
5.13 STRESSPATHS

Interactive Concept Learning and Self-Assessment
Access Chapter 5, Section 5.13 on the CD to learn about stress paths interactively. Take Quiz 5.13
to assess your understanding.

5.13.1 Basic Concept

Consider two marbles representing two particles of a coarse-grained soil. Let us fix one marble in a
hemispherical hole and stack the other on top of it (Fig. 5.30a). We are constructing a one-dimensional
system in which relative displacement of the two marbles will occur at the contact. Let us incrementally
apply a vertical, concentric force, Fz, on the top marble. We will call this loading ‘‘A’’. The forces at the
contact are equal to the applied loads and the marbles are forced together vertically. No relative
displacement between the marbles occurs. For the system to become unstable or fail, the applied forces
must crush the marbles. We can make a plot of our loading by arbitrarily choosing an axis system. Let
us choose a Cartesian system with the X axis representing the horizontal force and the Z axis
representing the vertical forces. We can represent loading ‘‘A’’ by a line OA as shown in Fig. 5.30c.
The line OA is called a load path or a force path.

Let us now apply the same force at an angle u to the X axis in the ZX plane (Fig. 5.30b) and call
this loading ‘‘B’’. There are now two components of force. One component is Fx ¼ F cos u and the
other is Fz ¼ F sin u. If the frictional resistance at the contacts of the two marbles is less than the
horizontal force, the top marble will slide relative to the bottom. You should recall from your
mechanics or physics course that the frictional resistance is mFz (Coulomb’s law), where m is the
coefficient of friction at the contact between the two marbles. Our one-dimensional system now has
two modes of instability or failure—one due to relative sliding and the other due to crushing of the
marbles. The force path for loading ‘‘B’’ is represented by OB in Fig. 5.30c. The essential point or
principle is that the response, stability, and failure of the system depend on the force path.

Soils, of course, are not marbles but the underlying principle is the same. The soil fabric can be
thought of as a space frame with the soil particles representing the members of the frame and the
particle contacts representing the joints. The response, stability, and failure of the soil fabric or the
space frame depend on the stress path.

Stress paths are presented in a plot showing the relationship between stress parameters and
provide a convenient way to allow a geotechnical engineer to study the changes in stresses in a soil
caused by loading conditions. We can, for example, plot a two-dimensional graph of s1 versus s3 or s2,
which will give us a relationship between these stress parameters. However, the stress invariants, being
independent of the axis system, are more convenient to use.
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FIGURE 5.30 Effects of force paths on a one-dimensional system of marbles.
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5.13.2 Plotting Stress Paths

We will explore the stress paths for a range of loading conditions. We will use a cylindrical soil sample
for illustrative purposes and subject it to several loading conditions. Let us apply equal increments of
axial and radial stresses ðDsz ¼ Dsr ¼ DsÞ to an initially stress-free sample as illustrated in the inset
figure labeled ‘‘1’’ in Fig. 5.31. Since we are not applying any shearing stresses on the horizontal and
vertical boundaries, the axial and radial stresses are principal stresses: that is, Dsz ¼ Ds1 and
Dsr ¼ Ds3.

The loading condition we are applying is called isotropic compression; that is, the stresses in all
directions are equal ðDs1 ¼ Ds2 ¼ Ds3Þ. We will call this loading condition, loading ‘‘1.’’ It is often
convenient to work with increments of stresses in determining stress paths. Consequently, we are going
to use the incremental form of the stress invariants. The stress invariants for isotropic compression are

Dp1 ¼ Ds1 þ 2Ds3

3
¼ Ds1 þ 2Ds1

3
¼ Ds1

Dq1 ¼ Ds1 � Ds3 ¼ Ds1 � Ds1 ¼ 0

The subscript 1 on p and q denotes loading ‘‘1.’’
Let us now prepare a graph with axes p (abscissa) and q (ordinate), as depicted in Fig. 5.31. We

will call this graph the q-p plot. The initial stresses on the soil sample are zero; that is, p0 ¼ 0 and
q0 ¼ 0. The stresses at the end of loading ‘‘1’’ are

p1 ¼ p0 þ Dp1 ¼ 0þ Ds1 ¼ Ds1

q1 ¼ q0 þ Dq1 ¼ 0þ 0 ¼ 0

and are shown as coordinate A in Fig. 5.31. The line OA is called the stress path for isotropic
compression. The slope of OA is

Dq1
Dp1

¼ 0

Let us now apply loading ‘‘2’’ by keeping s3 constant, that is, Ds3 ¼ 0, but continue to increase s1, that
is, Ds1 > 0 (insert figure labeled ‘‘2’’ in Fig. 5.31). Increases in the stress invariants for loading ‘‘2’’ are

