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INTRODUCTION
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So far, we have painted individual pictures of soil behavior. We looked at 1b¢
physical characteristics of soil in Chapter 2, effective stresses and stress paths in
Chapter 3, one-dimensional consolidation in Chapter 4, and shear strength in
Chapter 5. You know that if you consolidate a soil to a higher stress state than

its current one, the shear strength of the soil will increase. But the amount of

increase depends on the soil type, the loading conditions (drained or undrained
condition), and the stress paths. Therefore, the individual pictures should all be
linked together: But how?

In this chapter, we are going to take the individual pictures and build
mosaic that will provide a base for us to interpret and anticipate soil behavior,
Our mosaic is mainly intended to unite consolidation and shear strength. Real
soils, of course, require a complex mosaic not only because soils are natural,

complex materials but also because the loads and loading paths cannot be antic-

ipated accurately.

We are going to build a mosaic to provide a simple framework to describe,
interpret, and anticipate soil responses 1o various loadings. The framework s
essentially a theoretical model based on critical state soil mechanics—critical
state model (Schofield and Wroth, 1968). Laboratory and Held data, especially
results from soft normally consolidated clays, lend support to the underlying

concepts embodied in the development of the critical state model. The emphasiy - :

in this chapter will be on using the critical state model to provide a generalized
understanding of soil behavior rather than on the mathematical formulation.
The critical state model (CSM) we are going to study is a simplification and
an idealization of soil behavior. However, the CSM captures the behavior of soils
that are of greatest importance to geotechnical engineers. The central idea in the
CSM is that all soils will fail on a unique failure surface in {q. p’, ¢) space. Thus,
the CSM incorporates volume changes in its failure criterion ualike the Mohr-
Coulomb failure criterion, which defines failure only as the attainment of the
maximum stress obliquity. According to the CSM, the failure stress state is in-
sufficient to guarantee failure; the soil structure must also be loose enough.

The CSM is a tool 1o make estimates of soil responses when you cannol

conduct sufficient soil tests to completely characterize a soil at a site or when you
have to predict the soil’s response from changes in loading during and after con-

struction. Although there is a debate on the application of the CSM to real soils, |

the ideas behind the CSM are simple. It is a very powerful tool to get insighty
into soil behavior, especially in the case of the “what-if”” situation. There is also

a plethora of soil models in the literature that have critical state as their core. By -,
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studying the CSM, albeit a simplificd version in this chapter, you will be able to
better understand these other soil models.
When you have studied this chapter, you should be able to:

You will make use of all the materials you studied in Chapters 2 to 5 but
particularly:

* Index properties (Chapter 2)

+ Effective stresses, stress invariants, and stress paths (Chapter 3)
* Primary consolidation (Chapter 4)

+ Shear strength (Chapter 5)

Sample Practical Situation An oil tank is to be constructed on a soft al-
luvial clay. Tt was decided that the clay would be preloaded with a circular em-
bankment imposing a stress equal to, at least, the total applied stress of the tank
when filled. Sand drains are to be used to accelerate the consolidation process.
The foundation for the tank 1s a circular slab of concrete and the purpose af the
preloading is to reduce the total settlement of the foundation. You are required
to advise the owners on how the tank should be filled during preloading to pre-
venl premature failure. After preloading, the owners decided to increase the
height of the tank. You are requested to determine whether the soil has enough
shear strength to support an additional increase in tank height, and if so the
amount of settlement that can be expected. The owners do not want to finance
any further preloading and soil testing.

Overconsolidation rarie (R, is the ratio by which the current mean effective
stress in the soil was exceeded in the past (R, = p./p; where p. is the past max-
imum mean effective stress and p), is the current mean cffective stress).

Compression index (A) is the slope of the normal consolidation line in a plot of
the natural logarithm of void ratio versus mean effective stress.

Unloading/reloading index or recompression index () is the average slope of
the unloading/teloading curves in a plot of the natural logarithm ot void ratio
versus mean effective stress.

Critical state line (CSL) is a line that represents the failure state of soils. In
(g, p') space the critical state line has a slope M, which is related to the friction
angle of the soil at the critical state. In (e, In p') space, the critical state line has
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a slope A, which is parallel to the normal consolidation line. In three-dimensional
(g, P, e) space, the critical state line becomes a critical state surface.

6.2 QUESTIONS TO GUIDE YOUR READING

1. What is soil yielding?

2. What is the difference between yielding and failure in soils?
3. What parameters affect the yielding and failure of soils?

4. Does the failure stress depend on the consolidation pressure?

5. What are the critical state parameters and how can you determine them
from soil tests?

6. Are strains important in soil failure?

7. What are the differences in the stress—strain responses of soils due to dif-
ferent stress paths?

é 6.3 BASIC CONCEPTS

6.3.1 Parameter Mapping

In our development of the basic concepts on critical state, we are going to map
certain plots we have studied in Chapters 4 and 5 using stress and strain invariants
and concentrate on a saturated soil under axisymmetric loading. However, the
concepts and method hold for any loading condition. Rather than plotting + ver-
sus g, or @, we will plot the data as g versus p' (Fig. 6.1a). This means that you
must know the principal stresses acting on the element. For axisymmetric (tri-
axial) condition, you only need to know two principal stresses.

The Mohr-Coulomb failure line in {7, o)) space of slope ., = tan 7./
(ut)y] is now mapped in (g, p') space as a line of slope M = g4//p}, where the
subscript f denotes failure. Instead of a plot of e versus o}, we will plot the data
as e versus p' (Fig. 6.1b) and instead of e versus log o}, we will plot e versus ln p'
(Fig. 6.1c). We will denote the slope of the normal consolidation line in the plot
of e versus In p” as A and the unloading/reloading line as «. There are now rela-
tionships between &% and M, C_ and X, and C, and «. The relationships for the
slopes of the normal consolidation line (NCL), A, and the unloading/reloading

line (URL), x, are
L. G _C_
,)\ = a0 " 23 - MG (6.1)

62)

Both ) and « are positive for compression. For many soils, x/A has values within
the range g5 to L. We will formulate the relationship beiween ¢, and M later.
The overconsolidation ratio using stress invariants is

Pe
R, =% 63
o (63)

6.3 BASIC CONCEPTS 265

Failure line or critical state line: M = %

o a < tan-l B
Failure line: ¢, = tan -_("éj,r
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FIGURE 6.1 Mapping of strength and consolidation parameters,

where pg is the initial mean effective stress or overburden mean pressure and
p. is the preconsolidated mean effective stress. The overconsolidation ratio, R,
defined by Eq. (6.3) is not equal to OCR [Eq. (4.13)]:

T
R = e OCR
- |

(You will be required to prove this cquation in Exercise 6.1.)

6.3.2 Failure Surface

The fundamental concept in CSM is that a uniyue failure surface exists in
(g, p’, ¢) space, which defines failure of a soil irrespective of the history of loading
or the stress paths fullowed. Failure and critical state are synonymous. We will
refer to the failure line as the critical state line (CSL) in this chapter. You should
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FIGURE 6.2 Critical state lines, normal compression, and
unloading/reloading lines.

recali that critical state is a constant stress state characterized by continuous shear
deformation at constant volume. In stress space (g, p') the CSL is a straight line
of slope M = M,, for compression, and M = M,, for extension (Fig. 6.2a). Ex-
tension does nol mean tension but refers to the case where the lateral stress is
greater than the vertical stress. There is a corresponding CSL in (p’, €) space
(Fig. 6.2b) or (e, In p') space (Fig. 6.2c) that is paraliel to the normal consolidation
line.

