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2.1 Hydraulic Fluids 
 
 
2.1.1 Introduction 
 
The main purpose of the hydraulic fluid is to transport energy from the pump to the 
actuators. Secondary purposes involve the lubrication of the moving mechanical parts to 
reduce wear, noise and frictional losses, protecting the hydraulic components against 
corrosion and transporting heat away from its sources. The preferred working fluid in 
most applications is mineral oil, although in certain applications there is a requirement 
for water-based fluids. Water-based fluids and high water-based fluids provide fire 
resistance at a lower cost and have the advantage of relative ease of oil storage and fluid 
disposal. The recommended classification system is as follows: 
 
HFA – dilute emulsions, i.e. oil-in-water emulsions, typically with 95% water content. 
 
HFB – Invert emulsions, i.e. water-in-oil emulsions, typically with 40% water content. 
 
HFC – Aqueous glycols, i.e. solutions of glycol and polyglycol in water, typically with 
40% water content. 
 
HFD – Synthetic fluids containing no water, such as silicone and silicote esters. 
 
The selection of the appropriate fluid will require specialist advice from both the 
component manufacture and the fluid manufacture.  
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As the most commonly used hydraulic fluid is mineral oil and in the following sections 
it is the physical properties of commercial mineral oils that is discussed. 
The purpose of this chapter is to define certain physical properties which will prove 
useful and to discuss properties related to the nature of fluids. Because the fluid is the 
medium of transmission of power in a hydraulic system, knowledge of its characteristics 
is essential 
 
2.1.2 Fluid density  
 
The mass density, ρ , of a hydraulic fluid is defined as a given mass divided by its 
volume, see Equation (2.1). 

V
m=ρ  (2.1)

where 
ρ   mass density [  ]m/kg 3

m   mass of the fluid [  ]kg
V   volume of the fluid [  ]m3

 
The mass density is both temperature and pressure dependent. It decreases with 
increasing temperature but increases with increasing pressure.  
A generally accepted empirical expression, the Dow and Fink equation, describes this: 
 

( ) ( ) ( )( 2
0 ptBptA0.1)t(p,t ⋅−⋅+⋅ρ=ρ ββ ) (2.2)

where 
ρ   mass density [  ]m/kg 3

0ρ   mass density at atmospheric pressure [  ]m/kg 3

βA   temperature dependant coefficient [  ]bar 1−

βB  
p

 temperature dependant coefficient [  ]bar 2−

  pressure  [  ]bar
 

The density for a hydraulic fluid is normally (DIN 51757) given by the fluid 
manufacturer as the density at 15  and atmospheric pressure. This reference density 
lies between 0.85 and 0.91 g (850-910 kg ) for commercial hydraulic fluids.  

Co

3cm/ 3m/
The reference mass density in Equation (2.2) may be determined by: 
 

( )( )15t1
)t(

t

15
0 −⋅α+

ρ
=ρ  (2.3)

where 
0ρ   mass density at atmospheric pressure [  ]m/kg 3

15ρ   mass density at atmospheric pressure and  15 o  [  C ]m/kg 3

tα   thermal expansion coefficient [deg  ]1−

t   temperature  [  ]Co

 
The thermal expansion coefficient is normally regarded as independent of temperature 
and pressure and lies within the range of 0.0065 to 0.007 deg-1. 
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The two coefficients in Equation (2.2) are normally referred to as the Dow and Fink 
coefficients. They have experimentally been found to: 
 

( ) 624 1002.36T53.0T1072.6A −−
β ⋅−⋅+⋅⋅−=  (2.4)

( ) 924 1017.57T24.0T1084.2B −−
β ⋅+⋅−⋅⋅=  (2.5)

where 
βA   temperature dependant coefficient [  ]bar 1−

βB   temperature dependant coefficient [  ]bar 2−

T   absolute temperature  [  ]K
 
The variation of the Dow and Fink coefficients with temperature is displayed 
graphically in Figure 2.1 
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Fig. 2.1  The variation of the Dow and Fink coefficients with temperature 

 
Inserting Equations (2.3)..(2.5) in Equation (2.2) means that the density can be 
determined by calculations only (no measurements), for any pressure and temperature 
combination, as long as the reference mass density, ρ15, is known. The variation of the 
mass density with temperature and pressure is displayed graphically in Figure 2.2. 
In Figure 2.2 the mass density is displayed relative to the reference mass density. 
 
