new coord. system - x pointing forwards in the direction of the tyre, z is in the wheel plane pointing downwards, y defined by the two (but is in the matter of the fact wheel axis of revolution, but pointing the 'other way around')
camber - negative of the angle beteen wheel and car z axis when viewed from the front
toe - negative of the angle beteen wheel and car x axis when viewed from top
*ass*umption - ground is parallel to xy plane
$\alpha_{\mathrm{T}}:=1^{\circ} \quad$...toe $\quad \alpha_{\mathrm{C}}:=-3^{\circ} \quad$...camber

set of equations to describe the tyre coordinate system:

$x_{3}:=0 \quad(x$ parallel to the ground $) \quad \tan \left(\alpha_{T}\right)=-\frac{x_{2}}{x_{1}}$

$$
\tan \left(\alpha_{C}\right)=\frac{z_{2}}{z_{3}} \quad \begin{aligned}
& z \cdot x=0
\end{aligned} \quad \text { (to ensure } z \text { and } x \text { are perpendicular) }
$$

we will calculate x_{1} because we know it's orientation (i.e.that it is a positive value):

$$
\begin{aligned}
& x_{2}=-x_{1} \cdot \tan \left(\alpha_{\mathrm{T}}\right) \quad\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}+\left(x_{3}\right)^{2}=\left(x_{1}\right)^{2}+\left(x_{1}\right)^{2} \cdot \tan \left(\alpha_{T^{\prime}}\right)^{2}+0=\left(x_{1}\right)^{2} \cdot\left(1+\tan \left(\alpha_{\mathrm{T}}\right)^{2}\right)=1 \\
& x_{1}:=\frac{1}{\sqrt{1+\tan \left(\alpha_{T}\right)^{2}}} \quad x_{2}:=-x_{1} \cdot \tan \left(\alpha_{\mathrm{T}}\right) \quad x_{3}:=0
\end{aligned}
$$

we will calculate z_{3} because we know it's orientation (i.e.that it is a positive value):

$$
\begin{aligned}
& z_{2}=z_{3} \cdot \tan \left(\alpha_{C}\right) \\
& x_{1} \cdot z_{1}+x_{2} \cdot z_{2}+x_{3} \cdot z_{3}=0 \quad z_{1}=-\frac{x_{2} \cdot z_{2}+x_{3} \cdot z_{3}}{x_{1}}=-\frac{x_{2} \cdot \tan \left(\alpha_{C}\right)+x_{3}}{x_{1}} \cdot z_{3} \\
& \left(z_{1}\right)^{2}+\left(z_{2}\right)^{2}+\left(z_{3}\right)^{2}=\left[\left(\frac{x_{2} \cdot \tan \left(\alpha_{C}\right)+x_{3}}{x_{1}}\right)^{2}+\tan \left(\alpha_{C}\right)^{2}+1\right] \cdot\left(z_{3}\right)^{2}=\ldots \\
& \quad=\frac{\left(x_{2} \cdot \tan \left(\alpha_{C}\right)+x_{3}\right)^{2}+\left(\tan \left(\alpha_{C}\right)^{2}+1\right) \cdot\left(x_{1}\right)^{2}}{\left(x_{1}\right)^{2}} \cdot\left(z_{3}\right)^{2}=1 \\
& z_{3}:=\sqrt{\frac{\left(x_{1}\right)^{2}}{\left(x_{2} \cdot \tan \left(\alpha_{C}\right)+x_{3}\right)^{2}+\left(\tan \left(\alpha_{C}\right)^{2}+1\right) \cdot\left(x_{1}\right)^{2}}} \quad z_{2}:=z_{3} \cdot \tan \left(\alpha_{C}\right) \quad z_{1}:=-\frac{x_{2} \cdot \tan \left(\alpha_{C}\right)+x_{3}}{x_{1}} \cdot z_{3}
\end{aligned}
$$

y axis is now pretty straightforward:

$$
\begin{aligned}
y:=\vec{z} \times \vec{x} \\
T:=\left(\begin{array}{lll}
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2} \\
x_{3} & y_{3} & z_{3}
\end{array}\right) \quad T=\left(\begin{array}{ccc}
0.99985 & 0.01743 & -9.13527 \times 10^{-4} \\
-0.01745 & 0.99848 & -0.05234 \\
0 & 0.05234 & 0.99863
\end{array}\right)
\end{aligned}
$$

