢ Vector and matrix opera
tions on real and complex
arrays of arbitrary size. A
spreadsheet-like screen
editor is provided for sim
plified entry and editing of
arrays.

â€¢ Symbolic mathematics in
cluding evaluation, expan
sion, simplification, sum
mation, differentiation, and
integration. The Equation-
Writer application provides
graphical, "textbook" entry
of expressions and equa
tions.

â€¢ String manipulations.
â€¢ Binary integer operations,

with arithmetic, bit, and
byte manipulations, and a
variable word size.

â€¢ Numerical and symbolic
equation solving.

â€¢ Eight types of automatic
mathematical and statisti
cal plotting, including in
teractive root finding, cal
culus, labeling, and digitiz
ing. There are also interac
tive and programmatic line F ig . 1 . HP 48SX sc ien t i f i c expandab le ca lcu la to r , show ing

the Equat ionWriter appl icat ion.

and arc drawing and creation of custom text and graphics
displays.
An integrated unit management system. Quantities that
include physical units can be used in computations,
solving, and plotting, while the calculator automatically
performs unit conversions and dimension checking.
Time management, including a clock/date display and
appointment and program-execution alarms.
Two-way communications via a wired serial port for con
nection to personal computers, printers, and other serial
devices or via infrared light for printing to the HP 82240A/B
printer or for wireless transfers between two HP 48SXs.

â€¢ Customization with plug-
in 32K-byte or 128K-byte
RAM or ROM memory cards,
which may include com
mand libraries for extend
ing the built-in feature set.
Libraries can also be im
ported into RAM using
either I/O mechanism.

â€¢ A user-definable keyboard
and custom menus.

â€¢ Programming in the RPL
language, which provides
program-flow structures,
recursion, global and local
variables, passing proce
dures as arguments, input
prompting and output la
beling, user and system
flags, logical tests and oper
ations, and user-defined
functions.
These features are sup

ported by a hardware set that
includes a vertical-format
package with 49 keys, a 131-
by-64-pixel LCD display with
support for fast scrolling of
virtual displays that are larger
than the physical screen, two
plug-in slots for memory cards,
a four-wire serial communi
cations port, and an infrared
transmitter and receiver (see
articles, page 25 and 35).

6 HEWLETT-PACKARD JOURNAL JUNE 1991

© Copr. 1949-1998 Hewlett-Packard Co.

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Note
missing substitution

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Design Objectives
The fundamental design objective for the HP 48SX was

to create a product that combines the software technology
of the HP 28S1 with the hardware flexibility and customiza
bility of the HP 41C.2 Although in many respects the HP
28S was itself a descendant of the HP 4lC, its advanced
capabilities and limited hardware have made its applica
tion and range of customers somewhat different from those
of the HP 41C. For example, in the academic field, the HP
41C was very popular in college engineering departments,
but it had little appeal to mathematics instructors. By con
trast, the HP 28S has had a significant effect on mathematics
instruction, with many colleges adopting it as a standard
teaching tool. Engineering departments have been much
slower to adopt the HP 28S, since it does not have the
software exchange capabilities they are accustomed to with
the HP 41C. Similarly, the HP 4lC was very popular with
surveyors, but the HP 28S is of limited use in this field
because of its lack of I/O capability.

The HP 48SX project started, therefore, with a review of
the strengths of its two predecessors. The HP 4lC's include
plug-in memory ports, HP-IL I/O capability, a redefinable
keyboard, and a vertical format convenient for handheld
operation. The HP 28S's include extensive real and sym
bolic mathematical capabilities, RPL operating system and
user language, a graphics display, and a menu key system.

At the same time, we focused on common enhancement
requests from HP 28S owners. These include a bigger dis
play, more graphics and plotting features, I/O capability,
especially for importing or saving software, symbolic inte
gration, and more help from the calculator in using some
of its more complicated features.

All of these strengths and enhancements are incorporated
in the HP 48SX. In some cases, the implementation of one
of these items evolved into a major feature that wasn't
necessarily anticipated from the HP 28S/HP 4lC combina
tion or a customer request. For example, the HP 28S's pow
erful numerical integrator was obscured by an arcane syn
tax for entering the integration arguments. Consideration
of this problem in the HP 48SX investigation led to a review
of the general problem of entering and recognizing mathe
matical expressions, which ultimately led to the develop
ment of the EquationWriter application (see article, page
13). This solves the integration problemâ€” one enters an
integral by "drawing" a textbook-like expression on the
screen, including the integral sign, upper and lower limits,
and integrand, all appropriately positioned. However, the
scope and utility of the EquationWriter far exceed what is
needed for this particular use.

The HP 48SX also contains important features that derive
more from "next bench" research than from HP 41C or the
HP 28S strengths or from customer input. The prime exam
ple of these is the HP 48SX's unit management. Simple
one-to-one physical unit conversions have been available
on calculators for years. Several HP 4lC plug-in modules
improved on this by providing a general-purpose conver
sion mechanism which could calculate any conversion fac
tor from input and output units specified as text strings.
The HP 41C Petroleum Fluids Pac incorporates this mech
anism into its calculations so that the user can include
units for the values entered for the programs, and ask for

answers in particular units. The HP 48SX takes advantage
of its multiple-object-type operating system and symbolic
manipulations to provide a new level of unit management,
in which numerical quantities can have physical units
attached to them and carried throughout arbitrary calcula
tions. The collection and cancellation of units and conver
sions between dimensionally consistent different units are
handled automatically by the calculator. For example, a
problem such as, "How fast is an object traveling after
accelerating at 1 m/s2 for half a minute, if its initial speed
was 20 mph?" reduces to

(1_m/s~2)* .5_min + 20_mph EVAL

on the HP 48SX, which returns 87l.1_mph. In HP 48SX
notation, the underscore _ acts as an object type identifier
linking a floating-point number with a unit expression
which can contain arbitrary products, powers, and quo
tients of physical units. The HP 48SX has 121 units built
into ROM, from which the user can construct arbitrary
compound units. Unit objects are supported in numerical
and symbolic calculations, plotting, equation solving, and
integration. This HP 48SX capability removes a great deal
of the drudgery from calculations involving physical units.

In one aspect of the HP 48SX design it was not possible
to satisfy both HP 4lC and HP 28S owners: programming
language. To support its other design objectives, the HP
48SX needed to use an RPL operating system and language
similar to that used in the HP 28S. Unfortunately, this
meant that the considerable body of programs written for
the HP 41C would not be executable directly on the HP 48SX.
To solve this problem, the plug-in HP 82210A HP 4lC
emulator card provides a keyboard emulation of the HP
41C and the ability to execute HP 4lC programs. The
infrared port and the HP 82242A infrared printer module
for the HP 41 C can be used to transmit programs from the
HP 41C to the HP 48SX for execution with the emulator
card.

HP 28S users have a smaller problem in program conver
sion. The great majority of HP 28S commands can be exe
cuted without modification on the HP 48SX. Only a few
commands are different, primarily those associated with
display operations (and the integral command, as men
tioned previously), and the various system flags have
changed. With optional software, the HP 28S can also use
its infrared printer output to "print" its programs to the
HP 48SX, where they can be executed after minor or no
modification.

Internal Mechanisms
The remainder of this article will discuss some of the

mechanisms the HP 48SX uses to support its feature set.
The memory maps shown in Figs. 2 through 7 illustrate
the concepts discussed in this article. The implementations
of many of the higher-level applications are discussed in
the article on page 13.

The fundamental basis of the HP 48SX system is the RPL
operating system, which occupies about 18K bytes of the
system ROM. This system first appeared in the HP 18C
Business Consultant calculator in 1986. :! In brief, the system
combines elements of Forth and Lisp, providing a multi-

JUNE 1991 HEWLETT-PACKARD JOURNAL 7

© Copr. 1949-1998 Hewlett-Packard Co.

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Name Field
ROMPART ID

Hash Table Pointer
Message Table Pointer

Link Table Pointer
Configurat ion Code Pointer

Collection of Objects

Fig . 2 . S t ruc ture o f a ROMPART.

object RPN stack and direct and indirect threaded execu
tion, with both atomic and composite objects, temporary
(lambda) variables, and the ability to pass unevaluated pro
cedures as arguments. The objects are similar to Forth
words, containing the address of the executable code that
defines the object and the data that makes up the body of
the object. The object types provided in the initial versions
of RPL were:
â€¢ Identifier class: identifiers (global names), temporary

identifiers (local names), and ROM pointers (XLib
names). These objects are used for storing and retrieving
other objects.

â€¢ Procedure class: secondary (program) and code objects.
These objects are executable.

â€¢ Data class: floating-point real and complex numbers,
character and string objects, hexadecimal strings (binary
integers), real and complex arrays, linked arrays,
extended precision real and complex numbers, lists,
symbolic (algebraic), unsigned short integers, library,
RAM/ROM pair (directory). Under normal execution,
these objects merely return themselves, as passive data.
However, symbolic objects and lists are composite
objects, and can be evaluated like procedure class
objects.
The body of a composite object is a sequence of other

objects terminated by an end marker that serves as a pro
gram return if the body is executed as a procedure.

