12. A retaining wall is shown below. The wall supports a mass of cohesionless soil with dry density of $100 \mathrm{lb} / f t^{3}$, void ratio of 0.65 and angle of shearing resistance 30°. The top of the wall is level with the horizontal surface of the soil. Not considering wall friction, determine the total earth thrust on the wall (Ib).

a) 8800
b) 7956
c) 6347
d) 12720

PROBLEM 12 SOLUTION:

GEOTECHNICAL

LATERAL EARTH PRESSURE

Solution:

$K_{a}=\frac{1-\sin \phi}{1+\sin \varnothing}=\frac{1-\sin 30}{1+\sin 30}=\frac{1}{3}$ (don't forget the active earth pressure!)
$P_{1}=K_{a} \gamma H=\frac{1}{3}\left(100 \mathrm{lb} / f t^{3}\right)(6 f t)=200 \mathrm{lb} / f t^{2}$
$P_{2}=K_{a} \gamma \mathrm{H}=\frac{1}{3}\left(100 \frac{l b^{3}}{f t}-62.4 \frac{l b^{3}}{f t}\right)(10 f t)=125.32 l b / f t^{2}$
$P_{3}=\gamma_{w} \mathrm{H}=62.4 \mathrm{lb} / f t^{3} \times 10 f t=624 \mathrm{lb} / f t^{2}$
Solving for the forces (areas of each),
Note: Ka is the active earth pressure coefficient and is only applied to the soil, not to the water

$$
\begin{aligned}
& F_{1}=\frac{1}{2}\left(200 \mathrm{lb} / f t^{2}\right) \times 6 \mathrm{ft} \times 1 \mathrm{ft}=600 \mathrm{lb} \\
& F_{2}=\left(200 \mathrm{lb} / f t^{2}\right) \times 10 \mathrm{ft} \times 1 \mathrm{ft}=2000 \mathrm{lb} \\
& F_{3}=\frac{1}{2}\left(125.3 \mathrm{lb} / f t^{2}\right) \times 10 \mathrm{ft} \times 1 \mathrm{ft}=626.5 \mathrm{lb} \\
& F_{4}=\frac{1}{2}\left(624 \mathrm{lb} / f t^{2}\right) \times 10 \mathrm{ft} \times 1 \mathrm{ft}=3120 \mathrm{lb}
\end{aligned}
$$

Total Force $=F_{1}+F_{2}+F_{3}+F_{4}=\mathbf{6 3 4 6 . 5 l b}$ (Answer C)
|www.civilengineeringacademy.com |isaac@civilengineeringacademy.com |