Dp2 ¼ Ds1 þ 2� 0

3
¼ Ds1

3
Dq2 ¼ Ds1 � 0 ¼ Ds1
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and the stress invariants at the end of loading ‘‘2’’ are

p2 ¼ p1 þ Dp2 ¼ Ds1 þ Ds1

3
¼ 4

3
Ds1

q2 ¼ q1 þ Dq2 ¼ 0þ Ds1 ¼ Ds1

Point B in Fig. 5.31 represents ðq2;p2Þ and the line AB is the stress path for loading ‘‘2.’’ The slope of
AB is

Dq2
Dp2

¼ Ds1

ðDs1=3Þ ¼ 3

Let us make another change to the loading conditions. We will now keep s1 constant ðDs1 ¼ 0Þ
and then increase s3ðDs3 > 0Þ as illustrated by the inset figure labeled ‘‘3’’ in Fig. 5.31. The increases in
stress invariants are

Dp3 ¼ 0þ 2Ds3

3
¼ 2Ds3

3
Dq3 ¼ 0� Ds3 ¼ �Ds3

The stress invariants at the end of loading ‘‘3’’ are

p3 ¼ p2 þ Dp3 ¼ 4

3
Ds1 þ 2

3
Ds3

q3 ¼ q2 þ Dq3 ¼ Ds1 � Ds3

The stress path for loading ‘‘3’’ is shown as BC in Fig. 5.31. The slope of BC is

Dq3
Dp3

¼ �Ds3

2
3Ds3

¼ � 3

2

You should note that q decreases but p increases for stress path BC.
So far, we have not discussed whether the soil was allowed to drain or not. You will recall that the

soil solids and the porewater (Section 5.9) must carry the applied increase in stresses in a saturated soil.
If the soil porewater is allowed to drain from the soil sample, the increase in stress carried by the
porewater, called excess porewater pressure ðDuÞ, will continuously decrease to zero and the soil solids
will have to support all of the increase in applied stresses. We will assume that during loading ‘‘1,’’ the
excess porewater was allowed to drain—this is called the drained condition in geotechnical engineer-
ing. The type of loading imposed by loading ‘‘1’’ is called isotropic consolidation. In Chapter 7, we will
discuss isotropic consolidation further. Since the excess porewater pressure ðDu1Þ dissipates as the
porewater drains from the soil, the mean effective stress at the end of each increment of loading ‘‘1’’ is
equal to the mean total stress; that is,

Dp01 ¼ Dp1 � Du1 ¼ Dp1 � 0 ¼ Dp

The effective stress path (ESP) and the total stress path (TSP) are the same and represented
by OA in Fig. 5.32. You should note that we have used dual labels, p0, p, for the horizontal axis in
Fig. 5.32. This dual labeling allows us to use one plot to represent both the effective and total stress
paths.

We will assume that for loadings ‘‘2’’ and ‘‘3’’ the excess porewater pressures were prevented
from draining out of the soil. In geotechnical engineering, the term undrained is used to denote a
loading situation in which the excess porewater cannot drain from the soil. The implication is that the
volume of our soil sample remains constant. In Chapter 7, we will discuss drained and undrained
loading conditions in more detail. For loading ‘‘2,’’ the total stress path is AB. In this book, we will
represent total stress paths by dashed lines.
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If our soil were an isotropic, elastic material, then according to Eq. (5.109), written in incremental
form

Deep ¼
Dp0

K 0 ¼ 0 (5.115)

The solution of Eq. (5.115) leads to either Dp0 ¼ 0 or K0 ¼ 1. There is no reason why K0 should be 1.
The act of preventing the drainage of the excess porewater cannot change the (effective) bulk modulus
of the soil solids. Remember the truss analogy we used for effective stresses. The same analogy is
applicable here. The only tenable solution is Dp0 ¼ 0. We can also write Eq. (5.115) in terms of total
stresses; that is,

Deep ¼
Dp

K
¼ 0 (5.116)

where K ¼ Eu=3ð1� 2vuÞ and the subscript u denotes undrained condition. In this case, Dp cannot be
zero since this is the change in mean total stress from the applied loading. Therefore, the only tenable
solution is K ¼ Ku ¼ 1, which leads to vu ¼ 0:5. The implications of Eqs. (5.115) and (5.116) for a
linear, isotropic, elastic soil under undrained conditions are:

1. The change in mean effective stress is zero and, consequently, the effective stress path is vertical.

2. The undrained bulk modulus is 1 and vu ¼ 0:5.

The deviatoric stress is unaffected by porewater pressure changes. We can write Eq. (5.112) in
terms of total stress parameters as

G ¼ Gu ¼ Eu

2ð1þ vuÞ
Since G ¼ Gu ¼ G0 then

Eu

2ð1þ vuÞ ¼
E0

2ð1þ v0Þ
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FIGURE 5.32 Total and effective stress paths.
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and, by substituting vu ¼ 0:5, we obtain