To support HP 48SX operations, several additional data-
class objects were added to the above list:
â€¢ Graphics object. These are LCD bit maps, used for storing

and manipulating graphical images.
â€¢ Tagged object. A tagged object contains a text string plus

another object. The text is used to label the object. Oper
ations applied to the tagged object ignore the tag and
apply themselves directly to the "inner" object. Thus, a
program might return the tagged object Speed:10_m/s,
where Speed is the tag. Executing 10 * (times) then returns
100_m/s.

â€¢ Unit object. This consists of a floating-point real number
combined with an algebraic expression representing
physical units.

â€¢ Backup object. This object is designed for the archival
storage of a single object in an independently configured
RAM port. The backup object contains a second object
plus a name, a length field, and a checksum. The HP
48SX contains commands for storing and retrieving
objects from within backup objects when the latter are
installed in RAM ports.

â€¢ Library data object. This object provides a memory buffer
for use by plug-in applications that need to preserve data
between executions.
In addition to the new object types, three object types

that were present in the HP 28S are given more visibility
in the HP 48SX:

In the HP 28S, a user can create a directory object stored
in a variable, but has no access to the directory as an
object. In the HP 48SX, a directory has the same status
as other objectsâ€” it can be recalled to the stack, edited,
copied, stored, and so on.

â€¢ Built-in commands in the HP 28S and HP 48SX are
organized in libraries, which are similar to compiled
directories in which the linked list of named objects is
compiled to a table-driven organization. Name resolu
tion of the objects within libraries is necessary during
parsing, where text names are replaced by ROM pointers.
The latter contain indexes into library object tables,
which in turn provide for fast location of an object's
name and executable code. In the HP 48SX, libraries are
available as ordinary objects, so that a user can move
libraries in and out of the calculator via one of the I/O
ports or on plug-in memory cards. When a library is
installed in HP 48SX memory, it extends the HP 48SX's
language by adding its own internal commands to the
built-in set.

â€¢ ROM pointers are visible to the HP 48SX user as XLib
name objects, the library analog of the global names that
provide access to objects stored in global variables in
RAM. Executing an XLib name executes the object within
a library that is associated with the name. XLib names

Interrupt System

RPL Kerne l ROMPART

IRAM ROMPART

Uni t Management ROMPART

Address 00000

Links from the start
o f one ROMPART to
the next.

H i d d e n R O M /
Code

Built- in RAM
(overlaps the
hidden ROM)
Address 80000
Merged Plug-in
RAM (see Fig. 4)

Free Plug-in
RAM (see Fig. 7)

Address FFFFF

Fig. 3. Overview of the address space layout of the HP 48SX
ca lcu la to r w i th one merged and one f ree (unmerged) RAM
card.

8 HEWLETT-PACKARD JOURNAL JUNE 1991

© Copr. 1949-1998 Hewlett-Packard Co.

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

can be compiled as stand-alone RPN objects or included
within the definitions of algebraic objects. As long as
the relevant library is present, an XLib name decompiles
to the text name stored in the library. If the library is
removed, the XLib name is decompiled to show the
library number and command number within the library.
As part of the strategy to maximize the use of ROM over

RAM. the RPL system has included, from its inception,
ROM-like structures that are analogs of the user's program
and variable space (directories). These are called ROM-
PARTs. By attaching ROMPARTs to subdirectories, the user
can create a context-sensitive customization so that typing
the same thing can have very different results depending
on the context directory. ROMPARTs were designed to
provide context-sensitive customization, localizations of
keywords and messages, system extensions, and run-time
linking.

In the process of developing a set of programs, the user
first creates programs and utilities in a customizing direc
tory. When the programs are debugged and ready to keep,
they can be transferred to a ROMP ART and loaded into
ROM. Attaching the ROMP ART to the same directory pro
vides the same functionality with less RAM use.

RPL Plug- in Management
While the overall scope and function of plug-in manage

ment did not change from the original RPL definition to
its first released implementation in the HP 48SX, a number
of design details did change in response to outside reviews
of the system. Implementing these changes posed a number
of design challenges.
ROMP ART Structure. A large portion of the RPL plug-in
management design is based on the concept of a ROMPART,
which is not a standard RPL object in the same sense as
complex numbers, directories, programs, and so on, but is
instead a set of data-structure conventions.

A ROMPART is a collection of RPL objects together with
a field containing the name of the ROMPART, a ROMPART
ID number which uniquely identifies the ROMPART, a

- Address 70000

(see Fig. 5)

Built-in
RAM

Merged
Plug-in RAM

System Variables

ROMPART/L ibrary
Configurat ion Table

Graphics Data
and

Temporary Objects

Avai lable Memory

(see Fig. 6)
(see Fig. 6)

" End of Merged
RAM

F ig . 4 . Overv iew o f t he l ayou t o f HP 48SX ma in RAM w i th
one merged RAM card .

pointer to a hash table for use in identifying objects by
name, a pointer to a link table for use in identifying objects
by their unique object numbers, a pointer to a message
table containing messages specific to this ROMPART, and
a pointer to configuration code which is executed whenever
the ROMPART needs to be configured (see Fig. 2).

The name field can contain any characters and is used
only as information for the user. The ROMPART ID number
uniquely identifies the ROMPART to the system and is in
the range 000-7FE (hexadecimal). ID numbers 000-OFF are
reserved for the RPL kernel and other built-in ROMPARTs.
ID numbers 700-7FE are reserved for use by ROMPARTS
providing application language extensions.

The hash table provides a two-way correspondence be
tween names and objects in the ROMPART. It is used dur
ing the process of interpreting the characters typed in by
the user to determine whether the characters name any
object in the ROMPART, and then again to determine if an
object should be displayed as a name rather than according
to its internal structure.

The link table provides a list (in object-number order)
of all accessible objects within the ROMPART.
Configuration. A ROMPART simply residing somewhere
within the system does not provide for any of the services
described above. The ROMPART needs to be registered
with the system during the configuration process, which
occurs in several stages.

Whenever the machine is first turned on, a routine check
is made to see if any cards have been plugged in or removed
from the system and adjustments are made to compensate
for the changes. Then a number of known areas are scanned
for the presence of ROMP ARTs and a list of currently extant
ROMPARTs and their locations is made and compared with
the previous list. If no change is detected, the system con
tinues the normal process of turning on the display and
resuming the state it had when it was turned off.

On the other hand, if a change is detected, the system
performs its warm-start code. Among other things, the
warm-start code resets any pointers that could be referenc
ing ROMPARTs that are no longer present. This includes
the data and return stacks, updateable system pointers, and
the ROMPART pointers connected to the home directory.
The system then rebuilds the table of ROMPARTs and their

ROMPART/Library Count

I D # S t a r t i n g A d d r e s s

I D # S t a r t i n g A d d r e s s ROMPART/Library
Configuration

Table

Fig. 5 . The ROMPART/ l ibrary conf igurat ion tab le. Whenever
the HP 48SX turns on. a l l ROMPARTs and l ibrar ies in ROM,
por t 0 , and other unmerged p lug- ins are reg is tered here.

JUNE 1991 HEWLETT-PACKARD JOURNAL 9

© Copr. 1949-1998 Hewlett-Packard Co.

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

locations and restarts RPL execution.
ROM Poll. One of the first things done when RPL execution
is restarted is to proceed through the current list of ROM-
PARTs, executing each ROMPART's configuration code in
turn. At this point, the RPL system is in a valid, stable state
and the full resources of the system are available for use
by the configuration code.

Although a ROMP ART can take over the system at this
point (as is done, for example, by the HP 48SX demo ROM),
typical tasks are much less ambitious. More typical exam
ples of tasks done at the ROM poll include:
â€¢ Attaching a ROMP ART to the home directory so that the

names of objects within the ROMP ART are universally
recognized.

â€¢ Replacing the hash and/or message tables of other ROM-
PARTs with versions localized for a particular language.

â€¢ Creating a custom subdirectory structure for use with
this ROMP ART.

ROM Pointers. The RPL system's ROM pointer (ROMPTR)
objects provide a name and location independent method
of specifying an object within a ROMP ART. The data in a
ROMPTR gives both the ROM ID number unique to a ROM-
PART and the particular object's object number.

As long as a ROMP ART has been registered as being
present in the system, and independent of whether it is
attached to any directory, ROMPTRs referring to a ROM-
PART can be converted to the object or objects they specify.
In this process, the current address of the ROMP ART whose
ROM ID is specified in the ROMPTR is found in the ROM-
PART table, and the ROMPART's link table is found. The
object number specified by the ROMPTR is used as an
index into this table to find the actual current address of
the specified object.