We can represent the CSL in a single three-dimensional plot with axes g,
p', e (see book cover), but we will use the projections of the failure surface in
the (g, 7') space and the (e, p') space for simplicity.

6.3.3 Soil Yielding

You should recall from Chapter 3 (Fig. 3.8) that there is a yield surface in stress
space that separates stress states that produce elastic responses from stress states
that produce plastic responses. We are going to use the yield surface in (g, p')
space (Fig. 6.3) rather than (o, ;) space so that our interpretation of soil re-
sponses is independent of the axis system:

The yield surface is assumed to be an ellipse and its initial size or major
axis is determined by the preconsolidation stress, p,. Experimental evidence
{Wong and Mitchell, 1975) indicates that an elliptical yield surface is a reasonable
approximation for soils. The higher the preconsolidation stress, the larger the
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A— elastic slress state
. B— intal yielding
C— elastoplastic

C Expanded yield surface

s Initial yield surface (1 compression

p: P
FIGURE 6.3 Expansgion of the yield surface.

initial ellipse. We will consider the yield surface for compression but the ideas
are the same for extension except that the minor axis of the elliptical yield surface
in extension is smaller than in compression. All combinations of 4 and p* that lie
within the yield surface, for example, point A in Fig. 6.3, will cause the soil to
respond elastically. If a combination of g and p' lies on the initial yield surface
(point B, Fig. 6.3), the soil yields similar to the yielding of a steel bar. Any
tendency of a stress combination to move outside the current yield surface is
accompanied by an expansion of the current yield surface such that during plastic
loading the stress point (g, p') lies on the expanded yield surface and not outside,
as depicted by C. Effective stress paths such as BC (Fig. 6.3) cause the soil to
behave elastoplastically. If the soil is unloaded from any stress state below failure,
the soil will respond like an elastic material. As the yield surface expands, the
elastic region gets larger.

6.3.4 Prediction of the Behavior of Normally
Consolidated and Lightly Overconsolidated
Soils Under Drained Conditions

Let us consider a hypothetical situation to illustrate the ideas presented so far,
We are going to try to predict how a sample of soil of initial void ratio e, will
respond when tested under drained conditios in a triaxial apparatus, that is, a
CD test. You should recall that the soil sample in a CD test is isotropically
consolidated and then axial loads or displacements are applied, keeping the cell
pressure constant. We are going to consolidate our soil sample up to a maximum
mean effective stress p/, and then unload it to a mean effective stress p;, such
that R, = plip, < 2. We can sketch a curve of e versus p' (AB, Fig. 6.4b) during
the consolidation phase. You should recall from Fig. 6.1 that the line A8 is the
normal consclidation line of slope \. Because we are applying isotropic loading,
the line AB (Fig. 6.4c) is called the isotropic consolidation line. The line BC is
the unloading/reloading line of slope .

The preconsolidated mean effective stress, p., determines the size of the
initial yield surface. A semi-ellipse is sketched in Fig. 6.4a to illustrate the initial
yield surface for compression. We can draw a line, OS, from the ofigin to rep-
resent the critical state fine in (g, p°) space as shown in Fig. 6.4a and a similar
line in (e, p') space as shown in Fig. 6.4b. Of course, we do not know, as yet, the
slope M, or the equation to draw the initial yield surface. We have simply selected
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FIGURE 6.4 Hlusirative predicted results from a CD test (R, = 2) using CSM.

arbitrary values, Later, we are going to develop equations to define the slope M,
the shape of the yield surface, and the critical state line in (e, p'} space or (e, In p')
space.

Let us now shear the soil sample at its current mean effective stress, p;, by
increasing the axial stress, keeping the ceil pressure, a3, constant and allowing
the sample to drain. You should recall from Chapter 5 that the effective stress

path for a CD test has a slope g/p' = 3. The effective stress path is shown by C¥

in Fig. 6.4a, The effective stress path intersects the initial yield surface at D. All
stress states from C to D le within the initial yield surface and, therefore, from
C to D on the ESP the soil behaves elastically. Assuming linear elastic response
of the soil, we can draw a line CD in (q, &) space (Fig. 6.4¢c) to represent the
elastic stress—strain response, At this stage, we do not know the siope of CD but
later you will learn how to get this slope. Since the line BC in (e, p') space
represents the unloading/reloading line (URL), the elastic fesponsc must lie
along this line. The change in void ratio is Ae = ec — e, (Fig. 6.4b) and we can
plot the ¢ versus €, responsc as shown by CD in Fig. 6.4d.

Further ioading from D along the stress path CF causes the soil to yield.
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The initial yield surface expands (Fig. 6.4a) and the stress-strain response is a
curved path (Fig. 6.4c) because the soil behaves elastoplastically (Chapter 3). At
some arbitranily chosen loading peint, E, along the ESP, the size {major axis) of
the yield surface is p¢; corresponding lo point G in (e, p') space.

The total change in void ratio as you load the sample from D to £ is DE
(Fig. 6.4b). Since E lies on the yield surface corresponding to a mean effective
stress pg, then £ must be on the unloading hine, £C", as illustrated in Fig. 6.4b.
If you unload the soil sample from E back to C, the soil will follow an unloading
path, EC', parallel to BC as shown in Fig. 6.4b.

We can continue to add increments of loading along the ESP until the soil
fails. For each load increment, we can sketch the stress—strain curve and the path
followed in (e, p’) space. Failure occurs when the ESP intersects the critical state
line as indicated by F in Fig. 6.4a. The failure stresses are p; and ¢, (Fig. 6.4a)
and the failure void ratio is e; (Fig. 6.4b). For ¢ach increment of loading, we can
determine Ae and plot g, versus YAe [or g, = (ZAe)/(1 + ¢,)] as shown in Fig.
6.4d.

Each point on one of the figures has a corresponding point on another figure
in each of the quadrants shown in Fig. 6.4. Thus, each point on any figure can be
obtained by projection as illustrated in Fig. 6.4. Of course, the scale of the axis
on one figure must match the scale of the corresponding axis on the other figure.

6.3.5 Prediction of the Behavior of Normally
Consolidated and Lightly Overconsolidated
Soils Under Undrained Condition

Instead of a CD test we could have conducted a CU test after consolidating the
sample. Let us examine what would have occurred according to our CSM. We
know (Chapter 5) that for undrained condition the soil volume remains constant,
that is, Ae = 0; and the ESP for siresses that produce an elastic response is
vertical, that is, the change in mean effective stress, Ap', is zero for linearly elastic
soils. Because the change in volume is zcro, the mean effective stress at failure
can be represented by drawing a horizontal line from the initial void ratio to
intersect the critical state line in (e, p') space as illustrated by CF in Fig. 6.5b.
Projecting a vertical line from the mean effective stress at failure in (¢, p') space
1o intersect the critical state line in (g, p') space gives the deviatoric stress at
failure (Fig. 6.5a). Since the ESP is vertical within the initial yield surface (CL2,
Fig. 6.5a), the yield stress can readily be found from the intersection of the ESP
and the initial yield surface. Points C and D are coincident in the (¢, p’} plot as
illustrated in Fig. 6.5b because Ap’ = 0. For normally consolidated and lightly
overconsolidated soils, the cffective stress path after initial yielding (point D, Fig.
6.5a) curves toward the critical state line as the excess pore water pressure in-
creases significantly after yielding occurs.

The TSP has a slope of 3 (Chapter 5) as illustrated by CG in Fig. 6.5a. The
difference in mean stress between the total stress path and the effective path
gives the change in excess pore water pressure. The intersection of the TSP with
the critical state line at G is not the failure point because failure and deformation
in a soil mass depend on effective not total stress. By projection, we can skelch
the stress—-srrain response and the excess pore water pressure versus strain as
illustrated in Figs. 6.5¢,d.
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FIGURE 6.5 |llustrative predicted results from a CU test using the CSM (R, = 2).