2.1.3 Viscosity 
 
The most important of the physical properties of hydraulic fluids is the viscosity. It is a 
measure of the resistance of the fluid towards laminar (shearing) motion, and is 
normally specified to lie within a certain interval for hydraulic components in order to 
obtain the expected performance and lifetime. The definition of viscosities is related to 
the shearing stress that appear between adjacent layers, when forced to move relative 
(laminarly) to each other. For a newtonian fluid this shearing stress is defined as: 
 

dy
xd

xy
&

µ=τ  (2.6)
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where 
τxy  shearing stress in the fluid, [N/m2] 
µ  dynamic viscosity, [Ns/m2] 
x&   velocity of the fluid, [m/s] 
y  coordinate perpendicular to the fluid velocity, [m] 
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Fig. 2.2  The variation of the mass density with temperature and pressure 
 
In Figure 2.3 the variables associated with the definition of the dynamic viscosity are 
shown. 
 

x(y)
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y
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Fig 2.3  Deformation of a fluid element  
 
The usual units for the dynamic viscosity is P for Poise or cP for centipoise. Their 
relation to the SI-units are as follows: 1 . 2m/Ns1.0cP100P ==
For practical purposes, however, the dynamic viscosity is seldom used, as compared to 
the kinematic viscosity that is defined as follows: 
 

ρ
µ=ν  (2.7)
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where 
ν  kinematic viscosity, [m2/s] 
µ  dynamic viscosity, [Ns/m2] 
ρ  density, [kg/m3] 

 
The usual unit used for ν is centistoke, cSt, and it relates to the SI units as follows: 

s
mm1

s
m10cSt1

22
6 == − . 

A low viscosity corresponds to a "thin" fluid and a high viscosity corresponds to a 
"thick" fluid. The viscosity depends strongly on temperature and also on pressure. The 
temperature dependency is complex and is normally, DIN51562 and DIN51563 
described by the empirical Uddebuhle-Walther equation: 
 

( ) a101010 tlogmC8.0loglog ⋅−=+ν νν  (2.8)
where 

ν  kinematic viscosity, [cSt] 
Cν,mν  constants for the specific fluid 
ta  absolute temperature, [K] 

 
This dependency is normally shown in specially designed charts, where the kinematic 
viscosity shown as function of the temperature becomes a straight line, see Figure 2.4.  
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Fig. 2.4  Uddebuhle-chart: The temperature dependency for some of the most commonly used 

mineral oils. The ISO VG standard refers ν at 40°C 
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The vertical axis of an Uddebuhle chart is a mapping of log log(ν+0.8), i.e., 
approximately a double logarithmic axis (especially at higher values of ν). The 
horizontal axis is a mapping of logT, i.e., a logarithmic axis. A hydraulic fluid is, in 
general, referred to by its kinematic viscosity at 40°C. 
A different way of describing a hydraulic fluid is by means of  the viscosity index, 
where the temperature dependency is related to a temperature sensitive fluid and a 
temperature insensitive fluid. The hydraulic fluid to be indexed and the 2 reference oils 
must have the same viscosity at a temperature of 210°F. If that is fulfilled, the viscosity 
index, V.I., may be determined as:  
 

%100
HL
ULVI ⋅

−
−=  (2.9)

where 
VI  viscosity index 
L  kinematic viscosity at 100°F for the temperature sensitive fluid 
U  kinematic viscosity at 100°F for the fluid to be indexed 
H  kinematic viscosity at 100°F for the temperature insensitive fluid 

 
Different standards, e.g. DIN ISO 2909, offer a list of reference fluids with different 
kinematic viscosities at 210°F to pick from. The method dates back to 1929 and the 
improvement in mineral oil destillation and refining means that many hydraulic fluids 
come out with an index above 100. 
Beside the temperature dependency the viscosity also depends on pressure, especially at 
higher levels. The general accepted expression is as follows:  
 

pB
0 e η⋅µ=µ  (2.10)

where 
µ  dynamic viscosity, [Ns/m2] 
µ0  dynamic viscosity at atmospheric pressure [Ns/m2] 
Bη  temperature dependant parameter, [bar-1] 
p  pressure, [bar]  