Eu ¼ 1:5E0

ð1þ v0Þ (5.117)

For many soils, v0 ffi 1
3 and, as a result, Eu ffi 1:1E0; that is, the undrained elastic modulus is about 10%

greater than the effective elastic modulus.
The effective stress path for loading ‘‘2,’’ assuming our soil sample behaves like an isotropic,

elastic material, is represented by AB0 (Fig. 5.32); the coordinates of B0 are

p02 ¼ p01 þ Dp02 ¼ p01 þ 0 ¼ Ds1

q2 ¼ q1 þ Dq2 ¼ 0þ Ds1 ¼ Ds1

The difference in mean stress between the TSP and the ESP at a fixed value of q is the change in
excess porewater pressure. That is, the magnitude of a horizontal line between the TSP and ESP is the
change in excess porewater pressure. The maximum change in excess porewater pressure at the end of
loading ‘‘2’’ is

Du2 ¼ p2 � p02 ¼
4

3
Ds1 � Ds1 ¼ 1

3
Ds1

For loading ‘‘3,’’ the ESP for an elastic soil is BC0 and the maximum change in excess porewater
pressure is denoted by CC0 (Fig. 5.32).

Soils only behave as elastic materials over a small range of strains and therefore the condition
Dp0 ¼ 0 under undrained loading has only limited application. Once the soil yields, the ESP tends to
bend. In Chapter 8, we will discuss how soil yielding affects the ESP.

You can use the above procedure to determine the stress paths for any loading condition. For
example, let us confine our soil sample laterally, that is, we are keeping the diameter constant, Der ¼ 0,
and incrementally increase s1 under drained conditions (Fig. 5.33). The loading condition we are
imposing on our sample is called one-dimensional compression.

The increase in lateral effective stress for an increment of vertical stress Ds1 under the drained
condition is given by Eq. (5.50) as Ds3 ¼ Ds0

3 ¼ KoDs
0
1. The stress invariants are

Dp0 ¼ Ds0
1 þ 2Ds0

3

3
¼ Ds0

1 þ 2KoDs
0

3
¼ Ds0

1

1þ 2Ko

3

� �
Dq ¼ Dq0 ¼ Ds0

1 � Ds0
3 ¼ Ds0

1 �KoDs
0
1 ¼ Ds0

1ð1�KoÞ

The slope of the TSP is equal to the slope of the ESP; that is

Dq

Dp
¼ Dq

Dp0
¼ 3ð1�KoÞ

1þ 2Ko

The one-dimensional compression stress path is shown in Fig. 5.33.
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FIGURE 5.33 One-dimentional compression stress path.
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The essential points are:

1. A stress path is a graphical representation of stresses in stress space. For convenience, stress
paths are plotted as deviatoric stress (q) on the ordinate versus mean effective stress ðp0Þ and/
or mean total stress (p) on the abscissa.

2. The effective stress path for a linear, elastic soil under the undrained condition is vertical; that
is, Dp0 ¼ 0:

3. The mean stress difference between the total stress path and the effective stress path is the
excess porewater pressure.

4. The response, stability, and failure of soils depend on stress paths.

5.13.3 Procedure for Plotting Stress Paths

A summary of the procedure for plotting stress paths is as follows:

1. Determine the loading conditions drained or undrained or both.

2. Calculate the initial loading values of p0o, po, and qo.

3. Set up a graph of p0 (and p, if you are going to also plot the total stress path) as the abscissa and q
as the ordinate. Plot the initial values of ðp0o; qoÞ and ðpo; qoÞ.

4. Determine the increase in stresses, Ds1, Ds2, and Ds3. These stresses can be negative.

5. Calculate the increase in stress invariants, Dp0, Dp, and Dq. These stress invariants can be negative.

6. Calculate the current stress invariants as p0 ¼ p0o þ Dp0, p ¼ po þ Dp, and q ¼ qo þ Dq. The
current value of p0 cannot be negative but q can be negative.

7. Plot the current stress invariants ðp0; qÞ and ðp; qÞ.
8. Connect the points identifying effective stresses and do the same for total stresses.

9. Repeat items 4 to 8 for the next loading condition.

10. The excess porewater pressure at a desired level of deviatoric stress is the mean stress difference
between the total stress path and the effective stress path.

Remember that for a drained loading condition, ESP ¼ TSP, and for an undrained condition, the ESP
for a linear, elastic soil is vertical.

