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Moment Transfer at Interior Slab-Column Connections
by Scott D. B. Alexander and Sidney H. Simmonds

Under the American design standard, ACI 318, the strength of
slab-column connections is asyessed using an interaciion equation
that includes comributions from both shear and unbalanced
montent. Based on a reexamination of lests reported by Hanson
and Hanson, thr unbalanced moment ar interior connections is
shown to contribute fur less to transverse shear than is assumed in
design. A simple limit analvsiy is presented. This analysis 1S more
consistent with observed behavior and accepted material limits
and better predicty the rest resulls.
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BACKGROUND

In the vicinity of a column support. a two-way reinforced
concrete plate must carry transverse shear resulting from
gravity load. In addition, there may bc a net nioment M,,,,.
traditionally called an unbalanced moment. to be transferred
between the slab and the column.

For design, ACI 318" limits the calculated maximum
stress on a critical section located di2 from the face of the
support. Both the vertical shear and a fraction of the unbal-
anced moment are ussumed te contribute to shear stresses on
the critical section. A linear distribution of transverse shear
stress is ussumed to act on the critical section, with the
magnitude oi the shear stress v at any point on the critical
section is given hy

YI' ) Munh e

In Eq. (1), Visthe net shear at the centroid of the critical
section. h is the perimeter of the critical section. ¢ is the
average flexurai depth oithe slab, and ¢ is the distance between
a point on die critical section and its centroid. The term vy,
generally about 0.4 for interior connections, is the fraction of
the unbalanced moment assumed to be carried by shear
stresses on the critical section and J is a property of the critical
section. The nominal limiting value of the stress v,. on the
critical section is 0.33vf, where £/ is in units of MPa.

The contention of this paper is that unbalanced moment
contributes far less tu transverse shear than is implied by Eq. (1).
An unbalanced moment generates very high flexural forces
in the vicinity ofthe column within the plane of the slab. The
argument is bused on a reexamination of the tests reported by
Hanson and Hanson.*

A reexamination of these tests is appropriate for four reasons.
First. the specimens. tested under combinations of low net
shear and high unbalanced moment. were described as having
failed in shear. Second, they are well documented and have
well-defined statics, permitting an alternative analysis.
Third. the loading geometry reasonably approximates condi-
tions in a prototype slab under lateral load. Finally. the tests
are historically significant as they were used to justify the
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Fig. 1—Specimen geometry.

current design assumption that approximately 40% of the
unbalanced moment is carried by shear.

Tests by Hanson and Hanson?

Hanson and Hanson report tests on 16 interior slab-column
connectionsand oneedge slab-column connection.Of the interior
specimens, three failed in bending and six had perforations
immediately adjacent to the column. Thisdiscussion will be
limited to the remaining seven interior connections without
slab perforations that are reported to have failed in shear.

All slabs were 76 mm (3in.) thick and reinforced with No. 3
hars(Ay,, =71 mm?) at 76 mm (3 in.) on center each way top
and bottom. The clear cover was 9.5 nun (0.375 in.), giving an
average flexural depth of 57 mm (2.25 in.). The outer bars
for both the top and bottom mats were placed parallel to the
long dimension of the slab.

Figure | shows a plan view of the specimens while Fig. 2
shows the loading arrangement. The support at the top of the
column produced compression in the column that was
proportional to the applied moment. Details and test results
for these specimens are given in Table I. The loads P, and
P, are based on satisfying vertical and rotational equilibrium
(Eq. (2) and (3)) and assuming a specimen self-weight of
4.46 kN (1 0 kips).

V= P,—P,+446 kN @

M, = (P +P,)x0915m 3)
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Additional internal stress resultants can be determined
from equilibrium considerations. Figure 3 shows free body
diagrams of the two cantilever portions of slab and the column-
slab section between them. The moments and shears M, M,
V|, and V; are calculated from equilibrium of the cantilever
portions of slab and include the self-weight of the slab.

Internal forces resulting from moment transfer

The moments M; and 3, are carried entirely by flexure
within the slab and can only be the result of couples formed
by forces in the plane of the slab. Considering the larger of
the two moments, M), and dividing by the depth of the slab
gives a conservative estimate of the magnitude of the hori-
zontal forces forming the couple. For all tests, this estimate
of the horizontal force is between 10 and 15 times the
magnitude of the transverse shear V. Figure 4 illustrates
graphically the relative magnitudes of these forces on a free
body diagram of the column and central portion of slab. It is
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clear that the transverse shear is relatively insignificant
compared to the in-plane forces.