 
The parameter Bη may, within temperature ranges from 20°C to 100°C, be determined 
empirically  as: 
 

t100026.0B 5 ⋅−=η  (2.11)
where 

Bη  temperature dependant parameter, [bar-1] 
t  temperature, [°C]  

 
The pressure dependency may be rewritten to cover kinematic viscosities:  
 

pB0 e η⋅
ρ
µ

=ν  (2.12)

 
where 

ν  kinematic viscosity, [m2/s] 
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µ0  dynamic viscosity at atmospheric pressure [Ns/m2] 
ρ  density, [kg/m3] 
Bη    temperature dependant parameter, [bar-1] 
p  the pressure, [bar] 

 
In the above it should be remembered that the density increases with pressure,  thereby 
making the kinematic viscosity less sensitive to pressure rise. 
 
2.1.4 Dissolvability 
 
The capability of dissolving air (saturation point) varies strongly for hydraulic fluids 
with pressure. For pressure levels up to approximately 300 bar, the Henry-Dalton 
sentence applies: 
 

atm

a
FVa p

pVV ⋅⋅α=  (2.13)

where 
Va  volume of dissolved air in the oil, [m3] 
αV  Bunsen coefficient, approximately constant at 0.09 
VF  volume of the fluid at atmospheric pressure, [m3] 
pa  absolute pressure, [bar] 
patm  atmospheric pressure ≈ 1 bar, [bar] 

 
The capability of hydraulic fluids to absorb air is a problem, because the subsequent 
release of air at lower pressures leads to reduced fluid stiffness. 
 
2.1.5 Stiffness 
 
When pressurized a hydraulic fluid is compressed causing an increase in density. This is 
described by means of the compressibility which is defined as 
 

p
1

F ∂
ρ∂⋅

ρ
=κ  (2.14)

where 
κF  compressibility of the fluid, [bar-1] 
ρ  mass density, [kg/m3] 
p  pressure, [bar] 

 
The reciprocal of κF is defined as the stiffness or bulk modulus of the fluid: 
 

F
F

1
κ

=β  (2.15)

where 
κF  compressibility, [bar-1] 
βF  bulk modulus, [bar] 
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Based on the above definition it can be shown that for fixed temperature the stiffness is 
proportional to the pressure rise caused by a compression of the fluid: 
 

0

F

V
dVdp ⋅β=  (2.16)

where 
dp  increase in pressure, [bar] 
βF  bulk modulus of the fluid, [bar] 
dV  the compression, i.e., decrease in volume, [m3] 
V0  the volume corresponding to the initial pressure, [m3] 

 
Just like density the bulk modulus and the compressibility are functions of temperature 
and pressure. Inserting Equation (2.2) in Equation (2.14) and Equation (2.15) leads to: 
 

( ) ( ) ( )
( ) ( ) ptB2tA

ptBptA0.1
p,t

2

F ⋅⋅−
⋅−⋅+

=β
ββ

ββ  (2.17)

where 
βF  stiffness of the fluid, [bar] 
Aβ  temperature dependant coefficient, [bar-1] 
p  pressure, [bar] 
Bβ  a temperature dependant coefficient, [bar-2] 

 
Where the temperature dependant coefficients can be determined from and. It should be 
noted that Equation (2.17) implies that the fluid stiffness may be calculated for any 
temperature and pressure combination regardless of the specific type of mineral oil. The 
variation of the fluid stiffness with temperature and pressure is displayed graphically in 
Figure 2.5. 
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Fig. 2.5  The variation of the fluid stiffness with temperature and pressure 
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In real systems air will be present in the fluid. The volume percentage at atmospheric 
pressure will go as high as 20 %. As air is much more compressible than the pure fluid 
it has, potentially, a strong influence on the effective stiffness of the air containing fluid. 
If the air, however, is dissolved in the fluid there is no significant effect on the 
compressibility. Hence, it is the amount of free or entrapped air in the fluid that 
markedly reduces the effective stiffness. Taking the presence of air into account the 
effective stiffness of the fluid becomes: 
 