6.3.6 Prediction of the Behavior
of Heavily Overconsolidated Soils

So far we have considered a lightly overconsolidated soil {R, < 2). What is the
situation regarding heavily overconsolidated soils, that is, R, > 2? We can model
a heavily overconsolidated sail by unloading it so that pl/p. > 2 as shown by
point C in Figs. 6.6a,b. Heavily overconsolidated soils have initial stress states
that lie to the left of the critical state line in the e versus P’ plot. The ESP for a
€D test has a slope of 3 and intersects the initial yield surface at D. Therefore,
from C to D the soil behaves clastically as shown by CD in Figs. 6.6b,c. The
intersection of the ESP with the critical state line is at F {Fig. 6.6a), so that the
¥ield surface must contract as the soil is loaded to failure. The initial yield shear
stress is analogous to the peak shear stress for dilating soils. From D, the soil
expands (Figs. 6.6b,d) and strain softeus (Fig. 6.6¢) to failure a1 F.

The CSM simulates the mechanical behavior of heavily overconsolidated
soils as elastic materials up Lo the peak shear stress and thereafter elastoplasti-
cally as the imposed loading causes the soil to strain soften toward the critical
state line. In reality, heavily overconsolidated soils may behave elastoplastically

b.efore the peak shear stress is achieved but this behavior is not captured by the
simple CSM described here.
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L]
FIGURE 6.6 \lustrative predicted results from a CD test (R, > 2) using the CSM.

In the case of a CU test on heavily overconsolidated soils, the path to failure
in {e, p'} space is CF as shown in Fig. 6.7b. Initial yielding is attained at D and
failure at F. 'T'he excess pore water pressurcs at initial yield, Au,, and at failure,
Auy, are shown in the inset of Fig. 6.7a. The excess pore water pressure at failure
is negative (p; > p,).

6.3.7 Critical State Boundary

The CSL serves as a boundary separating normally consolidated and lightly over-
consolidated soils and heavily overconsolidated soils. Stress states that lie to the
right of the CSL will result in compression and strain hardening of the soil; stress
states that lie to the left of the CSL will result in expansion and strain soflening
of the sail.

6.3.8 Volume Changes and Excess
Pore Water Pressures

1f you compare the responses of soils in drained and undrained tests as predicted
by the CSM, you will notice that compression in drained tests translates as pos-
itive excess pore water pressures in undrained tests, and expansion in drained
tests translates as negative excess pore water pressures in undrained tests. The
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FIGURE 6.7 lllustrative predicted results from a CU test (R, = 2) using the CSM.

SM also predicts that normally consolidated and lightly overconsolidated soils
strain harden to failure, while heavily overconsolidated soils strain soften to fail-
ure. The predicted responses from the CSM then qualitatively match observed
suil responses (Chapter 5).

6.3.9 Effects of Effective Stress Paths

The response of a soil depends on the ESP. Effective stress paths with slopes less
than the CSL (04, Fig. 6.8) will not produce shear failure in the soil because the
ESP will never intersect the critical state line. You can load a normally consoli-
dated or a lightly overconsolidated soil with an ESP that causes it to respond like

ESP that causes a Lightly over-
consolidated soil to respond like
a heavily averconsolidated soil

ESP of slape less than M, will
not produce soil failure

(7] B '
FIGURE 6.8 Effects of effective stress paths on soil response.
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an overconsolidated soil as shown by OB in Fig. 6.8. Effective stress paths similar
to OB are pussible in soil excavation. Remember that a soil must yield before it
fails.

The essential points are:

1. There Is a unique critical state line in (g, p') space and a correspond-
ing critical state line In (e, p’) space for solls.

2. There is an initial yield surface for soils. The size of the initial yield
surface depends on the preconsolidation mean effective stress.

3. The yiceld surface expands for R, < 2 and cantracts for R, = 2 when
the applied effective stresses exceed the initial yield stress.

4. The sovil will behave elastically for stresses that are within the yield
surface and elastoplastically for stresses outside the yield surface.

5. Every stress state must lie on an expanded or contracted yleld surface
and on a corresponding URL.

B

The critical state model qualitatively captures the essential features of
soil responses under drained and undrained loading.

What's next .. You were given an illustration using projection geometry of the es-
sential ingredients of the critical state model. There were many unknowns. For ex-
ampie, you did not know the slope of the critical state line and the equation of the
yield surface. in the next section we will develop equations to find these unknowns.
Remember that our intention is to build a simple mosaic coupling the essential fea-
tures of consclidation and shear strength.

6.4 ELEMENTS OF THE CRITICAL
STATE MODEL

6.4.1 Yield Surface

The equation for the yield surface is an ellipse given by

2
hp')z —pp =0 l (64)

The theoretical basis for the yield surface is presented by Schofield and
Wroth (1968) and Roscoe and Burland (1968). You can draw the initial yield
surface from the initial stresses on the soil if you know the value of M.

6.4.2 Critical State Parameters

6.4.2.1 Failure Line in {q, p’') Space The Mohr—Coulomb failure criterion
for soils as described in Chapter 5 can be wrilten in terms of stress invariants as

% = M, (®5)

where ¢, is the deviatoric stress at failure (similar to 7). M is a friction constant
(similar to tan &), and p; is the mean effective stress at failure (similar to a,).
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fFor compression, M = M, and for extension M = M,. The critical state line
intersects the yield surface at p./2.

L'et us find a relationship between M and &, for axisymmetric compression
and axisymmetric extension.

Axisymmetric Compression

i)
Mﬁ:ﬂ: loi = o3); A\ !

Py (g + 203 i
) &
3 e a3 i

We know from Chapter 5 that

(11) _1+sindg
!

[ 24 1 - sin &,
Therefore,
or
sin g, = Mo 7

Axisymme.lric Extension In an axisymmetric extension test, the radial
stress is the major principal stress. Since in axial symmetry the radial stress is
equal to the circumferential stress, we get

, 20 + ¢y
Pr= (_)
3 1

4y = (o} = oi)y

and
(ZE} + 1)
M=QJ= T3 £ _ _6sin dy
‘P (U; ) 1.) 3 + sin ¢, (6.8)
L =
or

©69)

An important point to note is that while the friction angle, ¢.,, is the same for
compression and extension, the slope of the critical state line in (g, p) space is
nol _the same. Therefore, the failure deviatoric stresses in compression and ex-
tension are different. Since M, < M., the failure deviatoric stress of a soil in
extension is lower than that for the same soil in compression.
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6.4.2.2 Failure Line in (e, p') Space Let us now find the equation for the
critical state line in (e, p') space. We will use the (e. In p’) plot as shown in Fig.
6.9¢c. The CSL is parallel to the normal consolidation line and is represented by

e = e — Nnpj (6.10)

where e is the void ratio on the critical state line when In p’ = 1. The value of
er depends on the units chosen for the p* scale. In this book, we will use kPa for
the units of p’.