ROMPTRs occupy a middle ground in terms of execution
speed and flexibility between address pointers, which re
quire no resolution but must be updated whenever memory
moves, and ordinary identifiers, whose value can change
in the course of execution but must be resolved by searching
through the current context. Every programmable function
and operation in the HP 48SX has an associated ROMPTR
that specifies it. However, these are not normally used in
programs since the address pointers will suffice. There is
one case in which these ROMPTRs must be used, however.
If the user stores a programmable function in a variable,
what is stored is actually the corresponding ROMPTR,
since storing an address pointer is contrary to the RPL
conventions, and storing a copy of the object is clearly not
what is desired.

ROMPTRs are normally created in the process of convert
ing typed-in text to RPL objects (parsing). If the currently
considered piece of text is not an object delimiter, number,
or other fixed-syntax item, it is considered to be a name
whose meaning is determined by the current context.
Names, ROMPTRs, and Localization. To determine the
current interpretation of a name, the system first searches
through all the variables in the current directory. If the
name matches any one of these, the name is determined
to be a variable name (ordinary identifier). If not, the system
searches through the hash tables of the ROMPARTs attached
to the current directory, if there are any. If a match is made,
the name is determined to be a ROM word name, and it is

converted to the corresponding ROMPTR. If no match is
made, the search is continued with the parent directory,
and so on. If the home directory is searched without a
match, the name is determined to be a formal variable (also
an ordinary identifier).

Every directory except the home directory can have at
most one ROMP ART attached to it. The hash table used
in searching such a ROMP ART is the one supplied with
the ROMP ART. The home directory, on the other hand,
can have multiple ROMPARTs attached to it . Recorded
with any ROMP ART attached to the home directory is a
pointer to its hash table. This allows the hash table pro
vided by a ROMP ART to be superseded by another hash
table either in RAM or in another ROM (localization). Only
ROMPARTs at tached to the home directory can be so
localized.
Structure of Plug-in Modules. The original RPL design pro
vided for two kinds of plug-in modules: one associated
with read-only devices (ROM) and one associated with
read/write devices (RAM). Whenever a ROM device was
detected, it was assumed that its data consisted of a linked
list of ROMPARTs. The devices would be configured at
some convenient but otherwise arbitrary address and the
individual ROMPARTs would be registered as described
previously. Whenever a new RAM device was detected, it
was assumed that the device contained no viable data and
the device would be configured to be a contiguous segment
of the system's overall RAM, with current RAM contents

i

Directory Prologue Address

ROMPART/L ibrary Count

I D # H a s h T a b l e A d d r e s s M e s s a g e T a b l e A d d r e s s

Home
Directory

ROMPART
Attachment

Table

I D # H a s h T a b l e A d d r e s s M e s s a g e T a b l e A d d r e s s

User Variables

Library or Backup Object

Library or Backup Object

USEROB
A r e a

> - P o r t 0

E n d o f
M e r g e d

R A M

Fig . 6 . Layout o f the USEROB area and por t 0 . A l ib ra ry o r
ROMPART at tached to the home d i rectory ROMPART at tach
men t t ab le , e i t he r by t he ATTACH command o r du r i ng t he
ROM po l l , w i l l have i ts keywords recogn ized by the sys tem
and can have both i ts keywords and i ts messages loca l ized
(for example, t ranslated into other languages).

1 0 HEWLETT-PACKARD JOURNAL JUNE 1991

© Copr. 1949-1998 Hewlett-Packard Co.

shifted to ne\v positions as necessary. This process is
known as merging RAM. After RAM has been merged, it is
not possible to unplug the module without endangering
the system integrity. \Vhen a merged RAM is pulled, a large
area of the system and user variables could go with it.

To make it possible to have ROMPARTs without read
only devices, an area within system RAM is set aside and
given the same structure as a plug-in ROM, that is, a
sequence of ROMPARTs. This RAM-based ROMP ART area
is also searched during the configuration of ROMPARTs.
This model for plug-in structure provides almost all avail
able services automatically and requires only five user-
level commands: to prepare the system for removal of a
RAM module (FREE) by reversing the procedure used to
merge the RAM module, to attach and detach a given library
from a given directory, to include a ROMP ART (given in
some object-coded form) in the RAM-based ROMPART
area, and to remove such a ROMPART.

Design Changes and Chal lenges
In the evolution of the HP 48SX design, it became appar

ent that RAM modules needed to be used as mass-storage
devices as well as system RAM. By analogy to flexible disks,
one would expect that such a mass-storage RAM module
could be removed without first informing the system. These
two tenets had significant impact on the HP 48SX plug-in
management design. Other factors that affected the design
were that the RAM modules have a switch that allows them
to act as ROM, that there is no effective way to determine
the size of a ROM module, and that the system cannot
reliably detect the removal of a plug-in as it is happening.
Backup Objects and Libraries. To use a RAM card as mass
storage, we need to be able to store name/object pairs in
the RAM card much as they are stored in variables in the
main RAM. In addition, we need to be able to verify that
the data on the card has not been corrupted in some way.
This verification stage must be fast because it must happen
at configuration time, that is, between the time the machine
is turned on and the time the machine is available for use.
Since no stand-alone object consisting of a name/object
pair existed in the original RPL system, a new object type,
the backup object, was invented for the purpose. A backup
object, in addition to its prologue and length, consists of
a name, an object, and a checksum.

Since ROMPARTs can coexist with backup objects in a
plug-in, they are also encapsulated with a prologue and a
checksum to become library objects.

The organization of the data in a ROM plug-in is largely
dictated by the fact that the system can only determine the
beginning of a ROM and not the end. This means that any
data structure within the ROM must start at the beginning
address and extend from there. The original RPL configura
tion assumed just such a structure, so that converting the
configuration from a linked sequence of ROMPARTs to a
sequence of backup and library objects was relatively
straightforward. The system determines the end of the
sequence when it finds either an end-of-sequence mark,
an object that is not a backup or library object, or an invalid
checksum. In either of the last two cases, the user is warned
of Invalid Card Data, but no further remedial action is taken.

Since RAM plug-in cards can be converted to the equiva

lent of ROM cards by simply changing a switch setting on
the card, we decided that the structure of an unmerged
plug-in RAM card should be the same as a ROM card, that
is, a sequence of library and backup objects with the
sequence starting at the lowest address of the card.
Ports. The RPL directory structure is one of the most tightly
integrated aspects of the system. Having been conceived
of as semipermanent storage which could dominate the
use of free memory in a memory-limited system, it is
implemented as a self-contained unit containing no point
ers that need to be changed as other parts of memory
change. In addition, it is relegated to the high-address end
of free memory.

This highly integrated structure with no provision for
referring outside itself precludes the inclusion of unmerged
RAM cards as virtual subdirectories of the home directory.
We decided to extend the mass storage analogy further and
have separate data storage space locations analogous to
flexible disk drives. Instead of drives A, B, and C, we have
ports 1, 2, and 0. Ports 1 and 2 refer to the data contained
in cards plugged into the corresponding plug-in slots. Port 0
refers to an area in built-in RAM that acts like a permanently
plugged-in card (see Fig. 6). Unlike personal computer mass
storage, however, the current drive is never any of these.
The port specification must be included in the information
given to any operation involving the ports.

The normal STO, RCL, and PURGE commands, which nor
mally store, recall, and delete variables in main memory,
are extended to allow transfer of information to and from
the ports. Tagging a name argument with :0:, :1:, or :2: indi
cates to these commands that a port operation is desired.
For example, if ABC is the name of an object in port 0, then
:0:ABC RCL will return the object to the stack.

Since the only kinds of objects allowed in a plug-in data
area are backup and library objects, any other kind of object
is first encapsulated as a backup object. Similarly, RCL of
one of the backup objects will pry the object out of the
capsule.
Directory Management Extensions. The fact that the cur
rent drive is always none of the ports has several conse-

User Variables

Library or Backup Object

Library or Backup Object Free Plug-in RAM
or

Plug-in ROM

Address FFFFF

Fig. 7. Layout of an unmerged (free) plug-in RAM card within
t he HP 48SX add ress space . An unmerged p lug - i n ca rd i s
either port 1 or port 2 and has the same structure as port 0.

JUNE 1991 HEWLETT-PACKARD JOURNAL 11

© Copr. 1949-1998 Hewlett-Packard Co.

quences. First, simply transferring a working set of related
programs from a directory to a port will not result in a
working set of programs in the port. This is because of the
port-specific reference for names. If the program calls a
subprogram by including its name, say SubProgl EVAL, then
only the directory is searched when the name is to be
evaluated. On the other hand, if the subprogram is called
by including a port-specific reference, say :0:SubProg1 EVAL,
then only the specified port is searched. To compensate
for this, we have included a "wild card" port specifier, :&:.
The sequence :&:SubProg1 EVAL will search for the subpro
gram in all ports and then in the current directory before
giving up. This calling sequence allows programs to be
executed from directories or ports interchangeably.