( )

A

A

FFA
A

F

Aeff 1
1

111
1,p,t

β
ε

+
β

≈









β

−
β

ε+
β

=εβ  
(2.18)

where 
βeff  effective stiffness of the fluid-air mixture, [bar] 
εA  the volumetric ratio of free air in the fluid 
βF  stiffness of the pure fluid according to, [bar] 
βA  the air stiffness according to, [bar] 
p  pressure, [bar] 

 
The volumetric ratio is defined as: 
 

AF

A
A VV

V
+

=ε  (2.19)

 
where 

εA  volumetric ratio of free air in the fluid 
VA  the volume of air, [m3] 
VF  volume of the fluid, [m3] 

 
Assuming adiabatic conditions the volume and stiffness of the air may be determined 
as: 

adc
1

a

atm
0AA p

p
VV 








⋅=  (2.20)

aadA pc ⋅=β  (2.21)
 
where 

VA  volume of air, [m3] 
VA0  volume of air at atmospheric pressure, [m3] 
patm  atmospheric pressure ≈ 1 bar, [bar] 
pa  absolute pressure, [bar] 
cad  adiabatic constant for air, 1.4 

 
The volume of the fluid is determined from: 
 

( ) ( )
( )p,t

t
Vp,tV 00

0FF ρ
ρ

⋅=  (2.22)
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where 

VF  volume of the fluid, [m3] 
VF0  volume of the fluid at atmospheric pressure and a reference 

temperature, [m3] 
ρ0  mass density at atmospheric pressure according to Equation 

(2.3), [kg/m3] 
ρ  the mass density according to Equation (2.2), [kg/m3] 
t0  reference temperature, [°C] 
t  temperature, [°C] 
p  pressure, [bar] 

 
From Equation (2.20) and Equation (2.22) it is clear, that the volumetric ratio varies 
with both temperature and pressure. A reference volumetric ratio at atmospheric 
pressure is defined: 
 

0A0F

0A
0A VV

V
+

=ε  (2.23)

where 
0Aε   the reference volumetric ratio of free air in the fluid at 

atmospheric pressure 
VA0  volume of air at atmospheric pressure, [m3] 
VF0  volume of the fluid at atmospheric pressure and a reference 

temperature, [m3] 
 
Knowing this reference, volumetric ratio together with the reference temperature, t0, 
may be rearranged to yield an expression for the volumetric ratio directly obtainable 
from temperature and pressure: 
 

( )
( )

( ) 0.1
p

p
p,t
t0.1

0.1p,t
adc
1

a

atm00

0A

0A

A

+







⋅

ρ
ρ

⋅







ε

ε−
=ε −  

(2.24)

 
In Figure 2.6 the variation of the effective stiffness according to Equation (2.18) is 
displayed. The variation of the stiffness is dramatic for small pressure levels. The curves 
in Fig. 2.6 do not take into account the effect of the Henry-Dalton sentence, Equation 
(2.13), according to which the free air should dissolve at a few bars pressure and 
subsequently have no effect on the effective stiffness. The Henry-Dalton sentence, 
however, is for static conditions and in a hydraulic system the pressure variations 
outside the tank reservoirs are typically so fast, that the hydraulic fluid does not have 
time to dissolve the free air. Naturally, some air is dissolved, meaning that the curves 
shown in Fig. 2.6 represents worst case, i.e., instantaneously pressure build up. 
Stiffness plays a central role w.r.t. to dynamic performance of hydraulic systems and 
should be determined/predicted as precisely as possible. This is, however, not an easy 
task. The sum VF0+VA0 in Equation (2.23) is relatively easily determined, whereas VF0 
or VA0 are more elusive. 
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As a rule of thumb, the stiffness under working conditions used for modelling a system 
should not be set above 10000 bar, unless verified by means of testing. 
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Fig. 2.6   Variation of effective stiffness of fluid-air mixture with respect to pressure and 
volume ratio of free air at atmospheric pressure. The temperature of the fluid is 40 °C and the 

compression of the free air is assumed adiabatic 
 
2.2 Flow Characteristics of Spool Valves 
 
 
2.2.1 Introduction 
  
Hydraulic control valves are devices that use mechanical motion to control a source of 
fluid power. They vary in arrangement and complexity, depending on their function. 
Because control valves are the mechanical to fluid interface in hydraulic systems, their 
performance characteristics are essential. Although emphasis is placed on a principal 
type of spool valve, the principles apply equal well to other valves, such as different 
kinds of pressure valves and flow control valves.  
 