We will now determine er from the initial state of the soil. Let us isotrop-
ically consalidate a soil 10 a mean effective stress p and then isotropically unload
it to a mean effective stress p., (Figs. 6.9a.b). Let X be the intersection of the
unloading/reloading line with the critical state line. The mean effective stress at
X is p//2 and from the unloading/reloading line

Pa
=g, +rl 6.11
ex = €, Knpc'/Z (6.11)
where ¢, is the initial void ratio. From the critical state line,
ex=er—hln % (6.12)

Therefore, equating Eqs. (6.11) and (6.12) we get

E=eo+(h—x)ln%+xlnpg (6.13)

FIGURE 6.9 Void ratio, er, to anchor critical state line.
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 The essential critical state parameters are:
A—Compression index, whick is obtained from ar isotropic or @ one-
dimensional consolidation rest.
w—1Unloading/reloading index or recompression index, which is ob-
tained from an isotropic or a one-dimensional consolidation tess.

M—Cridcal state frictional constant, whick is a function of ¢/ and is
obtained from shear tests (direct shear, triaxial, simple shear; etc.).

To use the critical state model, you must also know the initial stresses, for
example, p; and p., and the initial void ratio, £,

EXAMPLE 6.1

A CD test at a constant cell pressure, o3 = g3 = 120 kPa, was conducted on a
sample of nurmally consolidated clay. At failure, g =07 — o3 = 140 kPa. What

is the value of M.? If an extension test were to be carried out, determine the
mean effective and deviatoric stresses at failure.

Strategy Youare given the final stresses, so you have to use these to compte
¢ and then use Eq. (6.6) to calculate M, and Eq. (6.8) to calculate M,. You can
then calculate p; for the extension test by proportionality.

Solution 6.1

Step 1: Find the major principal stress at failure.

(o})y = 140 + 120 = 260 kPa
Step Z: Find ¢...

mg =TT 140

S0 de = ot~ 360 120 = Y
oL, = 21.6°

Step 3: Find M_and M,.

M 6 sin ¢/, _6x03

3 -sind, 3-037
6sindl, 6 X037
M“3+sin¢;,.‘3+0.37 = 0.66

Step 4 Find g, for extension.

0

.60
QJ—EXMO— 110 kPa

=]

EXAMPLE 6.2

A saturated soil sample was isotropically consolidated in a triaxial apparatus and
a selected set of data is shown in the table. Determine A, k, and ¢y
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Conditlon Celi pressure (kPa) Final void ratio
Loading 200 1.72

1000 1.20
Unloading 500 1.25

Strategy Make a sketch of the results in (e, In p’) space to provide a visual
aid for solving this problem.

Solution 6.2

Step I: Make a plol of In p’ versus e.
See Fig. E6.2.

Yoid ralio

e
PRI T ST )

FIGURE E6.2

Step 2: Calculate ).
From Fig. E6.2,

e _120-177
)

=032
Step 3 Calculate k.
From Fig. E6.2,

_ lae 120 - 125
“Tlnppup - In(EH

= 0.07
Step & Calculate e,

' 1000 ~
er =t + (A - ) m‘—;& + ko py =125 + (032 - 0.07) In —— + 007 In 500 = 3.24.

What’s next . . .We now know the key parameters to use in the CSM. Next, we will
use the CSM to predict the shear strength of soils.

6.5 FAILURE STRESSES FROM
THE CRITICAL STATE MODEL

6.5.1 Drained Triaxial Test

Let us consider a CD test in which we isotropically consolidate a soil to a,1 mean
effective stress p, and unload it isotropically to a mean effective stress of p;, (Figs.
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FIGURE 6.10 Failure in CD tests.

§.10.a,b) such that R, = 2. The siope of the ESP = TSP is 3:1 as shown by AF
in Fig. 6.10a. The ESP will intersect the critical state line at F. We peed to find
the stresses at F. The equation for the ESP is

9 = 3(p; ~ po) (6.14)
The equation for the critical state line, using a generic M, which for compression
is M_ and for extension is M,, is

q; = Mp; (6.15)

The intersection of these two lines is found by equating Eqs. (6.14) and (6.15)
which leads to ’

. _ _3ps
Pr= e MJ (6.16)

, 3Mp),
’41 =Mpr=3T 6.17)
[

Let us examine Eqs. (6.16) and (6.17). If M = M. = 3, then Py — © and
gy — =. Therefore, M, cannot have a value of 3 because soils cannaot have infinite

and

6.5 FAILURE STRESSES FROM THE CRITICAL STATE MQOEL 279

strength. If M, > 3, then p} is negative and g, is negative. Of course, p} cannot
be negative because soil cannot sustain tension. Therefore, we cannot have 2
value of M, greater than 3. Therefore, the region bounded by a slope g/p = 3
originating from the origin and the deviatoric stress axis represents impossible
soil states (Fig. 6.10a). For extension tests, the bounding slope is g/p = ~3. Also,
you should recall from Chapter 4 that soil states to the right of the normal con-
solidation line are impossible (Fig. 6.10b).

We have now delineated regions in stress space (g, p’) and in void ratio
space versus mean effective stress—that is, (e, p') space, that are possible for
soils. Soil states cannot exist outside these regions.

6.5.2 Undrained Triaxial Test

In an undrained test, no volume change occurs—that is, AV = 0—which means
that Ag, = 0 or Ae = 0 (Fig. 6.11) and, consequently.

e =¢€,=¢e — Alnpj (6.18)

By rearranging Eq. (6.18), we get

Py = exp(er—;—ﬁ) (6.19)

Since g; = Mpy, then

€r — &
g =M exp( r X ~)W (6.20)
l |
q Impossibie siress states
3 CSL
1 TSP
15
F 1
% +ESP
9 ] N
1"
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LA [
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FIGURE 6.11 failure in CU tests.
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For a CU test, the TSP has a slope of 3 (Fig. 6.11). For the elastic range of
stress, the ESP is vertical {(Ap’ = 0) up to the yield stress and bends toward the
critical state line as the pore water pressure increases considerably after yield.

The undrained shear strength, denoted by s,, is defined as one-half the
deviatoric stress at failure. That is,

_M - e
Sy = 2 exp( x ﬂ %21

For a given soil, M, A, and e are constants and the only variable in Eq. (6.21) is
the initial void ratio. Therefore, the undrained shear strength of a particular
saturated soil depends only on the initial void ratio or initial water content. You
should recall that we discussed this in Chapter 5 but did not show any mathe-
matical proof.

We can use Eq. (6.21) to compare the undrained shear strengths of two
samples of the same soil tested at different void ratio or to predict the undrained
shear strength of one sample if we know the undrained shear strength of the
other. Consider two samples, A and B, of the same soil. The ratio of their un-
drained shear strength is

[exp(e—r — en)]
(5)a _ N e ((eo)s - (eD)A)
(5o [ (er _ )] P X
exp! T

For a saturated soil, e, = w(, and we can then rewrite the above equation
as

T A
(Su)a (-:xp[——G’(“"B - wﬁ)j{ (6.22)
(s.)e A
Let us examine the difference in undrained shear strength for a 1% differ-
ence in water content between samples A and B. We will assume that the water
content of sample B is greater than sample A, that is, (wg — W,) is positive, A =

.15 (a typical value for a silty clay), and G, = 2.7. Putting these values intv Eq.
(6.22), we get

(su)B

That is, a 1% increase in water content causes a reduction in undrained shear
strength of 20% for this soil. The implication on soil testing is that you should
preserve the water content of soil samples, especially samples taken from the
field, because the undrained shear strength can be significantly altered by even
small changes in water content.

