An Efficient Three-Point Arc

Algorithm

Ian Galton
Caltech

For many applicatmns a2D circular arc can be con-
veniently specified by three points that lie on the arc.

. Since the radius of curvature. without bound as
the three points become collinear, any practical algo-
rithm must avoid calculating the afcs radms or func-f
tions of the radius. The algori
achieves this objective. It is very aﬁﬁcoent because it
uses exclusively integer arit metic and requires only
addition, subtraction, companson and branch opera—
tions in the mnertoop o ; :

Many graphics standards such as the Computer
Graphics Interface (CGI), the Computer Graphics
Metafile (CGM), and Videotex specify arcs with three
points. The method provides for a convenient user
interface, since the user can specify the two endpoints
of the arc and then “rubberband” the curve by manip-
ulating the third point.

Although there are several integer circle algorithms
in the literature, most maintain variables that are un-
bounded functions of the radius.* Such algorithms
invariably impose a minimum curvature limit on the
arcs they draw.

Since the minimum curvature associated with a par-
ticular implementation of an algorithm depends on
the resolution of the display device, it is difficult to
design resolution-independent software systems
using the algorithm.? If the same implementation of

44 0272-17-16/89/1100-0044501.00 ©1989 [EEE

the algorithm were used to draw equivalently scaled
arcs on two display devices with different resolu-
tions, it might be possible to draw the arc on one of the
devices and not on the other.

The algorithm presented here has no minimum cur-
vature limit and is similar in efficiency to the previous
integer algorithms.

The fundamental equation

Assume that the three defining points are at integer
locations specified by the coordinates (j, k), (1, m), and
(n, 0), and are distinct. The algorithm draws each arc
from the point (j, k) through the point (I, m) and to the
point (n, o). Hence, (j, k) is referred to as the starting
point, (I, m) as the intermediate point, and (n, o) as the
ending point.

The algorithm is based on the following theorem.

Theorem 1. Let (j, k) be a starting point and let (h,1)
be any point not equal to (j, k). For each pair of posi-
tive, nonzero constants o and B there exists a circle or
line passing through the starting point which is the
only solution to

avi(x, y) - pui(x, y) =y (1)

where y is a constant and

u(x, y) =V(j- x? + (k- y?*

IEEE Computer Graphics & Applications

vix, y)=N(h - x)* + (i — y)* (2)

Proof. Evaluating Equation 1 at the point (j, k) gives

v=av’(j, k) (3)

Combining Equations 1, 2, and 3 gives

(0= B)x* + 2(Bj — ah)x — (o + B)j 2 +
(- B)y? + 2Bk —0i)y — (@ + P)k> =0

If o # B, the equation can be written as
(x=x0)* + (7~ yo)* = g

where x,, y,, and R, are constants that depend only on
the three points defining the arc.
If o = B, the equation can be written as

y=mx+Db

where m and b are constants that depend only on the
three points defining the arc.

In the first case, the equation defines a circle. In the
second case, it defines a line. O

The relationships among point (h, i), the arc, and
the functions u(x, y) and v(x, y) are shown in Figure 1.

Any point (h, i) that can be used with Equation 1 to
generate a given circle will be referred to as an anchor
point for that circle. The constants o and B will be
referred to as curvature factors.

Equation 1 provides the means by which the algo-
rithm generates the arc. To use the equation, the algo-
rithm must first calculate the curvature factors and
the location of an anchor point.