The most common used control valve is the spool valve. Two typical spool valve 
configurations are shown in Figure 2.7. One in the pilot stage and one in the main stage. 
Spool valves can broadly be classified by the number of “ways” the flow can enter and 
leave the valve, and the type of centre when the valve spool is in neutral position.  
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Fig. 2.7  Typical spool valve configurations 
 
Because all valves require a supply, a return, and at least one line to the load, valves are 
either three-way or four-way (see Figure 2.7). Two-port valves are also available. 
However, two-way valves cannot provide a reversal in the direction of flow. 
 If the width of the land is smaller than the port in the valve sleeve, the valve is said to 
have an open centre or to be underlapped. A critical centre or zero lapped valve has a 
land width identical to the port width and is a condition approached by practical 
machining. Closed centre or overlapped valves have a land width greater than the port 
width when the spool is at neutral. 
The above examples serve the purpose of illustrating how flow paths may be created 
using a variety of restrictions. The actual displacement of the spool which cause the 
flow restriction is usually of such small value relative to port diameter that the 
pressure/flow equations obey the Bernoulli equation.  
 
2.2.2 Flow through orifices 
 
The flow restrictions or orifices are a basic means for the control of fluid power. An 
orifice is a sudden restriction of short length in a flow passage and may have a fixed or 
variable area. In fluid power is it only inertia and viscous forces that matters. 
Experience has shown that it is either the inertia forces or the viscous forces that 
dominate, giving two types of flow regimes. Therefore, it is useful to define a quantity 
which describes the relative significance of these two forces in a given flow situation. 
The dimensionless ratio of inertia forces to viscous force is called Reynolds number and 
defined by  
 

µ
ρ

= hdu
Re  (2.25)

 
where ρ  is fluid mass density, µ  is absolute viscosity, u  is the average velocity of 
flow, and  is a characteristic length of the flow path. hd
In our case  is taken to be the hydraulic diameter which is defined as: hd
 

perimeterflow
areaflow4d h

×=  (2.26)
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Flow dominated by viscosity forces is referred to as laminar or viscous flow. Laminar 
flow is characterised by an orderly, smooth, parallel line motion of the fluid. Inertia 
dominated flow is generally turbulent and characterised by irregular, eddylike paths of 
the fluid. In some cases viscosity is only important in the boundary layer, while the 
main flow outside the boundary layer is dominated by inertia and behaves like laminar 
flow. If the boundary is neglected, the resulting flow is called potential flow. Potential 
flow has no losses while it is frictionless, so Reynolds number is infinite. For potential 
flow the Navier-Stokes equations reduce to  
 

2
up 2

+
ρ

= constant (2.27)

 
Equation (2.27) is Bernoulli’s equation with negligible gravity forces.  
As an important case where Equation (2.27) is used consider flow through an orifice 
(see Figure 2.8).  
 

1

0A

2

A 2

3  
 

Fig. 2.8 Flow through an orifice; turbulent flow 
 
Since most orifice flow occur at high Reynolds numbers, this region is of great 
importance. Experience has justified the use of Bernoulli’s equation in the region 
Between point 1 and 2. The point along the jet where the area becomes a minimum is 
called the vena contracta. The ratio between the area at vena contracta  and the 
orifice area  defines the so called contraction coefficient  

2A

0A cC .
 