A second consequence of there being no current drive
is the lack of access to objects contained in directories
stored in a port. Normally, the method of accessing an
object in a directory is first to change context to the direc
tory and then to use RCL or some other command. Since
it is not possible to change context to a directory stored in
a port, this method is not available without first copying
the directory back to main RAM. This is solved by using
a list as a complete path specifier for recalling a variable.
For example, if A is a directory object stored in port 0 and
it contains a variable B, then :0:{ A B } RCL will recall the
contents of B to the stack. Similarly, it is possible to recall
from any location without changing the context directory
by using a list to specify the path completely.
Archive and Restore. With a method of mass storage avail
able, it is natural to provide a means to archive the current
contents of the calculator and later to restore this informa
tion. The operation ARCHIVE produces a copy of the entire
home directory encapsulated as a backup object. It delivers
this copy either to a specified port or to another machine .

Restoring from a backup copy of the home directory using
the RESTORE operation reverses the archive process.
Because of the potentially greater need for human interven
tion, RESTORE will not automatically restore from another
machine. Instead, RESTORE will use a backup (or any other)
copy of the home directory no matter how it was obtained.
RAM Recovery. With the large amounts of data that can
be present in the machine, it is clear that additional data
safeguards are necessary. One such safeguard is provided
by the Recover RAM? operation.

Whenever it is found that the structural integrity of RAM
has been violated, the user is given the opportunity to
either start with a clean slate or attempt to salvage some
data. If the user chooses to salvage data, the machine first
searches through RAM, locating library or backup objects
whose checksums are valid. It collects all of these into a
new port 0.

It then searches for a directory object having the specific
features of the home directory. If one is found, the RAM
recovery operation verifies its structural integrity, and the
operation is complete. To check the directory's structural
integrity, the RAM recovery operation checks the structural
integrity of each object within the directory (including
recursively checking subdirectories) and removes any that
are corrupt. If no home directory is found, the RAM recov
ery operation begins searching for ordinary directory
objects. When it finds a directory it checks the structural

integrity of each object within the directory (including
recursively checking subdirectories) and removes any that
are corrupt. The resulting corrected directories are named
D.O, D.1 , and so on, and are gathered together to form a new
home directory, completing the recovery process.

Acknowledgments
The design, development, and testing of the HP 48SX

firmware ultimately involved almost everyone in the Cor-
vallis Division R&D department. In addition to the authors,
those who contributed directly to the design and imple
mentation were Ted Beers (application and interface man
agement), Stan Blascow (BIOS and time management), Diana
Byrne (plotting and EquationWriter), Gabe Eisenstein
(EquationWriter), Grant Garner (decompile and ROM
switching), Bill Johnson (MatrixWriter), Max Jones (menu
system and editing), Paul McClellan (unit management),
Pat Megowan (application interfaces) , Nathan Meyers (I/O) ,
and Bob Worsley (I/O and printing).

References
1. W.C. Wickes, "An Evolutionary RPN Calculator for Technical
Professionals," Hewlett-Packard Journal, Vol. 38, no. 8, August
1987, pp. 11-16.
2. B.E. Musch, J.J. Wong, and D.R. Conklin, "Powerful Personal
Calculator System Sets New Standards," Hewlett-Packard Journal,

Vol. 31, no. 3, March 1980, pp. 3-12.
3 . C .M. Pa t ton , "Symbol i c Computa t ion fo r Handhe ld Ca l
culators," Hewlett-Packard Journal, Vol. 38, no. 8, August 1987,
pp. 21-25.

12 HEWLETT-PACKARD JOURNAL JUNE 1991

© Copr. 1949-1998 Hewlett-Packard Co.

HP 48SX Interfaces and Appl icat ions
The HP 48SX sc ient i f ic expandable calculator prov ides
support for multiple applications, both built- in and externally
developed, with customized user interfaces. The Equation-
Wri ter and interact ive plot t ing are two of the bui l t - in
appl icat ions.

by Ted W. Beers, Diana K. Byrne, Gabe L. Eisenstein, Robert W. Jones,
and Patr ick J. Megowan

LIKE ITS PREDECESSOR THE HP 28S, the HP 48SX
scientific expandable calculator is an RPN calculator
designed as an electronic scratchpad for mathemat

ical calculations. However, the simple user interface used
in the HP 28S would have become overloaded if translated
directly to the more capable HP 48SX. Consequently, the
HP 48SX contains direct support for developing specialized
user interfaces that can replace or extend the basic cal
culator interface. The support is used in the built-in appli
cations such as the EquationWriter and interactive plotting,
and is available for ordinary user programming and for
externally developed applications. In this article, we will
review the support mechanisms and give several illustra
tions of their use.

Managing Mult iple Appl icat ions
Early in the development of the HP 48SX, it became

apparent that without a common approach to application
interface implementation, the calculator would not present
a consistent methodology to the user. For example, when
an application ends, it is important that the menu displayed
before the application was started be restored. If one appli
cation restored the previous menu while another always
displayed the MATH menu, user confusion would result.

Although a consistent approach to application interface
design is important, so is the freedom of the designer to
incorporate unique features that justify the need for a spe
cial interface. One of the challenges in developing the
application interface engine for the HP 48SX was balancing
consistency of operation with flexible design components.
For the basic, stack-oriented, RPN operation of the
HP 48SX, and for stack-oriented applications such as statis
tics, the user interface is handled by the built-in RPL outer
loop. All other applications use an RPL tool called the
parameterized outer loop, which is designed to customize
a user interface.

The designer of an application can be expected to know
how its interface should operate, but not necessarily to
know or fully understand how the application should han
dle the application from which it was started or how to
respond consistently to fatal error conditions and other
unexpected events. The parameterized outer loop relieves
the designer of these burdens while providing a common,
robust method for handling application startup, applica
tion shutdown, and asynchronous event handling. The
parameterized outer loop accomplishes this by handling

the following major aspects of calculator operation:
â€¢ Saving the previous application's user interface
â€¢ Updating the application's display between key presses
â€¢ Waiting for and dispatching key presses, alarm inter

rupts, and unhandled errors
â€¢ Exiting the display and key handling loop
â€¢ Restoring the previous application's user interface.

Except for saving and restoring the previous application's
user interface, the application-specific components of each
step are specified by the application when it starts the
parameterized outer loop.

Before the user can interact with an application such as
the Equation Catalog, the application must set its user inter
face. The user interface is what makes the interaction with
the application unique. For example, in the Equation Cat
alog, the familiar stack display is replaced by a list of equa
tions, and the T and A keys no longer move the character
cursor but instead move a list pointer around the equation
list. An application sets these and other aspects of its inter
face when started by passing a set of user interface param
eters to the parameterized outer loop. These parameters
define how the application manages the HP 48SX display
and keyboard and how the application interacts with the
rest of the calculator environment.

Parameterized Outer Loop Operat ion
The operation of the parameterized outer loop can be

summarized as follows:

S a v e t h e s y s t e m o r c u r r e n t a p p l i c a t i o n ' s u s e r i n t e r f a c e
I f er ror in

{ S e t t h e n e w a p p l i c a t i o n ' s u s e r i n t e r f a c e
W h i l e e x i t c o n d i t i o n o b j e c t e v a l u a t e s t o F A L S E

{ E v a l u a t e d i s p l a y o b j e c t
I f er ror in

R e a d a n d e v a l u a t e a k e y
T h e n

E v a l u a t e e r r o r h a n d l e r o b j e c t

T h e n
R e s t o r e t h e s a v e d u s e r i n t e r f a c e a n d e r r o r

R e s t o r e t h e s a v e d u s e r i n t e r f a c e

The application specifies the unique operation compo
nents, such as the exit condition object and the display

JUNE 1991 HEWLETT-PACKARD JOURNAL 13

© Copr. 1949-1998 Hewlett-Packard Co.

Peter
Highlight

object, when it starts the parameterized outer loop. This is
how the application customizes the interface. The
parameterized outer loop is responsible for the key-display
loop, alarm interrupts, and low-level error handling.
Display Handling. There is no default display in the
parameterized outer loop. The application is responsible
for setting up the initial display and for updating it. The
application display object is the method by which the
application manages the HP 48SX display. This object,
which is usually an executable program, can take advantage
of the two main methods of displaying information that
the HP 48SX supports: passive display update and active

display update.
Passive Display Update. Passive display update involves
using the display object to update any area of the display
that needs to be changed after a key is handled. In this
display handling model, each key is responsible for implic
itly passing information to the display object regarding
what areas of the display it hasn't changed. The display
object then updates all other display areas.

Since the main outer loop itself uses this display update
scheme, applications that use many standard keys, such
as MatrixWriter, take advantage of the display update in
formation passed by the standard keys to simplify their
own display and key handling logic.