For highly overconsolidated clays (R, > 2) or dense sands, the peak shear
stress (g,) is equal to the initial yield stress (Fig, 6.7). Recall that the CSM predicts
that soils with R, > 2 will behave elastically up to the peak shear stress (initial

yield stress). By substituting p’ = p) and g = g, in the equation for the yield
surface [Eq. (6.4)], we obtain

1.20

2
. v 4
(pu)?_pqpc+xlp—z=0
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which simplifies to
a T 1
%=mH%ﬂ—mwm_nm>ﬂ (6.23)
pu
and
! T
[su = %pLVRa - L R>2 | (6.24)

The excess pore water pressure at failure is found from the difference be-
tween the mean total stress and the corresponding mean effective stress at failure;
that is,

uy = pr = p;
From the TSP,

qr
=p! 4+ =
Ps = Po 1

M er €o
- i’ 6.25
Au,—p°+ (3 ]) cxp( )‘ ( )

The essential points are:

1. The intersection of the ESP and the critical state line gives the failure
stresses.

2. The undralned shear strength depends only on the initial void ratio.

3. Small changes in water content can significantly alter the undrained
shear strength.

Therefore,

EXAMPLE 6.3

Two specimens, A and B, of a clay were each isotropically conso]idated.l under a
cell pressure of 300 kPa and then unloaded isotropically to a mean effectlv.e stress
of 200 kPa. A CD test is to be conducted on specimen A and a CU test is to be
conducted on specimen B. Estimate, for each specimen, (a) the yield slresse§,
P 4, (01),, and {o3),; and (b) the fajlure stresscs p}.1 g5, (o1)y, ar‘Ld (o3)y Est{-
mate for sample B the excess pore water pressure at yield and at failure. The soil
paranieters are A = 0.3, k = 0.05, ¢, = 1.10, and ¢, = 30°. The cell pressure was
kept constant at 200 kPa.

Strategy Both specimens have the same consolidation history but are tested
under different drainage conditions. The yield stresses can be found from the
intersection of the ESP and the initial yield surface. The initial yield surface is
known since p. = 300 kPa, and M can be found from ... The failure stresses can
be obtained from the intersection of the ESP and the critical state line. It is always
a good habit to sketch the ¢ versus p' and the ¢ versus p’ graphs to lfelp you
solve problems using the critical state model. You can also find the yield .and
failure stresses using graphical methods as described in the alternative solution.
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Solution 6.3
Step 1: Calculate M..

M. = 6 sin 30°

EEErTE 12

Step 2: Calculate ¢r.
From Eq. (6.13),

er=¢e, + (A - x) ln% +xlnp, =110 + (0.3 - 0.05) ln?% + 0.05 In 200 = 2.62

Step 3: Make a sketch or draw a scaled plot of the g versus p’ and the ¢
versus p’ graphs,
See Figs. E6.3a,b.

Step 4: Find the yield stresses.

Drained Test Let p; and g, be the yield stress (point B in Fig. E6.3a).
From the equation for the yield surface [Eq. (6.4)],

%

(ps)? ~ 300p; + RO =0 (03]

From the ESP,
4, = 3(p; — p3) = 3p, — 600 )

Solving Eqs. (1) and (2) for p; and g, gives two solutions: p, = 140.1 kPa,
g, = —179.6kPaandp} = 246.1 kPa, q, = 138.2 kPa. Of course, g, = -179.6kPa

500
400 ?/C?SL
§ o —7/ - E
= Pl i
- 200 ——
a, /%% Intaal yeld
100 \< surface — -
0 A
00 100 200 p; 300 400 500
p'kPa) P
(a)
25 ,
2 i
e 15 ¥ ! ——
S
1 B\‘—o.
T
05 :
0 oo 200 300 400 500
' (kPa)
®)

FIGURE E6.3a.b
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is not possible because we are conducting a compression test. The yield stresses
are then p; = 246.1 kPa, ¢, = 138.2 kPa.
Now,

g, = (o), — (0%), = 1382 kPa; (o3}, = 200 kPa
Solving for (a7), gives
(o4); = 1382 + 200 = 3382 kPa
Undrained Test The ESP for the undrained test is vertical for the region

of stress paths below the yield stress, that is, Ap’ = 0. From the yield surface
[Eq. (6.4)] for p’ = p, = p!, we get

200’-200x300+1%=0
S =127 X% 200 X 100
and
q, = 169.7 kPa
From the TSP,
s =p;+%’=200+16—39'z=256.6kPa

The excess pore waler pressure at yield is
Au, = p, — py = py, — Po = 256.6 — 200 = 56.6 kPa

Now

N
py = py - S T M) 3 (@) _ 200 kpa

q, = {(ai), ~ o3 = 169.7 kPa
Solving for (o), and (o3), gives
(o)), = 3133 kPa; (03), = 143.4 kPa
Check
(a1), = (03), + Au, = 1434 + 56.6 - 200 kPa
Step 5: Find the failure stresses.

Drained Test

3 x 200
Equation (6.16): pj = -1z

Equation (6.5): ¢ = 1.2 X 3333 = 400 kPa

= 3333 kPa

Now,
ar = (oi)y - (a3); = 400 kPa wnd {u3); = 200 kPa
Solving for (o1);, we get
(l); = 400 + 200 = 600 kPa
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Undrained Test

262 - 1.10
03 ) = 158.6 kPa

Equation {6.5): q; = 1.2 X 158.6 = |90.3 kPa

Equation (6.19): pr= exp(

Now,

. (o) + 2(o3)
pi= Lau = 1586 kPa

4s = (vi)y — (o3)y = 190.4 kPa
Solving for {o1); and (o3),, we find
(o)) = 285.5kPa and (of), = 95.1 kPa

We can find the change in pore water pressure at failure from either Eq. (6.24)

1.2 62 -
Auy = 200 + (T - l) exp(——262031‘10) = 104.9 kPa

or
Auy; = o3 — (03); = 200 - 95.1 = 104.9 kPa

o Grgphical Method We need to find the equations for the normal consal-
idation line and the critical state lines.

Nurmal Conselidation Line
Void ratio at preconsolidated mean effective stress:
€. =g, — xln“s—é = 110 - 0,08 ln% =108
Void ratio at in p’ = 1 kPa on NCL:
€ =e +Anp/ =108 + 0.3 In300 = 279
The equation for the normal consolidation line is then
€=279-031np'

The equation for the unloading/reloading line is
e = 1.08 + 0.05 |n
p

The equation for the critical state line in (e, p') space is
¢=262~-031Inp

Now you can plot the normal consolidation line, the unloading/reloading line,
and the critical state line as shown in Fig. E6.3b.

Plot Initial Yield Surface The yield surface is

(') - 300 + ¢ 0
(12
0g
g =12 2=
P L

For p’ = 0 to 300, plot the initial yield surface as shown in Fig. E6.3a.
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Plot Critical State Line The critical state line is

q =12’
and is plotted as OF in Fig. E6.3a.

Drained Test The ESP for the drained test is

v 1
pro= 200+ 3
and is plotted as AF in Fig. E6.3a. The ESP intersects the initial yield surface at
B and the yield stresses are p, = 240 kPa and 4, = 138 kPa, The ESP intersects
the critical state line at F and the failure stresses are p; = 333 kPa and g, =
400 kPa.