Because the unbalanced moment is the result of an interaction
between the slab and the column, a set of forces statically
equivalent to those shown in Fig. 4 must frame into the joint
itself. This creates a bottleneck for the flexural tension and
compression forces. Bars passing through the joint account
for only a portion of the total flexural tension force. The
remainder is anchored to the column indirectly, principally
through compression in the concrete. The compression forces
associated with the anchorage of reinforcement must coexist
with the flexural compression forces, all of which must
ultimately bear on the joint. At the four faces of the joint itself,
the column dimensions impose a geometric limit on the
width of the compression block.

Figure 5 shows a skelch of the crack pattern reported in
Hanson and Hanson® for Specimen Al12. Similar crack
patterns were reported for all specimens with either Type |
or Type III loading. This pattern suggests the strut-and-tie
model in Fig. 6, which illustrates the forces associated with
reinforcing bars passing outside the joint.

In Fig. 6, dashed lines indicate compression struts and solid
lines indicate tension ties. Each top bar is linked to a flexural
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Fig. 3—Free body diagrams.
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Fig. 2—Loading arrangement. Fig. d-in-plane forces.
Table 1—Selected specimen measurements and test resuits
As reported in Hanson and Hanson (1968) Calculated quantities
Mark | Type |f. MPa|f,MPa|c mm | czmm | VKN [MgpkN-m| P KN | Po kN [ MLKN-m |MakN-m| Vi kN | V5. kN
Al 303 366 152 152 5.75 224 12.9 1.6 1.8 8.6 15.0 9.5
A2 I 314 n 152 152 481 243 135 13.1 123 9.9 15.6 11.0
87 I 330 355 305 152 4.90 358 19.8 19.3 16.0 13.7 217 174
C8 I 329 412 152 305 5.62 315 17.8 16.6 15.9 12.8 19.9 14.5
Al2 m 333 373 152 152 26.92 205 22.5 0 19.9 -1 24.5 =21
B16 m 30.5 341 305 152 34.45 27.4 30.0 0 237 -1.0 ETR 2.0
C17 m 36.1 342 152 308 31.56 248 27.1 0 237 ~-1.1 9.2 -2
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Fig. 5—Cruck pattern—Specimen Af2,

conipression strut bearing on the lower half of the front or
side faces of the joint. Top bars passing outside the column
are anchored to the backside of the column by means of
compression struts within the plane of the top reinforcement.
Anchoring tie forces are providrd by top reinforcement parallel
to the front and back faces of the joint. For specimens with
Type I loading, the bottom bars are engaged in tension,
generating an arrangement of struts and ties similar to that
associated with the top bars.

The shears v and V, (Fig. 4) are the vertical components
of the flexural conipression struts (Fig. 6).Because flexural
forces sre over 10 times greater than the shear forces, the
flexural compression struts at the face of the joint are very
nearly horizontal (within about five degrees). The total com-
pression framing into the front and side faces of the joint is
the sum of the flexural struts and the anchoring struts.

Limit analysis

The ohjective of this limit analysis is to provide an estimate
of the capacity «f a slah-calumn connection to transfer moment
as governed by the forces acting within the slab. Forces within
thejoint itselfare nut examined. Reinforcing steel is assumed to
act in either tension or compression and is limited to its yield
force. Concrete compression stresses are limited to values
commonly assumed in flexural design. Concrete tensile
stresses and dowel forces are neglected.

The total unbalanced moment M,,,;, is expressed as the
sum of two parts. The transverse shears V| and V, are eccentric
to the center of the column and they are responsible for a portion
M ..qr Of the unbalanced moment. The remainder of the
unbalanced moment My, is the vector sum of M, and M.

Taking the forces shown in Fig. 3 as positive. Mg, IS
given by

My, = (V,+V)x=

shear

Theratio of M ., 10 M., is fixed by the loadingarrangement
and the column dimension «,. For the tests by Hanson and

Hanson, M, accounts for 8.3%of M,,,,;, where ¢} is 152 mm,
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Fig.6— Strut-and-tie model for slab reinforcement outside
of joint.