02c A/AC =  (2.28)
 
After the fluid has passed the vena contracta there is turbulence and mixing of the jet 
with the fluid in the downstream region. The kinetic energy is converted into heat. Since 
the internal energy is not recovered the pressures p  and  are approximately equal. 2 3p
Now it is possible to use Bernoulli’s equation (2.27) to calculate the relation between 
the upstream velocity  to the velocity u  in vena contracta. Therefore 1u 0

 

)pp(2uu 21
2
1

2
2 −

ρ
=−  (2.29)

 
Applying the continuity equation for incompressible flow yields 
 

2nd  Edition                                                                                                                                 Page 13 of 20      



Chapter 2 

332211 uAuAuA ==  (2.30)
 
Combining Equation (2.29) and Equation (2.30) and solving for  gives 2u
 

)pp(2
A
A1u 21

2/12

1

2
2 −

ρ
⋅




















−=

−

 (2.31)

 
In the real world there will always be some viscous friction (and deviation from ideal 
potential flow), and therefore an empirical factor  is introduced to account for this 
discrepancy.  is typically around 0.98. Since  the flow rate at vena 
contracta becomes, by using Equation (2.31). 

vC
QvC 22uA=

 

)pp(2
)A/A(1

AC
Q 212

12

2v −
ρ−

=  
 
(2.32)

 
Defining the discharge coefficient  in Equation (2.32) it is possible to express the 
orifice flow by the orifice area. 

dC

 

2
10

2
c

cv
d

)A/A(C1

CC
C

−
=  (2.33)

 
Now, combining Equation (2.28), (2.32), and (2.33) the orifice equation (in Danish 
blændeformlen) can be written 
 

)pp(2ACQ 210d −
ρ

=  (2.34)

 
Normally  is much smaller than A  and since C , the discharge coefficient is 
approximately equal to the contraction coefficient. Different theoretical and 
experimental investigations has shown that a discharge coefficient of  is often 
assumed for all spool orifices. 

0A 1 1v ≈

6.0Cd ≈
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Fig. 2.9  Plot of a discharge coefficient versus Reynolds number for an orifice 
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At low temperatures, low orifice pressure drop, and/or small orifice openings, the 
Reynolds number may become sufficiently low to permit laminar flow. Although the 
analysis leading to Equation (2.34) is not valid at low Reynolds numbers, it is often 
used anyway by letting the discharge coefficient be a function of Reynolds number. For 
Re < 10 experimental results shows that the discharge coefficient is directly 
proportional to the square root of Reynolds number; that is Red δ=C . A typical plot 
of such a result is shown in Figure 2.9. 
 
2.2.3 General valve analysis 
 
In this section we define some general performance characteristics, such as pressure-
flow curves and valve coefficients, which are applicable to all types of valves. Although 
the analysis is illustrated with a spool type valve, the principles involved are quite 
general.  
Consider the four-way valve shown in Figure 2.10. It is assumed that the valve is 
connected to a symmetric load, i.e. a rotating motor or a equal area cylinder. The valve 
geometry is assumed ideal, implying that the orifice edges are perfectly square with no 
rounding and that there is no radial clearance between the spool and sleeve. It is also 
assumed that the discharge coefficients for the orifices are equal. The return line 
pressure  is neglected because it is usually much smaller than the other pressures 
involved.  

Rp

 

LOAD

2
X

2P QL

3

Return

Supply

P QSR

QPS S

LQ

1

P1

4

 
 

Fig. 2.10  Four-way spool valve 
 
Let the spool be given a positive displacement from the null or neutral position, that is 
the position x = 0, which is chosen to be the symmetrical position of the spool in its 
sleeve. 
This allows the supply flow  to travel to the load as , the difference being only 
leakage flow present, , across the other land. The flow from the load returns as Q , 
which with the possible addition of the leakage flow , then forms the return flow. 
Because we are only interested in the steady-state characteristics, the compressibility 
flows are zero and the flow continuity equations for the valve chambers are 

SQ 1Q

2

4Q 3

Q
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23L

41L

QQQ
QQQ

−=
−=

 (2.35)

 
where  is the flow through the load. The load pressure differential  is defined as the 
pressure drop across the load.   

LQ

 
21L ppp −=  (2.36)

 
Flows through the orifices are described by the orifice Equation (2.34). Therefore 
 

)pp(2ACQ 1S1d1 −
ρ

=

23d3 p2ACQ
ρ

=  

)pp(2ACQ 2S2d2 −
ρ

=  

14d4 p2ACQ
ρ

=  
(2.37)

 
In the vast majority of cases the metering orifices are made so that they are matched and 
symmetrical. Matched orifices require that 
 

31 AA =  ;       42 AA = (2.38)
 
And symmetrical orifices require that (x is the spool position) 
 

)x(A)x(A 21 −=  ;      )x(A)x(A 43 −= (2.39)
 
This means, that in neutral position (x = 0), all four orifice areas are equal ( ≈ ). If 
further the orifice areas varies linear with the stroke, as is usually the case, the areas can 
be described by only one parameter w, defining the width of the slot in the valve sleeve. 
w is the area gradient.  

