Fantastic properties of Microbubbles

AIST Dr.Masayoshi Takahashi

1

Contents of the presentation

- Fundamental properties of microbubble
- Gas hydrate formation
- Water remediation
- Waste water treatment

---- What is microbubble ? ----

How to make microbubbles (Examples)

Hydrodynamic type (High density type)

distilled water

Dissolved gas type

Bubble-size distribution (High density type)

10

Rising speed of microbubbles

Fundamental properties of microbubble for practical application

1. Increase in interior gas pressure

2. Increase in ion concentration around the gas-water interface

1. Increase in interior gas pressure

Young-Laplace equation

 $\Delta \mathbf{P} = 2\sigma/\mathbf{r}$

Increase in interior gas pressure

Gas hydrate formation

Gas hydrate = Ice-like material (with gas molecule) --- Low temperature / High pressure ---

Normal bubble (Conventional)

Microbubble 16

Temperature = 3 °C / 1 Atm.

Temperature = 1.1 °C / 1 Atm.

Pressure – Temperature diagram of Xe hydrate 19

Temperature

Remediation of water environmental by microbubble

Shio-Ashiya Port (Osaka bay area, Japan)

Microbubble generator for this test

Power :1.5 kW Water flow : 400L/min. Air supply : 10L/min.

The microbubble generator under sea

about 4m from the surface (1m from the bottom)

Photograph of the test site

Microbubble generator (about 4m from the surface)

and a second second second

The stream of microbubbles looks like white smoke

Before and after the microbubble treatment

Before / The world of death (with flash light)

At the bottom of the sea (-5m)

After about 3 months (without flash light)

Fundamental properties of microbubble for practical application

1. Increase in interior gas pressure

2. Increase in ion concentration around the gas-water interface

- Generation of free-radicals
- Generation of Nano-bubble

Electrical property of microbubble

 ζ potential

Smoluchowski's equation

$$\xi = \eta \ \mu \swarrow \varepsilon$$

$$\mu : \text{ the mobility } (\text{m}^2\text{s}^{-1}\text{V}^{-1})$$

$$\varepsilon : \text{ the dielectric constant } (\text{J}\text{V}^{-2}\text{cm}^{-1})$$

$$\eta : \text{ the viscosity of water } (\text{g}\text{cm}^{-1}\text{s}^{-1})$$

28

Movement of microbubbles in electrophoresis cell

<u>ζ potential of microbubble in distilled water</u>

The relationship between ζ potential and pH of the water

(adjustment by NaOH and NaCl)

Mechanism of bubble electricity

Change in ξ potential of microbubble during collapsing process

Free-radical generation by collapsing microbubble

Accumulated ions

Fundamental properties of microbubble for practical application

1. Increase in interior gas pressure

2. Increase in ion concentration around the gas-water interface

Generation of Nano-bubble

Measurement of free-radicals by ESR

Free-radical generation during collapsing process of microbubble

Experimental setup of radical generation

Experimental setup of radical generation

ESR spectrum

41

Experimental setup of phenol degradation

Degradation of phenol by collapsing air microbubble

The results of ESR test of ozone microbubble

Experimental setup of PVA degradation

Degradation of PVA by ozone microbubble

Practical application of collapsing microbubble

waste water treatment

Food industry (fishery product) : (200~300t/day)

To treat waste water from chemical factory

A phenol factory

Content	Waste water
Phenol	0.32 %
Formalin	0.56 %
Methanol	1.90 %
Acetone	0.08 %
n-butanol	0.03 %
nonvolatile	1.70 %

Not easy to treat by conventional methods

Collapse of ozone microbubble

Treatment of waste water from phenol factory

49

Development of new system to collapse microbubbles

Introduction of new collapsing system

Result of the test of microbubble treatment

Summary

Microbubble

- **—** Increase in the interior gas pressure
- Increase in the ion concentration around the gas-water interface
 - → Gas hydrate formation
 - → Environmental remediation
- **Collapse of microbubble**
 - -- Free-radical generation
 - -- Generation of Nano-bubble
 - → Waist water treatment

References

1) Takahashi, M. et al. Effect of shrinking microbubble on gas hydrate formation. J. Phys. Chem. B 107, 2171-2173(2003) 2) Takahashi, M. ζ potential of microbubbles in aqueous solutions: electrical properties of the gas-water interface. J. Phys. Chem. B 109, 21858-21864(2005) 3) Takahashi, M. Chiba, K. and Li, P. Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus. J. Phys. Chem. B 111, 1343-1347(2007) 4) Takahashi, M. Chiba, K. and Li, P. Formation of Hydroxyl Radicals by Collapsing Ozone Microbubbles under Strong Acid Conditions. J. Phys. Chem. B 111, 11443-11446(2007)