Since by Theorem 1 the only solution to Equation 1
isa circle or line, it follows that if three distinct points
satisfy the equation, so must the circle or line passing
through the points. Therefore, an anchor point can be
found by solving the set of three equations generated
by evaluating Equation 1 at the points (j, k), (I, m), and
(n, o) respectively:

a’(, k) =y
ov?(l, m) - Bu*(l, m)=y

ovi(n, 0) — Bu®(n, 0) =y 4)

Solving these equations for the anchor point gives

C
h=j—T°

. Cl
1=k+T (5)

November 1989

(i, m)
(h, i) v(x, y) . y) (n. o)

u(x, y)

(j' k)

Figure 1. The relationship between the arc and the
anchor point.

where

C, = (k — m)u*(n, 0) - (k — o)u’(l, m)
C, = (j— Du(n, 0) - (j — myu*(l, m)

and 1 is any nonzero constant. Because 1 is not speci-
fied, an infinite number of anchor points exist for a
given circle or line. Note that Equations 5 are a para-
metric representation (in 1) of a line passing through
the starting point. Any point on this line other than
the starting point (because of the constraint in Theo-
rem 1) can be used as an anchor point.

Once an anchor point is chosen, the first and third of
Equations 4 can be solved to find the curvature fac-
tors. This gives

o =u*(n, o)

B=1v*(n, 0)-V*(j, b (6)
Note that the anchor point and the curvature factors

are all bounded functions of the three points that de-

fine the arc. Therefore, Equation 1 can be used to

generate any arc (including the special case of a line

segment) specified by three distinct points.

Difference equations

The equations derived so far are exact continuous-
variable equations. The problem at hand, however, is
to generate quantized discrete-variable (i.e.,
rasterized) arcs. Although we could quantize the
points generated using the exact equations, such an
algorithm would be inefficient; unnecessary informa-
tion (i.e., the fractional part of each point) would be
generated, and each point would be calculated from
scratch (instead of benefiting from the calculations
performed to find the previous point).

A more efficient approach uses information about
the current point (the point just drawn) to choose the
next point.”® The next point is assumed to be one of

45

the current point’s eight nearest neighbors. The slope
of the arc’s tangent and the drawing direction are used
to rule out all but two of these points. The errors
associated with the two remaining points are calcu-
lated, and the point with the smallest error is chosen
as the next point. This process continues until the
curve is complete.

The error function is obtained by quantizing the
variables in Equation 1. It is the difference between
the left-hand side and right-hand side of the equation.
Specifically,

(%P =avi(X) - Buk(X, V)~ (7)
where (X, y) is the quantlzed version of the point (x,

y). The magnitude of &(x y) provides a measure of
how close the point ()Q,) is to the exact arc.

Although Equation 7 could be used to calculate the
error at each point, it is more efficient to use a set of
difference equations. The difference equations pro-
vide an incremental implementation of Equation 7.
Given the error associated with the current point, the
difference equations provide the error associated with
the neighboring points.

Each difference equation can be derlved by subtract-
ing Equation 7 evaluated at the point (%, y) from that
evaluated at the appropriate neighboring point. The
difference equations are

g(R+1,0)=e(R9)+0e,(%)
e(;’} 1, 9)_5(52,3‘/)+Ae (9{)
e(x y+1)—£(x y)+Asy+(y)

e(x,y 1)—£(xy)+Ae (y) (8)

where

Ae (R)=ol1 - 2(h- %) -Bl1-2(j-%)]
Ae (R)=al1+2(h-%)]-Bl1+2(j- %)
Aew(y)—oc[l— (1—y)]—B[1—2(k y)]
Asy_(y)—oc[1+2(1—y)] Bl1+2(k- y)]

The functions Ag,(%), Ag, (x), Ae, (3\/), and
Ag,, (f/) are called the error difference functions.

In practice, the error difference functions need to be
calculated only for the first point. For the remaining
points, a second set of difference equations can be
used to calculate their values. These difference equa-
tions are analogous to Equations 8 and are derived in
the same fashion. They are

At (RE1)= A (X)+2(a-P)
A, (R£1)=Ae (X)F2(c—B)

46

A
Ae, (Xi 1) =
Aay_(yx1)=

A€v+(y)t 2(a-P)
Az-: (y)+2(a B)

Octant change detection

A circle consists of eight octants. Within each of
these octants, the slope of the tangent to the circle is
such that, for a given drawing direction, all but two of
the eight points surrounding the current point can be
ruled out as appropriate next points. For example, in
the first octant, dx/dy < —1. Therefore, for a counter-
clockwise drawing direction, y increases faster than x
decreases at all points w1th1n the octant. In this case,
if the current point is (%, y) the next point might be
either (x y+ 1)0r(x 1,)I>+1)

Within each octant, to find the next point one of the
variables is always incremented (or decremented)
while the other is left unchanged or incremented (or
decremented) so as to minimize the error. The vari-
able always incremented (or decremented) in a given
octant is referred to as the step variable, the other
variable as the test variable.