Elevation ‘ﬂz“ﬂ :
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Fig. 7—Componentsof moment carried by concrete atjoint.

and 16.7%of M, where ¢ is 305 mm. It follows that the
corresponding values for flexural moment Mg,, account
for 91.7% and 83.3% of the unbalanced moment, respec—
tively. It is the capacity of the specimens to transmit this
flexural moment that determines failure.

The moments M, and M; produce flexural forces that
frame into the joint. These forces are limited by either
compression rupture of the concrete at the face of the joint
or by yielding of the flexural reinforcement.

M, is divided into three parts, M s M., and M. M, is the
flexural moment that can be attributed to tte reinforcing
steel framing into the joint itself. M sand M., illustrated in
Fig. 7. are moments transferred from the slab to the slab-
column joint by way of uniaxial compression stressesin the
concrete acting in the plane of the slab. M ¢ is formed by
opposing compression forces on the front and hack faces of
the slab-columnjoint. M_, is a torsional moment transferred
on the side faces of the slab-column joint.

To estimate My, a uniaxial stressf,. is assumed to bear on
the faces of the slab-columnjoint. On the front and back faces,
opposing normal Stresses are assumed to act over half the
depth of the slab. as shown in Fig. 7¢a}, The half depth of the
slab is chosen to maximize M ¢

2
M, =chC2)<(g) (6]
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Fig. 8—Net forces at joint.

For the torsional moment Af,.,, two uniaxial stress blocks
load each side face. To maximize the torsional moment. each
uniaxial stress block is assumed to act over half the depth of
the slab and to meet the face of the slab-columnjoint at 45
degrees, as illustrated in the plan view of Fig. 7¢(b). The
uniaxial stress off, at an angle of 45 degrees produces a
compression stress of 0.5f, normal to the side face and a
shear stress of 0.5f, acting on the side face. Only the shear
stresscomponent is shown in the elevation view of Fig. 7{b)
because it is only the shear component that transfers moment

to the joint.
h 2
M, = 2><“2>< clx(i) (6)

Itisconvenient to add the moments M,;and M,, to produce
the total moment carried by concrete compression stresses
acting parallel to the plane of the slab M,..

M, = Mrf+M(’f = fule, +€2}(g

Equation (7) applies to square or rectangular columns. It
can be shown that for the case of around column of radius R,
the corresponding expression for M. is

Mo round = FinR( 1) )

Reinforcing steel framing directly into the joint contributes
to the unbalanced moment as either tension or compression
reinforcementand by transferring horizontal dowel forces on
the side faces of the joint. Because the expressions for M..
neatthejoint faces as if they are solid concrete. some allowgnce
should be made for the concrete displaced by compression
reinforcement. Ignoring dowel forces, a simple estimate for
the moment carried by steel on one face of the connection is

Ms] = A:r] X (frv _-ft.) xh' 9)

where A is the area of compression reinforcement framing
into the joint face and h' is the distance between the centroid
of the top and bottom bars. For the specimens with Type Il
loading, M, is taken equal to M,;. For the specimens with
Type | Ioadlng loth the upper and lower mats of reinforcement
are engaged in tension and there is the potential to generate
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M_, on bath the front and back fices of the joint. This requires
the reinforcing bars to go from tension to compression yield
within the length of the slab-column joint. a circumstance
that is considered plausible given the highly confined state of
thejoint. As a result, M, is taken as twice M, for specimens
with Type | loading.

It is useful to replace Af, with a ecouple formed by two
compression forces laheled C,. as shown in Fig. . For speci-
mens with rectangular columns. the magnitude of C, is given hy

t3

M, . i
C‘. = P = .f‘((.l + ('3)(;;

) (10)

i

Based on the fLL(cLl]bUld.l flexuraf stress block parameters
described in the ACI 318" standard. £ = 0.85f" is a reasonable
limit if compression failure of the concrete governs the
magnitude of C,. Alternaiively. considering u free body
diagram of one of the slab caniitevers. horizontal cqiiilihrium
requires that C,. be inatched hy an equal tension in the reinforcing
steel. Therefore, the magnitude of €, may be limited by the
available tension reinforcement.