A major benefit of passive display update rests on the
fact that the application programmer can make no display-
related assertions at all in key handling, and still the display
handling will work properly, albeit more slowly than nec
essary. As the application develops, the programmer can
add assertions to those keys that do not affect certain dis
play areas, thus saving time during display update. If the
programmer misses a few combinations of key-display
interaction, the application stills operates properly.
Active Display Update. The second method supported by
the parameterized outer loop for handling display update
is the more conventional active display update. In this
model, each key that affects the display updates the display
itself. With active display handling, the application display
object can be reduced to a simple NOP (no operation). The
major drawbacks of active display update are that all aspects
of display handling must be considered by every key defini
tion, and the implicit display update information required
by other calculator resources must be determined whenever
these resources are used by the application.

For consistency and robustness, most HP 48SX applica
tions manage the display in the same manner as the main
outer loop, namely with passive display update.
Hard Key Assignments. Any of the HP 48SX keys, in any
of their six planes (unshifted, left-shifted, right-shifted,
alpha-unshifted, alpha-left-shifted, and alpha-right-shifted)
can be assigned for the duration of a parameterized outer
loop application. The key object parameter specifies the
keys to assign and their new assignments. In addition, there
are two flag parameters that control how keys not assigned
by the application are handled. If a key is not assigned by an
application, and the allow default keys flag is TRUE, then stan
dard or default key processing occurs, according to the do
standard keys flag.

For example, if user keys mode is on and the key has a
user key assignment, then the user key is processed if do

standard keys is FALSE, or the standard key is processed if
do standard keys is TRUE. If allow default keys is FALSE, then all
nonapplication keys beep and do nothing else.
Menu Key Assignments. An application can specify any
initial menu key assignments, in any of three planes (un
shifted, left-shifted, and right-shifted), to be initialized
when the parameterized outer loop is started. An outer
loop parameter specifies the definition object for the appli
cation's menu, and may indicate that the current menu is
to be left intact. When the outer loop is exited, the previous
menu is restored automatically.

Since hard key assignments have priority over menu key
assignments, it is possible to define more exotic behavior
for the menu keys. To date, no parameterized outer loop
application does so, however, since the menu key handling
is very flexible and customizable itself.
Preventing Suspended Environments. Many applications
need to allow arbitrary commands and user objects to be
evaluated, but may not want the current environment to
be suspended by the HALT and PROMPT commands. A pa
rameterized outer loop flag specifies whether any command
that would suspend the environment instead generates a
HALT Not Allowed error. Since both HALT and PROMPT actual
ly restart the main outer loop, which leaves the application
suspended indefinitely without protection for its global
resources, all current applications disallow suspension.
Nesting Applications. One of the powerful features of the
HP 48SX is its ability to stack or nest multiple application
user interfaces, effectively allowing an application to run
within another application. For example, while working
within MatrixWriter, one can press f STK to start the interac
tive stack application to copy a value from the stack into
MatrixWriter. Conversely, within the interactive stack, one
can select a matrix and press VIEW to start MatrixWriter.
In both cases, when the second application is finished, the
first resumes where it left off. The parameterized outer
loop makes sure all the details are sorted out.

Applicat ion Examples
The interactive stack is an HP 48SX application with

which one can browse through the HP 48SX data stack and
perform a set of stack-related operations based on the
selected stack levels. Since the interactive stack is designed
for stack operations only (including some object editing
operations), it maintains strict control over the keyboard
and display. This is accomplished with its key handling
and menu objects. Unlike most applications, the interactive
stack presents a different menu depending on how it is
started. When an edit line does not exist, a full menu of
operations is displayed. When an edit line does exist, the
interactive stack displays a more restrictive menu, reflect
ing the fewer operations available. To implement this differ
ence, the interactive stack passes one of two menu objects
to the parameterized outer loop as its menu specification.

MatrixWriter is an HP 48SX application that simplifies
the entry of matrix objects. Like the interactive stack, Matrix-
Writer controls certain keys that are redefined for its envi
ronment, such as A. Unlike the interactive stack, however,
MatrixWriter allows all undefined keys to operate normal
ly, since many standard key definitions, such as + , are
useful in MatrixWriter.

14 HEWLETT-PACKARD JOURNAL JUNE 1991

© Copr. 1949-1998 Hewlett-Packard Co.

Both the interactive stack and MatrixU'riter use the pas
sive display update method for managing their output. In
the case of MatrLxWriter, this is especially useful and
important, since the standard edit line interface is used
extensively within the MatrixWriter environment.

Customizat ion by the User
The standard keyboard and display of the HP 48SX are

designed for general use, offering direct access to numerical
computation and indirect access to other features. For users
who want direct access to features of their own choosing (or
creation), the HP 48SX has a number of tools for customiz
ing the user interface. The user can redefine keys, define
a custom menu, customize how key definit ions are exe
cuted, and maintain a variety of customized environments.

In the HP 28S, key definitions are objects of a special
form. For easier customization, we changed the HP 48SX
so that any object can be a key definition. For example,
the user can assign the string 5 and the function + to keys,
and those keys will act the same as the normal 5 and + keys.

For each key, the user can assign an object in one of six
key planes: keys can be unshifted, left-shifted, or right-
shifted with alpha on or off. If key assignments are viewed
as yet another shift, this makes 12 key planes in all. The
user can enable or disable the current assignments by press
ing Â«-iDSR, or by setting or clearing a flag. The assignments
can be recalled as a list of alternating key codes and objects,
and such a list can be used to make assignments.

Another way to define keys is the custom menu. After
storing a list of objects in a variable named CST, the user
can press CST to put the first six objects in the menu, NXT
to put the next six objects in the menu, and so on. This
method doesn' t involve the key assignments described
above; rather, it uses the standard key definitions that make
the menu system work.

The objects in the custom menu are given the same
shifted interpretations as in built-in menus. For example,
a name is executed, stored into, or recalled, depending on
whether the key is unshifted, left-shifted, or right-shifted,
just as in the VAR menu. Units are multiplied, converted,
or divided, just as in the UNITS menu. Alternatively, the
user can specify separate objects for the menu label and
for unshifted, left-shifted, and right-shifted actions.

The most radical customization is called vectored ENTER.
When the user presses a key in normal operation, the cor
responding object is either written to the command line or
executed. In the latter case, the text already in the command
line must be parsed and executed first, and then the key-
definition object is executed. The user can customize two
steps in this process by s tor ing programs in variables
Â«ENTER and (3ENTER.

The program in Â«ENTER takes over parse-and-execute
responsibilities. Such a program might either (1) print the
command-line text and then execute OBJ-Â», which parses
and executes as usual, (2) modify the text and then execute
OBJ->, or (3) parse the text itself.

After the key-definition object is executed, its text form
is given to pENTER as an argument. Such a program might
print the text and the contents of the stack, drop the text
and modify the results on the stack, or display status infor
mation or otherwise prepare for the next input from the

user.
Vectored ENTER is enabled by setting both its own flag and

the flag for user key assignments. The latter condition
allows the user to disable vectored ENTER from the keyboard.
This safety feature is important, since faulty customization
routines can totally disrupt calculator operation.

Finally, the user can maintain a variety of interfaces cus
tomized for different purposes. Since the custom menu
and vectored ENTER are defined by variables, switching
directories can cause the interface to change accordingly.
On the other hand, key assignments are independent of
the directory. By assigning directory-switching programs
to keys, the user can readily switch from one interface to
another.

The EquationWriter
The primary design objective of the EquationWriter was

to overcome several factors limiting the ease of use of exist
ing calculators. The EquationWriter is the first application
to emerge from advances in display technology, both hard
ware and software, compared with the HP 28S. The general
result of these advances can be seen in the inclusion of the
graphic object datatype and the virtual screen of the HP 48SX.

The basic idea of the EquationWriter is to show mathe
matical expressions as they appear in textbooks or as nor
mally written by handâ€” for example:
â€¢ Numerators above denominators, separated by a horizon

tal line
â€¢ Exponents written as superscripts, in a smaller font
â€¢ Parentheses of adjustable height
â€¢ The use of standard symbols for integral, summation, etc.

This in itself is novel only in the calculator world. How
ever, the main challenge, which was felt not to have been
met even by existing desktop systems, was to come up with
a consistent and intuitive way of producing and modifying
these formatted displays as the user enters the expression,
symbol by symbol.

The most obvious limitation on the entry and display of
mathematical expressions in the standard linear format is
that when they get even moderately large, it becomes
extremely difficult to survey the subexpression groupings
visually and sort out all the parentheses. An expression like

f(0,1/(X + Y),1

is terribly tedious to read and understand, compared to

0 (Z-l) +X
dZD

P H R T S P R D E : H Y P I M f l T R I V E C T R I B A S E

This problem was especially onerous for the HP 28S
FORM interface (renamed RULES in the HP 48SX), which
applies operations like commutation, association, and dis
tribution to subexpressions of a given expression. Locating

JUNE 1991 HEWLETT-PACKARD JOURNAL 15

© Copr. 1949-1998 Hewlett-Packard Co.

the desired subexpression (which very likely did not even
fit on the screen) amid the plethora of parentheses, and
recognizing its relation to the likewise messy and stretched-
out result, was too much for many users to bother with. In
the HP 48SX, the RULES interface is a subsystem of the
Equation Writer, which can be entered any time the expres
sion typed so far is complete (a + b is complete, a + is not) by
pressing the â€¢< key. This sends the cursor back to the right
most object (number, variable, or operator) in the expres
sion, appearing as an inverse-video highlight of that object.