To use this scheme, the algorithm must keep track of
which octant it is currently drawing. The error differ-
ence functions can provide this information. Note
that at a given arc point, the next arc point is located
farther along the step-variable axis than it is along the
test-variable axis. Therefore, the error difference func-
tions increase less along the step-variable axis than
they do along the test-variable axis. Furthermore, it
can be shown that the sign of the error at points inside
the circle is opposite to that at points outside the
circle. Therefore, the signs of the error difference
functions provide 1nf0rmat10n regarding the direction
in which to change x xand y

The relationships between the error difference func-
tions and the eight octants for arcs drawn in the coun-
terclockwise direction are listed in the table.

Anchor point approximation

To ensure that the algorithm requires only integer
variables, it is necessary to use an integer anchor
point. There are two choices. The first is to set T equal
to 1 in Equations 5. This gives rise to the desired arc,
but requires that the algorithm maintain some storage

IEEE Computer Graphics & Applications

registers with six times more bits than are required to
hold the largest of the parameters j, k, I, m, n, and o.

The second choice is to use a 1 greater than 1 and
quantize the resulting noninteger anchor point. As
shown in the appendix, if

max (1C,1, G, 1)
YT o(— 1l + Tk—ml)

(9)

in Equations 5 and the resulting values of h and i are
rounded to the nearest integer, then the rasterized arc
will contain the three defining points, even though
the corresponding exact arc misses one of the points
slightly. The scheme reduces the register bit length
requirements of the algorithm by a factor of 2.

Implementation example

The following code segments illustrate a possible
implementation of the algorithm. For brevity, only the
portion of the algorithm associated with the first oc-
tant is treated.

Two code segments are shown: the initialization
routine and the inner-loop routine. Once the initial-
ization routine has been executed, the inner loop is
executed. The inner-loop routine returns when either
the arc reaches the ending point or another octant is
about to be entered.

initialize arc{()
{

error = 0;

X = j;

y = ki

cO = (k-m) * SQR{u(n,
(k-0) * SQR(u(l,
(j-1) * SQR(u(n, o)) -
(J-n) * SQR(u(l, m));
(MAX (ABS (cl), ABS(c2)) /
(ABS (j=-1) + ABS(k-m));
j - c0/tau;
k + cl/tau;
alpha = SQR(u(n, o));
beta = SQR(v(n, o)) - SOQR{(v (], k)):
diff err x alpha* (1+h-3) - beta;
diff err y alpha* (1-i+k) - beta;

o)) -
m));
cl =

tau =

h
i

I

[

inner loop ()
{
do
{
plot(x, y);

November 1989

Table. The error difference function conditions associated
with each octant for the counterclockwise drawing direction.
Octant |Error Difference Function Conditions
0.5 Ao (@) > 0 Beys(g) < 0 [Ber ()] 5 35,2
53 Ao (8) 20 Aeyi(y) < 0 |Ae,(7)] < [Azy 4 ()]
B2 |Aer(d) < 0 Aey_(3) > 0 |Ae, (3)] < |22, ()
[3—;‘.7r) Ae, (2)< 0 Aey_(ﬁ) >0 |A5,,(i)| > |A£y__(!})|
%) [Aee(z) > 0 Aey (y) < 0 |Aepy(2)] > |Aey—(y)]
B3 |Aers(d) 20 ey (3) < 0 [Acpy(d)] € |22, ()
B) | Aers(2) <0 Aeyi(y) > 0 [Acpp(d)] < |Aeyi(y)]
(F.27) [Acai(2) < 0 Acyi(§) 20 |Deoy(d)] = [Acy1(5)]

yt++;
error += diff err y;

diff err y += 2*(alpha - beta);
test _error = error + diff err x;
if (ABS(test error) < ABS(error))
{
X=7
error = test_error;
diff err x += 2*(alpha - beta);
if (—diff_err_y > diff err x)
return (OCTANT CHANGE) ;
}
} while (x !=n |
return (FINISHED) ;

y '=n);