EXAMPLE 5.15 Stress Paths Due toAxisymmetric Loading (TriaxialTest)

Two cylindrical specimens, A and B, of a soil were loaded as follows. Both specimens were
isotropically loaded by a stress of 200 kPa under drained conditions. Subsequently, the radial stress
applied on specimen A was held constant and the axial stress was incrementally increased to 440 kPa
under undrained conditions. The axial stress on specimen B was held constant and the radial stress
incrementally reduced to 50 kPa under drained conditions. Plot the total and effective stress paths for
each specimen assuming the soil is a linear, isotropic, elastic material. Calculate the maximum excess
porewater pressure in specimen A.

Strategy The loading conditions on both specimens are axisymmetric. The easiest approach is to
write the mean stress and deviatoric stress equations in terms of increments and make the necessary
substitutions.
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Solution 5.15

Step 1: Determine loading condition.
Loading is axisymmetric and both drained and undrained conditions are specified.

Step 2: Calculate initial stress invariants for isotropic loading path.
For axisymmetric, isotropic loading under drained conditions, Du ¼ 0,

Dp0 ¼ Ds0
a þ 2Ds0

r

3
¼ Ds0

1 þ 2Ds0
1

3
¼ Ds0

1 ¼ 200 kPa

po ¼ p0o ¼ 200 kPa, since the soil specimens were loaded from a stress-free state under
drained conditions.

qo ¼ q0o ¼ 0

Step 3: Set up graph and plot initial stress points.

Create a graph with axes p0 and p as the abscissa and q as the ordinate and plot the isotropic
stress path with coordinates (0, 0) and (200, 0) as shown by OA in Fig. E5.15.

Step 4: Determine the increases in stresses.

Specimen A
We have (1) an undrained condition, Du is not zero and (2) no change in the radial stress but
the axial stress is increased to 440 kPa. Therefore,

Ds3 ¼ 0; Ds1 ¼ 440� 200 ¼ 240 kPa

Specimen B
Drained loading ðDu ¼ 0Þ; therefore, TSP ¼ ESP.
Axial stress held constant, Ds1 ¼ Ds0

1 ¼ 0; radial stress decreases to 50 kPa; that is,

Ds3 ¼ Ds0
3 ¼ 50� 200 ¼ �150 kPa

Step 5: Calculate the increases in stress invariants.

Specimen A

Dp ¼ Ds1 þ 2Ds3

3
¼ 240þ 2� 0

3
¼ 80 kPa

Dq ¼ Ds1 � Ds3 ¼ 240� 0 ¼ 240 kPa

Slope of total stress path ¼ Dq

Dp
¼ 240

80
¼ 3
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Specimen B

Dp ¼ Dp0 ¼ Ds0
1 þ 2Ds0

3

3
¼ 0þ 2� ð�150Þ

3
¼ �100 kPa

Dq ¼ Ds1 � Ds3 ¼ 0� ð�150Þ ¼ 150 kPa

Slope of ESP ðor TSPÞ ¼ Dq

Dp0
¼ 150

�100
¼ �1:5

Step 6: Calculate the current stress invariants.

Specimen A

p ¼ po þ Dp ¼ 200þ 80 ¼ 280 kPa; q ¼ q0 ¼ qo þ Dq ¼ 0þ 240 ¼ 240 kPa

p0 ¼ po þ Dp0 ¼ 200þ 0 ¼ 200 kPa ðelastic soilÞ
Specimen B

p ¼ p0 ¼ po þ Dp ¼ 200� 100 ¼ 100 kPa

q ¼ qo þ Dq ¼ 0þ 150 ¼ 150 kPa

Step 7: Plot the current stress invariants.

Specimen A

Plot point B as (280, 240); plot point B0 as (200, 240).
Specimen B

Plot point C as (100, 150).

Step 8: Connect the stress points.

Specimen A

AB in Fig. E5.15 shows the total stress path and AB0 shows the effective stress path.

Specimen B

AC in Fig. E5.15 shows the ESP and TSP.

Step 9: Determine the excess porewater pressure.

Specimen A

BB0 shows the maximum excess porewater pressure. The mean stress difference
is 280� 200 ¼ 80 kPa. &

5.14 SUMMARY

Elastic theory provides a simple, first approximation to calculate the deformation of soils at small
strains. You are cautioned that the elastic theory cannot adequately describe the behavior of most soils
and more involved theories are required. The most important principle in soil mechanics is the
principle of effective stress. Soil deformation is due to effective not total stresses. Applied surface
stresses are distributed such that their magnitudes decrease with depth and distance away from their
points of application.

Stress paths provide a useful means through which the history of loading of a soil can be followed.
The mean effective stress changes for a linear, isotropic, elastic soil are zero under undrained loading
and the effective stress path is a vector parallel to the deviatoric stress axis with the q ordinate equal to
the corresponding state on the total stress path. The difference in mean stress between the total stress
path and the effective stress path gives the excess porewater pressure at a desired value of deviatoric
stress.
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