0 (Z-l)
dfl!

R U L E S E D I T E K P f i S U E : f i E P L E X I T

From here the highlight-cursor can be moved around
with the arrow keys. Pressing â€¢*, V results in:

The subexpression selected for an operation is that which
is included in the range of a highlighted operator (if a
variable or number is highlighted, the subexpression sim
ply consists of that object alone). A menu key toggles
between highlighting the individual object and the selected
subexpression.

0

dZ

R U L E S E D I T E K P R S U B f i E P L E X 1

This removes any remaining uncertainty about which
subexpression is selected (although it is not usually needed
because the grouping is so much more apparent, and more
of the expression tends to fit on the screen).

Since the subexpression selection mechanism was in
cluded for the RULES interface, it made sense to allow edit
ing of subexpressions as well. Once a subexpression is
selected for editing, a command line is brought up in which
to modify the subexpression in its normal string form. This
is mainly useful for changing the spelling of a name or
number. Other means of modifying and combining expres

sions are provided by the SUB (substitute), REPL (replace)
and RCL (recall) functions: the first sends a copy of the
selected subexpression out to the data stack, the second
replaces the selected subexpression with the algebraic
object on the data stack, and the third inserts the object
from the stack in the cursor position when in entry mode
(rectangular cursor showing). Of course, it is possible to
back up with the normal backspace key (|).

Another problem with the standard linear format is
remembering the meaning and order of multiple parame
ters. A frequent complaint about the HP 28S was that no
one could remember how to type in the parameters to the
INTEGRAL function. Did the lower or upper bound come
first? Did one have to type the d that goes with the variable
of integration? In the Equation Writer there can be no such
confusion. Upon pressing the /key, one immediately sees
an integral sign, with the cursor in the position of the lower
bound.

PARTS PROG HYP MATR VECTR BASE

Any expression can be entered as the lower bound; it is
terminated by the > key, which is the general means of
terminating any syntactic piece (exponent, numerator,
denominator, etc.). The cursor then moves to the upper
bound position.

PARTS PRO* HYP MATR VECTR BASE

If one of the subexpressions grows vertically (e.g., when
entering a quotient for the upper bound), the integral sign
stretches to accommodate it.

D

mE

PARTS PRI1B HVP MATR VECTR BASE

After the upper bound and integrand are terminated in
turn, a d appears with the cursor to its right, making it
obvious that a variable name is now required.

16 HEWLETT-PACKARD JOURNAL JUNE 1991

© Copr. 1949-1998 Hewlett-Packard Co.

n
B COS(Ã±)-BdD

P f l f t T S P R D E : H Y P M f l T R V E C T R I B A S E

This is a good place to mention another significant fea
ture of the EquationWriter, which is its real-time syntax
checking. With the cursor in the variable of integration
position, the system will not accept any input except a
legal variable name. Pressing + here will immediately
result in the Invalid Syntax message, with the cursor returned
to the left of the d. Similar behavior results from following
a prefix function immediately with an infix function, and
so forth. The EquationWriter uses the same internal parsing
engine that is used to parse algebraic expressions typed into
the command line. All graphical events in the Equation-
Writer (putting up a new symbol, inserting punctuation,
altering the sizes of parts of the picture, and repositioning
the cursor) are triggered by transitions across syntactic
boundaries, as interpreted by the internal parser. The >â€¢ key
always has the meaning of "go to the next syntactic posi
tion", so that it not only terminates exponents, denomina
tors, and so on, but also results in the insertion of any
required token following the current position, such as a
closing parenthesis, or a comma if you are in the first argu
ment of a function requiring two or more arguments. If the
current syntactic piece is not legally completed, the cursor
will not advance.

This general use of the > key was actually quite contro
versial during the early phases of development, and this
illustrates the challenge of coming up with an intuitive
entry procedure, as mentioned above. One objection was
that the > key is an unnecessary nuisance when entering
a typical polynomial: after typing the 2 in an expression
like ax2 + bx + c, why can't I just type -I- ? There was no
problem in adopting such a rule, based on operator prece
dence, but the result would be that the hated parentheses
would start sprouting any time the exponent, numerator,
denominator, or other expression was not typical (i.e., sim
ple), and the user would have to remember to type the
parenthesis before starting the subexpression (just like in
the old linear format). In the end it was decided to provide
both methods as modes that can be toggled by the user. A
similar problem with respect to division was solved by
providing, in effect, two division operators: one prefix
(press A to initiate a complex numerator) and one infix
(press -r to draw a line under the preceding subexpression,
going back to an operator of lower precedence than divi
sion). However, the uniformity of the > key has proven to
be a contribution to an intuitive interface. Not only do all
built-in operators work similarly, but also all future
operators, with their own distinctive graphical properties
defined by users who write libraries, will also have the
same feel.

The ideal of displaying expressions just as they appear

in textbooks turned out to be unattainable, mainly because
textbooks were found to follow different rules and ill-
defined conventions. In the expression ax2 + bx-s-c, every
one assumes that a and b are coefficients, but in general,
variable names cannot be limited to one character, nor
should there be something special about the letter x. Thus
we gave up the idea of incorporating implied multiplication
in the display. However, it is present in the entry rules:
typing 2A automatically creates the display 2*A, and simi
larly, any sequence of two contiguous tokens functioning
as operands results in the insertion of the multiplication
symbol. The display is unambiguous, but the typing is
simplified.

G r a p h i c s a n d P l o t t i n g
Scientists and engineers use graphics for many aspects

of their work: describing problems, studying functions,
working out solutions, presenting data, and so on. Our
main goal for the HP 48SX graphics and plotting system
was to offer plotting tools beyond those of the HP 28S,
which provided function plots and statistical scatter plots.
We also wanted to contribute to the overall goal of making
the calculator easier to use. A third goal was better integra
tion of graphics with other capabilities of the machine.

Our design choices were based on feedback from HP 28S
users, guidelines provided by the National Council of
Teachers of Mathematics, consultations with mathematics
educators, and the experience of team members as college
instructors, mathematicians, physicists, and engineers. The
result is the HP 48SX graphics and plotting system, which
has the following new elements:
â€¢ A new RPL object type called a graphics object, or GROB ,

along with commands to create and modify GROBs
â€¢ An enhanced interactive environment for plotting and

graphics
â€¢ Four new mathematical plot types and two new statisti

cal plot types.
The HP 48SX uses a new object type called a graphics

object, or GROB, to represent graphical images. Like all
objects, GROBs can be placed on the stack, included in
programs, stored in variables, and exchanged with other
calculators. Most graphics commands act on the GROB
stored in a special display region called PICT. The HP 28S
used one area of memory for all displays. The addition of
a separate graphics display area in the HP 48SX simplifies
mixing graphics and stack operations. Both display areas
are expandable, with scrolling available to view GROBs
larger than the display.

Commands are available to draw geometric shapes,
sketch freehand, or do cut-and-paste operations with small
er GROBs. Most of these commands are available in both
interactive and programmable forms. For example, geomet
ric shapes include boxes, circles, and lines:

JUNE 1991 HEWLETT-PACKARD JOURNAL 17

© Copr. 1949-1998 Hewlett-Packard Co.

D
Freehand sketches include arbitrary curves and indi

vidual pixels:

The REPL (replace) command takes a GROB from the
stack and pastes it into the PICT GROB. The next example
includes a label made from a string (by the^GROB com
mand) and a picture imported from a computer.

Adding a modify step to cut-and-paste leads to a rudi
mentary but entertaining form of animation.

The calculator itself uses GROBs for all display-related
tasks. Graphic applications such as plotting use GROBs, of
course, but text must also be converted to pixels before it
can be displayed. For example, the components of the nor
mal display (status information, stack objects, command
line, menu labels) are created as individual GROBs and
then pasted onto the GROB in the stack display area. Appli
cations such as EquationWriter and MatrixWriter similarly
construct and combine GROBs.

Much of the benefit of GROBs, like other object types,
is in having standard tools for standard objects used by
both the system and the user. This uniformity leads to
smaller code with fewer defects.

An example of the internal structure of a GROB can be
seen in the PARTS menu label in the MATH menu. The cal
culator creates a small GROB for this label and then pastes
that GROB onto the larger GROB for the whole display.