The variables in the code segments are related to the
variables in the equations of the previous sections as
follows:

c0=C,

cl=C,
alpha=o
beta=§

A
error=¢(Xx,y)

A A
test _error=g(x-1,y+1)
diff err x=Ag, (X)

. - - A
diff err y =A€y+(y)

Performance

As the code segments show, the algorithm performs
very few operations for each arc point it calculates. No
floating-point arithmetic is required, and in the inner
loop only addition, subtraction, compare, and branch
operations are required. The complexity of the inner
loop is similar to that of the fastest circle algorithms in
the literature.

The algorithm always draws the best rasterized ver-
sion of an exact arc. If an exact integer anchor point is
used (t=1in Equations 5), both the rasterized arc and

47

(h, 1)

G. k)

Figure 2. Rotation about the starting point caused by
anchor-point displacement.

the corresponding exact arc pass through the three
defining points. If the approximated anchor point of
Theorem 2 is used, the rasterized arc passes through
the three defining points but the corresponding exact
arc misses the intermediate point slightly.

All of the variables maintained by the algorithm are
bounded functions of the three defining points. Sup-
pose N bits are required to represent the largest of the
parameters j, k, I, m, n, and o. If an exact anchor point
is chosen using © = 1 in Equations 5, then 6N bit
registers are required for the error variables. If the
approximated anchor point is used, then 3N + 1 bit
registers are required for the error variables.

Conclusion

An original algorithm designed specifically for
drawing three-point circular arcs has been presented
and analyzed. Its complexity is similar to that of pre-
vious algorithms but, unlike the previous algorithms,
it imposes no minimum curvature limit on the arcs it
can draw. The arcs produced by the algorithm always
contain the three defining points.]

Appendix

This appendix verifies Equation 9. The following
two lemmas are required to prove the theorem.

Lemma 1. The line on which the anchor points for a
given circle lie is perpendicular to the tangent of the
circle at the starting point.

48

Proof. From Equations 5 the slope of the line on
which the anchor points lie is

To find the slope of the tangent of the circle at the
starting point, differentiate Equation 1 with respect to
x and solve for dy/dx. This gives

Lemma 2. Let C, be the rasterized arc specified by
the three integer points (j, k), (I, m), and (n, o). Choose
the anchor point by setting

NG+ G

< m (10)
in Equations 5. Let C, be the rasterized arc generated
by using the same starting point and curvature factors
as C, and an anchor point displaced from the anchor
point of C, by less than 0.5. Then C, contains the point
(I, m).

Proof. From Equations 5 with tas above the distance
between the starting point and anchor point is related
to u(l, m) as

Vth-j) + G- Kk?>2ul, m

Since Equation 1 depends only on the starting point,
the anchor point, and the curvature factors, displac-
ing the anchor point causes the arc to rotate about the
starting point (see Figure 2).

Since the anchor point is displaced less than 0.5, the
angle of rotation is

: 0.5
f<arcsin | —————
[\10.25 +4u’(l, m)j

The same angle of rotation applies to the line joining
the starting point and intermediate point. Therefore,
the displacement d of the intermediate point is related
to theta by

d<Nu*(l, m)+d°* sin@

IEEE Computer Graphics & Applications

Vui(I, m) + d?
<
2 V0.25 + 4u?(l, m)

Solving for d gives
d< 1
4

It can be shown that for any arc specified by three
integer points the incremental algorithm will choose
each point that is within 1/4 of the exact arc. [

Theorem 2. Let the three deﬁ/{m}g points (j, k), (I, m)
and (n, o) be integer points. Let (h, 1) be the quantized (to
the nearest integer) version of the point (h, i) obtained
using

max (I1C,1, 1C, 1)
2(lj=11 + lk—ml)

T=

in Equations 5. LetA(/)\c and 6 be the curvature factors
obtained by using (h,) as the anchor point in Equa-
tions 6. Then the rasterized arc obtamed by using
(h, 1) as the anchor point and 0.and B as the curvature
factors contains the three defining points.