C. = 085 (¢, + “2’(2) S Npars X Apar XS, (n

For specimens with Type | loading. with both top and bottom
reinforcement engaged in tension, the numher of reinforcing
bars potentially available to equmhratc s 32 lessthe numher
of top and bottom bars passing through the column. Note that
the tlexural contritution of bars passing throiigh the column
is accounted for in the calculation of M. For specimens with
Type HI loading. only the top reinforcement is engaged in
tension. limiting the total nomher of available hars ta 16 less
the number of top bars passing through the column. Tuble 2
lists values for C.. consistent with the two limits expressed in
Eq. (9). Two specimens, BI6 and C17. are governed by
yielding of the reinforcenient.

A revised expression for A/, that accounts for the potential
limit imposed by slab reinforcement is

M =C xlh —
85(c, + a0,

Table 2 presents predicted values of unbulanced moment
at failure and compares these to test results. For relerence.
predictions based on ACI 318’ are alse provided.

DISCUSSION

The results listed in Tabie 2 show that the tests hy Hanson
and Hanson are well predicted by the limit analysis de-
scribed in this paper. The analysis tends to underestimate the
capacity of the connection. This is somewhat surprising.
Given the aggressive assumptions with regard to concrete
rupture and loading geometry that were used in calculating
M. itis difficult o imagine howthe concrete might contribute
further to moment transfer. It is possible that biaxial and tri-
axial loading effects increased the apparent strength of the con-
crete at the face of the joint. Apart from some additional
strength that may he attrihuted to horizontal dowel forces on
the side faces of the joint. ignared in the analysis, all potential
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Table 2—Results of analyses

Limit analyses ACI 318
C. kN C.kN
Mark Type {concrete Limit)|  {steel fimit) M. kN-m M kN-m | M, kN -m| Testpred. V.. MPa Test/pred.

Al | 294 731 11.41 4.62 17.5 1.28 235 1.51
A2 I 30 751 11.80 4.75 18.0 1.35 2.96 1.60
B7 | 4809 700 18.63 444 277 1.29 250 1.32
CR i 487 704 18.55 10.42 ile 1.00 211 1.11
Al2 It 329 372 12.52 234 16.2 1.27 297 1.56
Ble n 45] 340 16.15 2.14 220 1.25 238 1.31
C17 ]| 534 292 16.18 423 223 111 208 1.05
Mean .22 1.35
Standard deviation 0.123 0.217

Coefficient of variation, % 10.1 16.1

moment transfer capacity that can he attributed to slab rein-
forcement in the joint has been included.

The lowest test to predicted ratios are for Specimens C8
and C17. These specimens have rectangular columns with ¢,
greater than ¢, making the contribution of dowel forces on
the side faces proportionately less significant. The larger
column width reduces the clamping effect of the axial
compression inihe column. In the case of Specimen C8, this
combined with the smaller value of «. the highest reported
yield strength. and Type | loading would make the bond
stresses needed to justify the calculation of M, unlikely. Recall
that in calculating A, for Type | specimens it was assumed
that reinforcement could pass from tension yield to compression
yield within the length .

Although listed as punching failures, this analysis suggests
Specimens B16 and C17 were limited by the available rein-
forcement. Hanson and Hansoen also report that these specimens
exceeded their ultimate flexural capacities before failing in
shear. An alternate explanation is that the compressive
stresses at the face of the joint became critical at about the
same moment that the slab flexural reinforcement reached
yield. This is analogous to a beam with close to balanced
reinforcement. failing in tlexure hut with limited ductility.

While the results obtained using ACI 318 listed in Table 2
are all safe, their higher coefficient of variation indicates less
reliubility than those obtained using the limit analysis. The
procedure of increasing the transverse shear stress with a
fictional shear stress calculated from unbalanced moment
does not agree with test results as well as a simple limit analysis
that uses straightforward failure criteria. In particular, the
computationa) complexity of the terms J and ;. used in Eg. (1)
doees not seem justified.

This does not mean that the coxde procedure is inappropriate
for design. So long as its application is confined to the critical
section for which it was empirically tuned. the code procedure
may provide a reasonable metric for the severity of loading
at a slab-column connection. If there is any danger, it lies in
accepting as sound the mechanics upon which the code
procedure is hascd and applying these mechanics at critical
sections more distant from the column.