Ã ­ H D M E >

3:
2:
1:

IP r t f iTÃ I PROS I HVP MÃ±TR VECTF; B f tSE

The command-line form of this GROB is:

GROB 21 8 E30000FFFFF1 1 B91 31 555BD1 1 1 9BB1 D55B71 D55B91 FFFFF1

where 21 and 8 are the width and height in pixels, and the
hexadecimal digits represent the graphical data, starting
left to right across the top row:

E30000
FFFFF1
1B9131
555BD1
119BB1
D55B71
D55B91
FFFFF1

Each hexadecimal digit represents a horizontal sequence
of four pixels, with the least-significant bit representing
the leftmost pixel. For example, the hexadecimal digit E,
written as 1110 in base two, represents four pixels: off, on,
on, on.

Each row is represented by an even number of hexadec
imal digits because the display hardware reads one byte
(two hexadecimal digits) at a time. This requires up to
seven bits of padding at the end of each row; in this exam
ple, three bits of padding are required.

Function Plots
Like the HP 28S, the HP 48SX uses the variables EQ

(equation) and PPAR (plot parameters) to control plotting.
The user can maintain multiple plotting environments by
creating multiple directories, each with its own EQ and
PPAR. When the user presses <-> PLOT, the plot application
first shows the current equation (EQ) and plot type (one of
the plot parameters):

Plot type: FUNCTION
EQ: 'X*3-;

3Â¡
2:
1 =

I T R P T V P E N E H E D E G I S T E T - ! C f l T

We first demonstrate the plot type FUNCTION, which is an
enhanced form of the HP 28S plot type. Later we will show
the results from other plot types.

18 HEWLETT-PACKARD JOURNAL JUNE 1991

© Copr. 1949-1998 Hewlett-Packard Co.

The user can press NEW to name a new equation, EDEQ
to edit the current equation, or CAT to show a catalog of
equations:

Ã­ HDME

F 2 :
F l :

^2+1/3

T R S D L V R E G * E D I T * S T K V E H

The equation specified by EQ can be an expression, an
equation, a program that computes values, or the name of
a variable that contains one of these. Multiple equations
can be plotted simultaneously by combining them into a
list and storing that list in EQ.

After selecting the equation, the user can press PTYPE to
change the plot type. Other plot parameters control the
plot's scale and the placement and labeling of the axes. To
change the other plot parameters, the user presses PLOTR:

Like the initial plot menu, the PLOTR menu displays the
current values of relevant variables. To avoid interference
with normal stack activity, these displays are maintained
only as long as the commands in the menu are being used
interactively.

When the plot parameters are set, the user can press
ERASE to clear PICT, or skip this step to superimpose the
plot on the current PICT. The plotting is started by pressing
DRAW or AUTO; the latter attempts to scale one or both axes
automatically, according to the plot type.

When the plot is completed, a menu of interactive oper
ations appears:

H 1 I I

PICT GROB is larger than the display, the user can force
the display to scroll by moving the cursor off the edge of
the display.

If the plot needs adjusting, the user can zoom in or out
along either or both axes, or define a new center. If the
plot is satisfactory, the user can press FCN to show a menu
of mathematical tools (applicable only to the FUNCTION plot
type):

I Z D D M I Z - E D K I C E N T I C D D R D I L H B E U F C N

In the center of the display is a cross-shaped cursor,
which the user moves by pressing the arrow keys. The
cursor is used to specify locations for a variety of plotting
and graphics operations. Pressing COORD causes a display
of the cursor coordinates to replace the menu labels. If the

7
RO SECT SLOPE AREA EKTR EK T

With these tools the user can analyze the function with
out leaving the interactive graphics environment. For
example, pressing ROOT invokes the solver to find the
nearest root (the cursor moves to the root):

R D D T : 1 . 3 0 B H B E 9 1 1 7 ?

Pressing SLOPE invokes differentiation to find the deriva
tive at the cursor's location:

S L O P E : 3 . 2 3

Pressing EXTR invokes differentiation and the solver to
find the nearest extremum (the cursor moves to the
extremum):

E K T R M : (1 . 3 3 , - . B 5 1 B 5 1 B 5 1 B !

Pressing AREA (twice, with the cursor at each limit)
invokes numerical integration:

JUNE 1991 HEWLETT-PACKARD JOURNAL 19

© Copr. 1949-1998 Hewlett-Packard Co.

When EQ contains of list of equations, the user can apply
these tools to any individual equation, or use (SECT to find
the intersection of any pair of neighbors in EQ.

Other Plot Types
To the HP 28S plot types FUNCTION and SCATTER the HP

48SX adds mathematical plot types CONIC, POLAR,
PARAMETRIC, and TRUTH, as well as the statistical plot types
HISTOGRAM and BAR. The mathematical plot types share
code for the basic steps: setting up the plotting environ
ment, assigning successive values to the independent vari
able, evaluating EQ, plotting the corresponding points,
cleaning up the environment, starting the interactive phase,
and handling errors. Each mathematical plot type requires
its own code to process EQ once at the start and to process
each result of evaluation.

CONIC plots handle circles, ellipses, parabolas, and
hyperbolas. This type turned out to be a simple combina
tion of existing tools: the code underlying the command
QUAD is used to turn EQ into two branches. Then the code
in the FUNCTION plot type that plots both sides of an equa
tion is used to plot both branches of EQ. For example, the
equation

4 * X ' 2 - 9 - Y - 2 - 2 4 * X - 9 O Y - 2 2 5

is plotted as:

POLAR plots show the independent variable as a polar
angle and the dependent variable as the radius. For exam
ple, the equation

2* (1 -COS(X))

is plotted as:

PARAMETRIC plots show a complex-valued function of
one real variable, where the real and imaginary parts are
functions of the independent variable. For each point, the
horizontal coordinate is given by the real part and the ver
tical coordinate by the imaginary part. For example, the
equation

iÂ«(T'3-3Â«T)

is plotted as:

-i â€” i â€” iâ€” â€”i â€” i â€” i-

I /

TRUTH plots show truth-valued functions of two real vari
ables. The location of each pixel represents the domain,
and the value of the pixel represents the function value.
Often the truth-valued function is the compostion of a func
tion of interest, such as a real function of two variables or
a complex function, and a projection function that maps
function values to truth values. For example, consider a
two-argument function. Plotting the expression

(2*X~2-3*Y"2 + X*Y) MOD 16>8

produces a contour plot of the polynomial with contour
intervals of 8:

A second example is a complex function. Plotting the
expression

SIGN (RE(Z"3-2*Z))= =SIGN (IM(Z"3-2*Z))

where Z is defined to be X + i*Y produces a quadrant plot of

20 HEWLETT-PACKARD JOURNAL JUNE 1991

© Copr. 1949-1998 Hewlett-Packard Co.

the polynomial. The black regions are the points mapped
to the first or third quadrants of the complex plane and
the white regions are points mapped to the second or fourth
quadrants.

JUNE 1991 HEWLETT-PACKARD JOURNAL 21

© Copr. 1949-1998 Hewlett-Packard Co.

HP Solve Equation Library Appl icat ion
Card
The card contains a library of 31 5 equations, the periodic
table of the elements, a constants l ibrary, a mul t ip le
equat ion so lver , a f inance appl icat ion, and engineer ing
utilities.

by Eric L. Vogel

HISTORICALLY, EVERY HP programmable cal
culator has had programs available in some form.
There are application books with printed programs

and keystroke sequences for machines like the HP 55, 25,
33E, 11C, and 32S, application pacs with programs on
magnetic cards for the HP 65 and 67, and pacs with pro
grams in plug-in modules for the HP 41 and 71. These
books and pacs focus on computation-intensive (as
opposed to data-intensive) problems in specific science or
engineering disciplines. Program size and capability are
limited primarily by available memory and the single-line
calculator display.

The HP Solve Equation Library application card provides
this capability for the HP 48SX scientific expandable cal
culator, but without the limitations of previous pacs. The
focus on computation-intensive solutions is preserved, but
for a wider range of disciplines than in individual pacs in

the past. An additional focus on data-intensive applications
has been added in the form of on-line, electronic reference
information (two thirds of the card contains data). The
128K-byte memory capacity of the card makes these two
emphases possible, and the large display allows improved
user interfaces for the interactive applications.

The card contains six major applications:
â€¢ Equation Library (Fig. 1). This is the primary application

for which the card was named: a collection of 315 equa
tions organized in a catalog of 15 different subjects, each
containing a catalog of equation titles. For each title, the
user can examine the equations and catalogs of names,
descriptions, and SI or English units for its variables. A
key contribution is pictures that describe the physical
situations represented by the equations. Our goal was
that the subject, title, and reference information would
help a user select an equation to use with the HP Solve

Equa t i ons

hi Id b2 Ã¯Ã¯ h3
K'H'J fTm Z'3 t'Jii aa M J [^ CM i a f=K4i â€¢

SI Un i ts

Tc: "C
fl: m-2
hi: U/<m^2*IO

Sub jec ts

EGUflTIOH LIERHRY
Columns and Beams
Electricity
Fluids
Forces and Energy
Ga

Titles
HEfiT TRfiHSFER

H e a t C a p a c i t y
T h e r m a l E x p a n s i o n
C o n d u c t i o n
C Q n'v1 e c t

TH: hot Temperature
Tc: cold temperature
fl: area
hi: connective coef 1
h3: connective coef 31

Pic tu re

Eng l i sh Un i t s

Tc:
fl: f , _
hi: Btu/<h*ft^2*Â°F)
h3: F i g . 1 . E q u a t i o n L i b r a r y u s e r

interface.