Proof. Let C be the exact arc passing through the
three defining points. Let C,be the exact arc obtained
using (h 1) as the anchor point and & and B as the
curvature factors. Let C, be the exact arc obtained
using (h, i) as the anchor point and the ocand 8 asso-
ciated with C as the curvature factors (see Figure 3).

From Equations 5 and the definition of 1 in the state-
ment of the theorem, it follows that (h, i) must be at
no greater distance than 0.5 from the unquantized
anchor point (h, i). Since 7 satisfies the inequality in
Lemma 2, the rasterized version of C, contains the
intermediate point.

From Lemma 1 it follows that the tangents of C, and
C, at the starting point must be equal. Therefore, C,
and C, touch each other only at the starting point if
they are not equal.

From the derivation of Equations 6, it follows that C,
passes through the starting and ending points. But C
also passes through the starting and ending points.
Therefore, C and C, intersect at two points. If they
intersect at a third point, they are the same arc and the
theorem is proved. Otherwise, all points on C, must
be between C and C, such that the shortest path from
any point on Cto C, must intersect C.

November 1989

(h, i)

€ (o
(1, m)

(j' k)

Figure 3. The arcs C, C,, and C,.

Therefore, C, passes at least as close to the intermedi-
ate point as does C,. Since the rasterized version of C,
contains the intermediate point, so must that of C,. [

References

1. J. Bresenham, “A Linear Algorithm for Incremental Digital
Display of Circular Arcs,” CACM, Vol. 20, No. 2, Feb. 1977, pp.
100-106.

2. M. Lawrence, “Simple Algorithms for Lines and Circles,” Com-
puter Language, Vol. 3, No. 11, Nov. 1986, pp. 83-90.

3. J.F. Blinn, “How Many Ways Can You Draw a Circle?” CG&A,
Vol. 7, No. 8, Aug. 1987, pp. 39-44.

4.]. Van Aken and M. Novak, “Curve-Drawing Algorithms for
Raster Displays,” ACM Trans. Graphics, Vol. 4, No. 2, Apr.
1985, pp. 147-169.

5.].D. Foley, and A. van Dam, Fundamentals of Interactive Com-
puter Graphics, Addison-Wesley, Reading, Mass, 1982.

6. P.E. Danielson, “Incremental Curve Generation,” IEEE Trans.
Computers, Vol. 19, No. 9, Sept. 1970, pp. 783-793.

7. B.W.Jordan, W.J. Lennon, and B.D. Holm, “An Improved Algo-
rithm for the Generation of Nonparametric Curves,” IEEE
Trans. Computers, Vol. 22, No. 12, Dec. 1973, pp. 1052-1060.

8. G. Hegron, Image Synthesis: Elementary Algorithms, MIT
Press, Cambridge, Mass, 1988.

Ian Galton is a doctoral student in the Electri-
cal Engineering Department of the California
Institute of Technology. His research interests
include machine vision and pattern classifica-
tion algorithms. Before attending Caltech, Gal-
ton developed acoustic-beam-formation
software for use with a medical ultrasound
imaging system at Acuson Corporation in
Mountain View, Calif. He also worked as a
consultant in the field of computer graphics

“.

algorithms.

Galton received his BS in electrical engineering from Brown
University in 1984 and his MS in electrical engineering from
Caltech in 1989.

The author can be reached at Caltech 116-81, Pasadena, CA
91125, and at galton@electra.caltech.edu.

49