0A

 
wxAAA;wxAAA 042031 ⋅−==⋅+==  (2.40)

 
The condition that the orifices are matched and symmetrical,  gives that  
 

31 QQ =  ;       42 QQ = (2.41)
 
Substituting Equation (2.37) ( Q  and ), and Equation (2.38) into Equation (2.41) 
yields 

1 3Q

21S ppp +=  (2.42)
 
Now, Equation (2.36) and Equation (2.42) can be solved simultaneously to obtain 
 

2
ppp LS

1
+

= ;      
2

pp LS
2

−
=p  (2.43)
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With the relations in Equation (2.41), and Equation (2.43) together with the equations in 
Equation (2.35)  it is possible to find an expression for the load flow as a function of the 
load pressure. 
 

)pp(1AC)pp(1ACQ LS2dLS1dL +
ρ

−−
ρ

=  (2.44)

 
Equation (2.44) represent the general steady-state valve equation for a symmetric 
matched four-way spool valve applied to a symmetric load. 
 
2.3 Valve Coefficients 
 
 
2.3.1 Introduction 
 
It will be found necessary in a dynamic analysis that the non-linear algebraic equation 
which describe the pressure-flow curves to be linearised. From Equation (2.44) the load 
flow can be written as a function of the spool position and the load flow 

. If  and p  only changes by a small amount about a operating point 
( Q ) the general expression for the load flow can be expressed by a Taylor’s 
series. We only consider the first order terms, assuming that the higher order 
infinitesimals are negligible small. Hence, 

)p,x(QQ LLL =

00L0L x,p,
x L

   

...p
p
Q

x
x

Q
QQ L

0L

L

0

L
0LL +∆

∂
∂

+∆
∂

∂
+=  (2.45)

 
The partials in Equation (2.45) defines the two most important parameters for a valve. 
The flow gain is defined by 

x
Q

k L
q ∂

∂
≡  (2.46)

 
The flow-pressure coefficient is defined as 
 

L

L
qp p

Qk
∂
∂

≡  (2.47)

 
Another useful quantity is the pressure sensitivity defined by 
 

x
pk L

p ∂
∂

≡  (2.48)

 
There is the following relation between the quantities 
 

LL

LL

p/Q
x/Q

x
p

∂
∂∂

=
∂
∂   or  

qp

q
p k

k
=k  (2.49)
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The three quantities    are called valve coefficients and are extremely 
important in the dynamic analysis of valves in combination with actuators.  express 
the ability to of a valve-actuator combination to breakaway large friction loads. k  has 
a direct influence on the damping in the valve-actuator combination. k  directly affects 
the open loop gain in a system and therefore has influence on system stability. The 
valve coefficients evaluated in the neutral position of the valve  
are called the null valve coefficients. This operating point is the most critical point from 
a stability viewpoint, while the flow gain is largest, giving high system gain, and the 
flow-pressure coefficient is smallest, giving a low damping.  

qk , qpk , pk

pk

) =

qp

0,0(

q

p, 0L )0,x,Q( 00L

 
2.3.2 A critically lapped valve with linear ports 
 
Many valves are manufactured with a relative linear flow gain near null position, 
meaning that  in Equation (2.40). Assuming the valve to have ideal geometry the 
leakage flows are zero. For such a valve the load flow can be expressed by 

0A0 =

 

ρ
−

⋅= LS
dL

pp
xwCQ    ;    0x > (2.50)

 
while  and  in Equation (2.44). xwA1 ⋅= 0A2 =
 

ρ
+

⋅−= LS
dL

pp
xwCQ    ;    0x < (2.51)

 
with  and  in Equation (2.44). xwA 2 ⋅−= 0A1 =
Equation (2.50) and (2.51) can be combined into a single equation: 
 

)p
x
xp(1xwCQ LSdL −

ρ
⋅=  (2.52)

 
This is the general equation for the pressure-flow curves of an ideal critical centre valve 
with matched and symmetrical orifices. The Equation (2.52) is plottet in Figure 2.11. 
 