22 HEWLETT-PACKARD JOURNAL JUNE 1991

© Copr. 1949-1998 Hewlett-Packard Co.

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

application or the card's Multiple Equation Solver (dis
cussed below).
Periodic Table (Fig. 2). This application contains all the
chemical data (such as atomic weight and density) that
appears on a standard periodic table of the elements.
The primary user interface is the universally recognized
grid of elements. The user can move a highlight block
to see any element and its most-used properties on the
grid. There is also a catalog of 23 properties available
for each of the 106 elements. Properties can be plotted
versus atomic number to reinforce the relationship
between property and atomic structure. A molecular
weight calculator allows typing chemical formulas and
quickly calculating their molecular weights.
Constants Library. This is a collection of 39 commonly-
used physical constants. These appear in catalogs of sym
bols, descriptive names, values, and SI or English units.
Multiple Equation Solver. This is a collection of com
mands that make it possible to use the Multiple Equation
Solver to interact with the user's own equations as a
group, rather than just the groups of equations from the
Equation Library.
Finance. This application duplicates the basic calcula
tions performed by HP financial calculators: time value
of money (the relationship between the number of pay
ments, interest rate, present value, payment, and future
value) and amortization.
Engineering Utilities. These are engineering functions
that support the computational needs of some of the
equations in the Equation Library.
These applications come in two forms: interactive for

Grid

;Fe S h '

l i T N T :
S S . B H . '

l ' E N Ã I T V :
r. B fi

Property Catalog

v M o l e c u l a r W e i g h t C a l c u l a t o r a n d R e s u l t

rlÂ·l^iH^HOp^

ST WT:
55 BH?

DEN5ITV:
7. SÃ­ DL

fiT NT:
55. BH?

227. 133_Ã§ .).:.!

Fig. 2 . Per iod ic Table user in ter face.

working with the application and its data, and noninterac-
tive for programmatic calculations and access to the on-line
data.

Equation Library Evolution
The Equation Library concept stemmed from three obser

vations. First, students need a wide variety of solutions
because of the number of classes they take. Because appli
cation pacs are limited to specific areas, students often
need several pacs to cover the different disciplines they
study simultaneously. Second, most of the engineering
applications for the HP 41 and its predecessors are pro
grams that simply solve an equation for a specific variable.
More sophisticated programs of this type allow inter
changeable solutions in which most or all of the unknown
variables can be calculated as long as they can be isolated
algebraically in the equation. Some programs use iterative
techniques to find a solution when an algebraic isolation
is not possible. Later application pacs attempt to allow the
user to select different units for the different variables.

Third, the HP Solve application in the HP 48SX takes
an equation and makes it into a small, self-contained appli
cation. It solves for any variable given the others, allows
units to be specified for each variable, handles unit conver
sions automatically, and provides a consistent, straightfor
ward user interface for interacting with all the variables.

From these three observations, we realized that we could
create a collection of small applications in most of the
science and engineering disciplines of previous application
pacs by combining a collection of equations with HP Solve.
The HP Solve user interface allows each application to
work the same way, and the ability to solve for any variable
and automate unit conversions makes these applications
more versatile than in previous application pacs.

Interact ing with Groups of Equations
As the equat ion select ion proceeded, we found that

related equations were usually needed as a group, rather
than independently (Fig. 3) . While there are certainly
instances where only one of the equations is needed, more
often the entire set is used to find the value for a particular
variable. To provide simplified access to related equations,
we group them together under a single title, such as Linear
Motion or Ohm's Law and Power, rather than forcing the
user to return to the Equation Library to select each equa
tion individually.

When we examined how a user typically interacts with
a group of equations, we realized that the solution proce-

P=Y'I

P=I2-R

(a) L i n e a r M o t i o n (b) O h m ' s L a w a n d P o w e r

Fig . 3 . Examples o f common equat ion se ts .

JUNE 1991 HEWLETT-PACKARD JOURNAL 23

© Copr. 1949-1998 Hewlett-Packard Co.

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

dure is straightforward, but gets tedious as the number of
equations and variables gets large. Here is the manual pro
cess for finding all the variables for a set of equations given
that some of them are known:
â€¢ Use the known variables to select an equation containing

only one unknown.
â€¢ Solve for the unknown.
â€¢ Add the variable just calculated to the set of known

variables.
â€¢ Use the combined set of known and calculated variables

to select another equation containing only one unknown.
â€¢ Solve for the unknown.
â€¢ Repeat this process until either all the unknowns have

been found or as many unknowns as possible have been
found from the given set of knowns.
To make using the equations more straightforward, we

have automated this manual select-and-solve process by
developing an extension to HP Solve called the Multiple
Equation Solver (MES). The MES selects the appropriate
equation to solve based on whether it has one remaining
unknown, and then solves for that unknown using the same
numerical root finder used by the HP Solve application. It
tracks the variables that have been solved for, and uses
different equations to calculate other unknowns as soon
as there is enough information available.

The barrier to proper functioning of the MES was iden
tifying whether a variable is known or unknown. The exis
tence of the variable alone is not sufficient â€” after a solution
has been determined, all the variables exist. The key under-

Unknowns

[v n i i r ~ Ã ¼ ~ l i F i i I m r Â ·

(a) In i t ia l menu for Ohm's Law and Power

K n o w n s U n k n o w n s

â€” â€¢r~r~irr~ii \Kom

(b) After entering values for V and I

K n o w n s U n k n o w n s

â€¢m Â«â€¢ u a a p Ml \wiim

U s e d C a l c u l a t e d
D u r i n g D u r i n g

Solut ion Solut ion

(c) After solving for al l unknowns

lying principle is that the state of a variable {known or
unknown) is independent of the value of the variable. The
MES uses this state information to select the equations to
be solved and the order in which to solve them.

Displaying Variable States
The MES user interface is similar to that of HP Solve. A

menu of variable names is displayed in the menu key area
at the bottom of the display. The appearance of the menu
keys is used to distinguish the MES state information. An
extra key, ALL, appears at the end of the menu.

Initially all the menu keys are white with black letters
(like HP Solve), indicating that all of the variables are
unknown (Fig. 4a). Typing a value and pressing a menu
key stores the value in that variable and changes the key
to black with white letters, indicating that the variable is
known (Fig. 4b).

Pressing the ALL key solves for all remaining variables,
or as many as can be found from the given set of knowns.

Messages appear during the solution identifying which
variable is being solved for and its resulting value. After
the solution has completed, each variable retains its initial
state. Correspondingly, each menu key retains its initial
appearance. Black keys (knowns) remain black, and white
keys (unknowns) remain white. This simplifies solving a
problem using the same knowns and unknowns but with
different values.

Indicating Variable Relationships
After a solution, some of the menu keys will have a small

block in them to indicate the roles their variables played
in the solution (Fig. 4c). A block in a black key (known)
indicates that the variable was used to find an unknown
in a particular equation. A block in a white key (unknown)
indicates a value was calculated for that variable during
the solution. This represents a unique state for a variable â€”
it is an unknown, yet it has a calculated value. The next
time this variable is solved for, this calculated value will
be used as its initial guess.

Pressing the shift key followed by a menu key solves for
that specific variable, regardless of whether it is black or
white (known or unknown). After a variable is solved for,
its menu key is shown in white with a block to indicate
an unknown that was solved for with a calculated value
(Fig. 4d). Other menu keys may have blocks in them based
on the roles their variables played in the solution.

Solut ion Summary
A summary of the solution procedure is available by

pressing the shift key followed by the ALL key (Fig. 5). This
summary shows a catalog of each unknown that was found,

K n o w n s U n k n o w n s

n n
Â«â€¢^â€¢JBlEjr^ n \wntm

t t Ã ¯ T N o t I n v o l v e d
U s e d d u r i n g C a l c u l a t e d i n S o l u t i o n

Solution during
Solution

(d) After solving for R only

Fig . 4 . Mul t ip le Equat ion So lver menu key appearance.

l e a n l o a n

(a) Values Calculated
during Solution

Fig. 5 . So lu t ion summary.

(b) Equations Used
during Solution

24 HEWLETT-PACKARD JOURNAL JUNE 1991

© Copr. 1949-1998 Hewlett-Packard Co.

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

Peter
Highlight

	TOC
	HP 48SX Scientific Expandable Calculator: Innovation and Evolution
	The HP 48SX Interfaces and Applications
	HP Solve Equation Library Application Card