Undrained Test For the undrained test, the initial void ratio and the final
void ratio are equal. Draw a horizontal line from A to intersect the critical state
line in (e, p) space at F (Fig. E6.3d). Project a vertical line from F to intersect
the critical state line in (g, p') space at F (Fig. E6.3¢). The failure stresses are
Py = 159 kPa and g, = 190 kPa. Draw the TSP as shown by AS in Fig. E6 3c.
The ESP within the elastic region is vertical as shown by AB. The yield stresses
are p; = 200 kPa and g, = 170 kPa. The pore water pressures are:

At yield—horizontal line BB": Au, = 57 kPa
At failure—horizontal hne FF:  Au, = 105 kPa
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EXAMPLE 6.4 ha stresses we need to know the elastic, shear, and butk moduli. In the next section,

e will use the CSM to determine these moduli.
Determine the undrained shear strength in (a) a CU compression test and (b)a

CU extension test for a soil with R, = §, p, = 70 kPa, and ¢/, = 25°,

6.6 SOIL STIFFNESS
Strategy Since you are given &/,, you should use Egs. (6.6) and (6.8) to find P —————

M. and M, Use Eq. {6.24) to solve the problem. The elastic modulus, E', or the shear modulus, G, and the bulk modulus, X',

characterize soil stiffness. In practice, E' or G, and X' are commonly obtamedr
from triaxial or simple shear tests. We can obtain an estimat_e o_f E' or_G and K
using the critical state model and results from axisqutetrxc, isotropic consoli-
dation tests. The void ratio during unloading/reloading is described by

Solution 6.4
Step 1: Calculate M, and M,.
M, = 6sindy,  6sin 25°

0.98 3 e=e —xlnp (626)
3- _Si" o 3-sin28 7 - where e, is the void ratio on the unloadingfreloafiing line-at p = _1 unit'of stress
_ bsméy 0.74 (Fig. 6.12). The unloading/reloading path BC _(F1g,. 6.12)is re\_werSlble, which is a
T3 dtsingn characteristic of elastic materials. Differentiating Eq. (6.26) gives
Step 2: Calculate s,,. -  dp (627)
Use Eq. (6.24). » de =~
Compression: s, = g X 70V5 - 1 = 68.6 kPa 1 The elastic volumetric strain increment is
£ d ®__dp’
. 074 r deg = ——o— - ey & (6.28)
Extension: s, = -5 X V5 -1 =518kPa : E 1+e € P
Or, by proportion, 3 But, from Eq. (3.99),
b &
ion: 5, = 04 . . deg - 2
Extension: s, = 098 X 68.6 = 51.8 kPa a » K
3 Therefore,
EXAMPLE 6.5 - . ;
] dp' _ _k_ dp’
The in situ water content of a soil sample is 48%. The water content decreases K l+e p
t0 44% due to transporiation of the sampie to the laboratory and during sample Iving for K’. we obtain
preparation. What difference in undrained shear sirength could be expected if A Solving for &°,
=013 and G, = 2.77 PO A, (629)

Strategy The solution to this problem is a straightforward application of Eq.

(6.22). From Egq. (3.100),

E' =3K'(1 — ")
Solution 6.5

Step I: Determine the difference in s, values,

Use Eq. (6.22). <

(Iu)lnb (27(048 _ 0‘44)) A
Soullel = eyp| ) 2 03
(Su)neia 0.13

The laboratory undrained shear strength would probably show an I e

increase over the in situ undrained shear strength by a factor greater x B

than 2. B

. . 1 inp
What's next . . .We have discussed methods to calculate the failure stresses. But fail-

ure stresses ars only one of the technical criteria in the analysis of soil behavior. We

FIGURE 6.12 Loading and unloading/reloading (elastic) response of soils in
also need to know the deformations or strains. But before we can gst the strains from

{e-p' In) space.
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Therefore,

_ 3L+ el - ) |

K

1% (6.30)

Also, from Eq. (3.102),
El
G= 201 + ')

Therefore,

(j;p'('l t e~ 20) _ L5p'(1 + e)(i — 20) ©31)

2k(l + o) w(l +v)

Equations {6.30) and (6.31) indicate that the elastic constants, E' and G,
are proportional to the mean effective stress. This implies nonlinear elastic be-
havior and therefore calculations must be carried out incrementally. For over-
consolidated soils, Egs. (6.30) and (6.31) provide useful estimates of £’ and G
from conducting an isotropic consolidation test, which is a relatively simple soil
test.

Sail stiffness is influenced by the amount of shear strains applied. Increases

in shear strains tend to lead to decreases in G and E’ while increases in volumetric -

strains lead to decreases in K'. The net effect is that the soil stiffness decreases
with increasing strains.

It is customary to identify three regions of soil stiffness based on the level
of applied shear strains. Al small shear strains (y or &, usually < 0.001%), the
soil stiffness is approximately constant (Fig. 6.13) and the soil behaves like a
linearly elastic material. At intermediate shear strains between 0.001% and 1%,
the soil stiffness decreases significantly and the soil behavior is elastoplastic (non-
linear). At large strains (y > 1%), the soil stiffness decreases slowly to an ap-
proximately constant value as the soil approaches critical state. At the critical
state, the soil behaves like a viscous fluid.

In practical problems, the shear strains are in the intermediate range, typ-
ically v < 0.1%. However, the shear strain distribution within the soil is nut
uniforim. The shear strains decrease with distance away from a structure and local
shear strains near the edge of a foundation slab, for example, can be much greater
than 0.1%. The implication of a nonuniform shear strain distribution is that the

G K F

Smail strains ; Intermediate strains . Large strains

0.001 1 T & €4 (%)

FIGURE 6.13 Schematic variation of shear, bulk, and Young's elastic moduli with
strain levels.

6.6 SOIL STIFFNESS 289

soil stiffness varies within the loaded region of the scil. Consequently, large set-
tlements and failures are usually initiated in the loaded soil region where the soil
stiffness is the lowest.

In conventional laboratory tests, it is not practical to determine the soil
stiffness at shear strains less than 0.001% because of inaccuracies in the mes-
surement of the soil displacements due to displacements of the apparatuses them-
selves and to resolutior and inaccuracies of measuring instruments. The soil
stiffness at small strains is best determined in the field using wave propagation
techniques. In one such technique, vibrations are created at the soil surface or
at a prescribed depth in the soil, and the shear wave velocity (v,,) is measured.
The shear modulus at small strains is calculated from

G= “—Vg—”)z (6.32)

where + is the bulk unit weight of the soil, and g is the acceleration due to gravity.
In the laboratory, the shear modulus at small strains can be determined using a
resonance column test {Drnevick, 1967). The resonance column test utilizes a
holiow cylinder apparatus {Chapter 5) to induce resonance of the soil sample.
Resonance column tests show that G depends not only on the level of shear
strain but also on void ratio, overconsolidation ratio, and mean effective stress.
Various empirical relationships have been proposed linking G to ¢, overcon-
solidation ratio, and p’. Two such relationships are presented below.

Jamiolkowski et al. (1991) for clays

F = 1?.1? (R)*VP MPa (6.33)
i |

where G is the initial shear modulus, p’ is the mean effective stress {MPa), and
# is a coefficient that depends on the plasticity index as follows:

I (%) a
0 0
20 0.18
40 0.30
60 0.41
80 0.48

=100 0.50

Seed and Idriss (1970) for sands

G = k,\p' MPa
a k1 D, H’Gl k1
0.4 484 30 235
05 415 a0 277
0.6 353 a5 298
0.7 304 60 360
08 270 75 408
0.9 235 90 484
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What's next .. Now that we know how to calculate the shear and bulk maduli, we
can move on to determine strains, which we will consider next.

6.7 STRAINS FROM THE CRITICAL
STATE MODEL

6.7.1 Volumetric Strains

The total change in volumetric strains consists of two parts: the recoverable part
(elastic) and the unrecoverable part (plastic). We can write an expression for the
total change in volumetric strain as

e, = Agp + Ak {6.35)

where the superscripts ¢ and p denote elastic and plastic, respectively. Let us
consider a soil sample that is isotropically consolidated to a mean effective stress
P: and unloaded to a mean effective stress p! as represented by ABC in Figy.,
6.14a,b. In a CD test, the soil will yield at D. Let us now consider a small incre-

ment of stress, DE, which causes the yield surface to expand as shown in Fig.
6.14a.