The analysis shows that while « fraction of the unbalanced
moment can be attributed to trunsverse shear, this fraction
was much smaller than v, for the tests reported in Hanson
and Hanson. In a prototype slab-column system. the fraction
of unhulanced nioment carried by shear would be smaller
still. roughly equal to the ratio of the column dimension ¢ to
the sum of the spans on either side of the connection.
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Fig. 9—Statically eguivalent load cases.

in a laboratory test, it is possible to increase the fraction of
unbalanced moment attributable to transverse shear. For
example, consider an isolated connection specimen with a
small portion of attached slab that extends out from the column
to roughly the first point of radial inflection. By providing
simple supports on the perimeter of the slab and loading the
column soas to produce a high ratio of moment to shear, one
might achieve a value of ¥, consistent with that estimated by
code. The proximity of the slab support reactions to the column
greatly reduces the eccentricity of slab load slab and increases
the fraction of unbalanced moment carried by shear; however,
such a load case would be atypical for a prototype stab-
column system,

Figure 9 illustrates two possible combinations of shear and
moment to transfer a given unbalanced moment at a slab-
column connection. in Fig. $(a), the unbalanced moment is
mainty theresult of the vector sum of the slabbending moments
on the front and back faces of the column. The fraction of
moment transferred by shear is small. Such a connection is
typical of those tested by Hanson and Hanson. A prototype
structure would also behave this way. In Fig. 9(b), the
connection transfers the same total unbalanced moment;
however, in this case it is largely the result of significant
transverse shears. This behavior would be consistent with an
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isolated connection specimen with a relatively small slab
supported on all sides. Although these two cases are clearly
distinct, they are treated identically by the code.

CONCLUSIONS

Despite being described as shear failures, the seven speci-
mens tested reponed by Hanson and Hanson? and analyzed
herein were not critically loaded in transverse shear. Instead,
they failed by rupture of concrete in compression, much like
over-reinforced beams. At a slab-column connection, such a
failure would be indistinguishable from a punching failure.

An equilibrium analysis shows that the total unbalanced
moment should be considered in two parts. The first isattributed
o transverse shear and the second to flexural forces in the
plane of the slab. The relative magnitude of these two
components is a function of the span and loading geometry
and the column dimension ¢;.

Although the predictions of the ACI Code are safe, a simple
limit analysis provides a substantially better explanation of
the ultimate behavior of these tests. The calculation of v, and
J. 1S an unnecessary complication and does not reflect the
mechanics of load transfer at a slab-column connection.
While the code model may provide a reasonable measure of
the severity of loading at a slab-column connection, the
assumed internal stressdistribution the model is based on is
fundamentally wrong. Extrapolating the code model to critical
sections located beyond 4/2 from the support is not justified.

Unbalanced moment produces substantial in-plane flexural
forces that are ignored in the code approach. These forces are
far more significant than the transverse shears and account for a
substantially greater fraction of the total unbalanced moment.

NOTATION

by = perimeter of critical section

¢pee = dimensions of column

d = [llexural depth of slab

¢ = distance between extreme point on and centroid of critical section

I = limiting uniaxial concrete stress in lexure

i = concrete cylinder strength

it = thickness of slab

i = distance between slab tension and compression reintorcement

I = section property of critical section

M. = otal mement from concrete stresses within plane of slab: By, (7)

M‘.j = moment from concrete compression bearing on front and back
faces of a joint: Eq. (5)

M., = momenl from shear on side faces of joint; Eq. (6)

M, = lotal moment carnied by slab reinforcement passing through joint

M, = moment at one face of joint cammied by slab reinforcement passing

through joint; Eq. (%)
Mopear =  moment at centroid of cotumn from slab shears Vy and Vi Eq (4)

M, = net moment transferred from slab to column (unbalanced
moment) at fuilure

M. M,=  total supporting moments for slab cantilevers defined in Fig. 3

P, Py = loads applied o slab defined in Fig. 2

v = net shear transferred from slab o column at fadlure

V. ¥y = total supporting shears for slab cantilevers defined in Fig. 3

v, = maximum shear stress on cotical section as caleolated by Eg.1
¥ = fraction of M, assumed to be transferred by shear
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