-PS

QL

PL

PS

x

 
 

Fig. 2.11  Pressure-flow curves of critical centre four-way valve 
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The valve coefficients for the important case of an ideal critical centre valve can be 
obtained by differentiation of Equation (2.44), and are given below in Figure 2.12. 
 

 General valve coefficients Null valve coefficients 

qk  

 

)pp(1wC 0LSd −
ρ

 

 
ρ

S
d

p
wC  

qpk  

 

)pp(2
xwC

0LS

0d

−ρ
⋅  

 

0 

pk  
 

0

0LS

x
)pp(2 −  ∞  

 
Fig. 2.12  Valve coefficients for a critical centre four-way valve 

 
 
2.4 Flow Forces on Spool Valves 
 
 
Consider the steady-state flow through a spool valve as shown in Figure 2.13. When the 
fluid is flowing through the valve there will be induced some forces acting on the valve.  
 

FR

Face a

X 1V

L

Face b

1
p

element
Fluid

p

Θ

2
V2

 
 

Fig. 2.13  Flow forces on a spool valve due to flow leaving a  valve chamber 
 

These forces are normally calculated using a mathematical formulation of Newton’s 
second law suitable for application to a control volume.  
 

∫∫ ⋅ρ+ρ
∂
∂=+=

CSCVBS AdVVVdV
t

FFF
rrrrrrr

    (2.53)

 
This equation states that the sum of all forces (surface and body forces) acting on a non-
accelerating control volume is equal to the sum of the rate of change of momentum 
inside the control volume (CV) and the net rate of efflux of momentum through the 
control surface (CS). 
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Since we are looking for the horizontal force the body force is zero, and the only surface 
force in horizontal direction is the force F , which is the force of the spool on the 
control volume. Change of momentum inside the control volume occur when the spool 
position is suddenly changed, say to the right, as shown in Figure 2.13. If the fluid 
element is being accelerated, the pressure on the left side of the element must be greater 
than the pressure on the right side. Therefore, the pressure on face a must be greater 
than the pressure on face b. Thus the transient flow force is due to acceleration of the 
fluid in the annular valve chamber. The direction of this force for the case shown in 
Figure 2.13 is such that it tends to close the valve – however this is not the general rule. 
A movement of the spool can also cause the fluid to be decelerated. Applying the 
momentum equation in the horizontal direction gives 

R

 

)cos(QV
dt

)A/Q(dLAFF 2
n

nR θρ+ρ==     (2.54)

 
where  is the volumetric flow rate and A  is the annular area of the spool. The last 
term in Equation (2.54) can be rewritten as  

Q n

 

0c

2

2

2

2 AC
Q

A
Q)cos(QV ρ=ρ=θρ     (2.55)

 
Where  is the orifice area. The flow  can be described by the orifice equation as 0A Q
 

)pp(2ACC)pp(2ACQ 210vc210d −
ρ

=−
ρ

=     (2.56)

 
Obtaining dQ  from Equation (2.56), the transient flow force, , becomes dt/ tF
 

dt
)pp(d

)pp)(/2(
wxLC

dt
dx)pp(2wLCF 21

21

d
21dt

−
−ρ

+−ρ=  (2.57)

 
The last term in Equation (2.57) is normally neglected. The velocity term is more 
significant because it represents a damping force. The quantity L is the axial length 
between incoming and outgoing flow and is called the damping length. 
Inserting Equation (2.56) into Equation (2.55), the steady-state axial flow force acting 
on the valve spool can be obtained as 
 

)cos()pp(ACC2F 210vds θ−=     (2.58)
 
For a spool with no radial clearance it is well known, and usually assumed, that the jet 
leaves the control port at an angle of . The sum of Equation (2.57) and Equation 
(2.58) give the total flow force, steady-state and transient, opposing the spool motion, 
while the force from the fluid on the spool is opposite F , which is the external force 
acting on the control volume.  

o69=θ

R

 
----- oo0oo ----- 
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