2.5

csL ESF
ar /0 T
LAg]
N
DN agf

PE I

FIGURE 6.14 Determination of plastic strains.
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The change in void ratio for this stress increment js de = jex — e (Fig.
6.14b) and the corresponding total change in volumetric strain is

__he lee — epl _ A PE )
As”_l+e,_,_(1+el, _1+e.,lnp,3 (6.36)

The volumetric elastic strain component is represented by ED'. That is, if you
were to unload the soil from E back to its previous siress state at D, the rebound
will occur along an unloading/reloading line associated with the maximum mean
effective stress for the yield surface on which unloading starts. The elastic change
in volumetric strain from E to D is

Ae =(eg:—e5)= K ln‘u—é
1+ e 1+ e 1+e. pob

Ags = (6.37)

We get a positive value of Agf, because rather than computing the rebound (ex-
pansion) from E 10 D', we compute the compression from D' to E.

The volumetric elastic strains can also be computed from Eq. (3.99); that
is,
Ap’
X (6.38)

Agg =

The change in volumetric plastic strain is
[

. .
‘AE‘; = Ae, — g, = ( K) 1np—f% (6.39)

1+ e P

Under undrained conditions, the total volumetric change is zero. Consequently,

from Eq. (6.35),
Agt = -Agl (6.40)

6.7.2 Shear Strains

Let the yield surface be represented by

2
Fe(pV ~ppivas=0 (6.41)

To find the shear or deviatoric strains, we will assume that the resultant plastic
strain increment, Ae?, for an increment of stress is normal 10 the yield surface
(Fig. 6.14a). Normally, the plastic strain increment should be normal to a plastic
potential function but we are assuming here that the plastic potential function
and the yicld surface (yield function, F) are the same. A plastic potentia] function
is a scalar quantity that defines a vector in terms of its location in spaee. Classical
plasticity demands that the surfaces defined by the yield and plastic potential
coincide. If they do not, then basic work restrictions are violated. However, mod-
ern soil mechanics theories often use different suifaces for yield and potential
functions to obtain more realistic stress—strain relationships. The resultant plastic
strain increment has two components—a deviatoric or shear compenent, Agf,
and a volumelric component, Aej, as shown in Fig. 6.14. We already found Aef
in the previous section.

Since we know the equation for the yield surface [Eq. (6.41)}, we can find
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the normal to it by partial differentiation of the yield function with respect to p'
and g. The tangent or slope of the yield surface is

dF = 2p' dp' - pl dp’ + 2q % -0 (6.42)

Rearranging Eq. (6.42), we obtain the slope as

dg _(pf2 - p'
dp' ( g/M? (4
The normal to the yield surface is
1 Y
dgidp' dg

From Fig. 6.14a, the normal, in terms of plastic strains, is def/de?. Therefore,

de? dp' IM?
dgq _ _4p _ __ 9™
dgj dgq pi2 —p' (644
which leads to
def = def 4 — (6.45)
UM - pl2) ”

The elastic shear strains can be obtained from Eq. (3.101); that is,

(6.46)

These equations for strains are valid only for small changes in stress. For
example, you cannot use these equations to calculate the failure strains by simply
substituting the failure stresses for p’ and g. You have to calculate the strains for
small increments of stresses up to failure and then sum each component of strain
separately. We need to do this because the critical state model considers soils as
elastic—plastic materials and not linearly elastic materials.

EXAMPLE 6.6

A sample of clay was isotropically consolidated to a mean effective stress of 225
kPa and was then unloaded to a mean effective stress of 150 kPa at which stress
e, = 1.4. A CD test is to be conducted. Calculate (a) the elastic strains at initial
yield and (b) the total volumetric and deviatoric strains for an increase of devia-
toric stress of 12 kPa after initial yield. For this clay, A = 0.16, x = 0.05, ¢, =
25.5%, and v' = 03.

Strategy It is best to sketch diagrams similar to Fig. 6.4 to help you visualize
the solution to this problem. Remember that the strains within the yield surface
are elastic.

6.7 STRAINS FROM THE CRITICAL STATE MODEL 293

Solution 6.6
Step 1: Calculate initial stresses and M..

p! = 225 kPa, p;, = 150 kPa

225
R, = 150 1.5

_ 6singl _ 6sin255°
MC_3—s'm¢,'s—3fs\in25,5°_l

Step 2: Determine the initial yield stresses.
The yield stresses are the stresses at the intersection of the initial
yield surface and the effective stress path.

v

Equation tor the yield surface: (p')? — p'p. + ;z =0
Equation of the ESP: p* = p;, + g

Lol . - , ., I gy
At the initial yield point D (Fig. 64). p, = p, + E =150 + 5

Substituting p’ = p;, g = 4,, and the values for M, and p_ into the
equation for the initial yield surface [Eq. (6.4)] gives

2 2
dy 4y qy
S0+ =] - [150+=)225 + =5 =
(1 3) ( " Fhms e e
Simplification results in
g2 + 225, — 10125 = 0

The solution for ¢, is ¢, = 90 kPa or g, = —112.5 kPa. The correct
answer is g, = 90 kPa since we are applying compression to the soil
sample. Therefore,

p,’=150f%=150 + ¥=180k1’a

Step 3:  Calculate the elastic strains at initial yield.

Elastic volumetric strains

y 0.05 1
Elastic volumetric strains: Ag; = " a2 L &

- =38 x 10°*
1 +e p, 1+147150

Aliernatively, you can use Eq. (6.38). Take the average value of p’
from p; to p, to calculate K'.

_ps tpy 150 + 18U

Pl 7 2 Ikha
' + L
p=P0te) 1650114 _ o0,
" 0.05
AE;=Q=M=33><10“

K’ 7920
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Elastic shear strains
(1 4 e )(1 —20) 3 x165(1 + 1.4)(1 — 2 X 0.3)

= = 3655 ki

2x(1 + v') 2 X 0.05(1 + 0.3) 655 kt's

. Ag 90

8% =36 = Tx 3655

G =

=82 x 107

Step 4 Determine expanded yield surface.

Afier iniial yield: Ag = 12 kPa

Ag _12

SAp = =_—=4k
Ap 3 3 Pa

The stresses at E (Fig. 6.4) are pg = p, + Ap = 180 + 4 = 184 kPa,
and

qe =4, + Ag = 90 + 12 = 102 kPa

The preconsolidated mean effective stress {(major axis) of the
expanded yield surface is obtained by substituting p; = 184 kPa and
ge = 102 kPa in the equation for the vield surface [Eq. (6.4)]:

102?
(184)" - 184(p1)e + —5- = 0
- (phe = 240.5 kPa
Step 5: Calculate strain increments after yield,

AN ph 016 184 _

Pe _ = 5% 10t
T+e, "p T+14" T80
R—

< o PE_ 016 - 005 184

Equation (6.36): Ag, =

Equation (6.39). A€} = 1+e, np,’ I+ 14 lnm =10 x 10—
; 45 " 102
Equalion (645): A} = Ae} Mip: - (POe2 = 10 x 10 12(184——24[)51'2j
=16 x 107

Assuming that G remains constant, we can calculate the elastic shear
strain from

ati DA Bd 12 -
Equation (6.46): Ae, = 3G 3% 3655 11 x 10
Step 6: Calculate total strains.

Total volumetric strains: £, = Agf + Aef = (38 + 10)107° = 48 x 107*

Total shear strains: €, = Aef + Aef = [(B2 + (1) + 16]107* = 109 X 10~*
| ]

EXAMPLE 6.7

Show that the yield surface in an undrained test increases such that

p, w/{A—w)
prev
pi={pl ( )
DL
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FI(#JRE EG6.7

where p/ is the current value of the major axis of the yield surface, ( Pprey 18 the
previous value of the major axis of the yield surface, Pprev 15 the previous value
of mean effective stress, and p' is the current value of mean effective stress.

Strategy Sketch an ¢ versus In p’ diagram and then use it to prove the equa-
tion given.
Solution 6.7

Step L: Sketch an e versus In p’ diagram.
See Fip, E6.7.

Step 2: Prove the equation.

Line AB
(Pprev
ey~ es|l =k IH(T:\- (1)
Line CD
lep = ec] = «ln P__i’ 2
p ~ ecl » @
Subtracting Eq. (2) from Eq. (1), noting that e, = e, we obtain
Ieb—eg|=xln{(’L,)m—v}fxlnpf 3)
prev
But, from the normal consolidation line BD, we get
X
ep —ey|=rln > 4
0= el {(p,)pm} @

Substituting Eq. (4) into Eq. (3) and simplifying gives

p ' =HA—x}
S
14

What's next . . .We have calculated the yield stresses, the failure stresses, and strains
for a given stress increment. In the next section, a procedure is outlined to calculate
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the stress—strain, volume change, and excess pore water pressure responses of a
soil using the critical state model.

6.8 CALCULATED STRESS-STRAIN RESPONSE

You can predict the stress—strain response, volume changes, and excess pore
waler pressures from the initial stress state to the failure stress state using the
methods described in the previous sections. The required soil parameters are
D&, eq, plor OCR, A, &, &, and v'. The procedures for a given stress path are as
follows.

6.8.1 Drained Compression Tests

1. Determine the mean effective stress and the deviatoric stress at initial yield,
that is, p; and g,, by finding the coordinates of the intersection of the initial
yield surface with the effective stress path. For a CD test,

'

(M?p. + 18p;) + V(M%p, + 18p))T - 36(M" + 9)(p.)
py =

2(M* + 9)

4, = 3(p, - po) (6.48)
Calculate the mean effective stress and deviatoric stress at failure by finding
the coordinate of the intersection of the critical state line and the effective
stress path, that is, p; and g;. For a CD test, use Eqgs. (6.16) and (6.17).
Calculate G using Eq. (6.31) or empirical cquations (6.33) and (6.34). Use
an average value of p' [p’ = (p, + p,)/2] to calculate G.

Calculate the initial elastic volumetric strain using Eq. (6.37) and initial
elastic deviatoric strain using Eq. (6.46).

(6.47)

2

s

el

ol

i

Divide the ESP between the initial yield point and the failure point into a
number of equal stress increments. Small increment sizes (<5% of the stress
difference between g; and g,) tend to give a more accurate solution than
larger increment sizes.

For each mean effective stress increment up to failure:

6. Calculate the preconsolidation stress, p;, for each increment; that is, you
are calculating the major axis of the ellipse using Eq. (6.4), which gives

2

q

where p’ is the current mean effective stress.
7. Calculate the total volumetric strain increment using Eq. (6.36).
8. Calculate the plastic volumetric strain using Eq. {6.39).
9. Calculate the plastic deviatoric strain increment using Eq. (6.45).
10
1

Calculate the elastic deviatoric strain increment using Eq. (6.46).

Add the plastic and elastic deviatoric strain increments to give the total
deviatoric strain increment,
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12. Sum the total volumetric strain increments (,).
13. Sum the total deviatoric shear strain increments (g,).

14, Calculate
3e, + € £,
£ = % =g + 5“ (6.50)
15, If desired, you can calculate
s -2, o4
oi=g4p and us-p -3

The last value of mean effective stress should be about 0.99p; to prevent
instability in the solution.

6.8.2 Undrained Compression Tests

1. Determine the mean effective stress and the de viatoric stress at initial yield,
that is, p; and g,. Remember that the effective stress path within the initial
yield surface is vertical. Therefore, p; = p, and g, are found by determining
the intersection of a vertical line originating at p/ with the initial yield sur-
face. The equation to determine g, for an isotrapically consolidated soil is

g, = Mp; }:% -1 (6.51)

If the soil is heavily overconsolidated, then g, = g,,.

2. Calculate the mean effective and deviatoric stress at failure from Eqgs, (6.19)
and (6.20).

3. Calculate G using Eq. (6.31) or empirical equations (6.33) and (6.34).

4. Calculate the initial elastic deviatoric strain from Eq. (6.46).

5. Divide the horizontal distance between the initial mean effective stress,
po» and the failure mean effective stress, p, in the e~p’ plot into a number
of equal mean effective stress increments. You need to use small stress
increment size, usually less than 0.05(p,, — p;).

For each increment of mean effective stress, calculate the following:

6. Determine the preconsolidation stress after each increment of mean effec-
tive stress from

C e PN
P = (Ppee o

where the subscript “prev’’ denotes the previous increment, p!. is the current
preconsolidation stress or the current size of the major axis of the yield
surface, and p’ is the current mean effective stress.

7. Calculate g at the end of each increment from

— et [PE
q = Mp ;—1

8. Calculate the volumetric elastic strain increment from Eq. (6.37).
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9. Calculate the volumetric plastic strain increment. Since the total volumetric
strain is zero, the volumetric plastic strain increment is equal to the negative
of the volumetric elastic strain increment; that is, Ae} = —Ag;.

10. Calculate the deviatoric plastic strain increment from Eq. (6.45).
11. Calculate the deviatoric elastic strain increment from Eqg. (6.46).

12. Add the deviatoric elastic and plastic strain increments to get the total
deviatoric strain increment.

13. Sum the total deviatoric strain increments. For undrained conditions, '

€ = &;.

Calculate the current mean total stress from the TSP. Remember you know
the current value of g from Step 7. For a CU test, p = p; + g/3.

Calculate the change in excess pore water pressure by subtracting the cur-
rent mean effective stress from the current mean total stress.

14

H

15

EXAMPLE 6.8

Estimate and plot the stress—strain curve, volume changes (drained conditions),
and excess pore water pressures {undrained conditions) for two samples of the
same soil. The first sample, sample A, is to be subjected to conditions similar to
a CD test and the second sample, sample B, is to be subjected to conditions
similar to a CU test. The soil parameters are A = 0.25, k = 0.05, &, = 24°,v' =
0.3, ¢, = L.15, p, = 200 kPa, and p; = 250 kPa.

Strategy Follow the procedures listed in Section 6.8. A spreadsheet can be
prepared to do the calculations. However, you should manually check some of
the spreadsheet results to be sure that you entered the correct formulation. A
spreadsheet will be used here but we will calculate the results for one increment
for each sample.

Solution 6.8
6sindy _ 6sin24°
3 —sin ¢, 3 — sin 24°
Pe
2

Calculate M: M, = = (.94

Calculate er: er=¢, + (A - k) In ="+ xIn p, = 1.15
50
+ (025 - 005) In 32— + 0.05 In 200 = 2.38

Each step corresponds to the procedures listed in Section 6.8.

Sample A, Drained Test

Step 1:
, _ (Mpl) + 18p)) + V(Mp, + 18p) — 36(M* + 9)(pi)’
7= 2(ME+ 9)
(0.947 x 250 + 18 X 200) + V(0.947 X 250 + 18 X 200)* — 36(0.94% + 9)(200)*
N 20947 + 9)
= 224 kPa

9, = 3(p, ~ pi) = 3(224 — 200) = 72 kPa
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Step 2:
. _ 3Mps |
LTI TW
I X2
P = 3—_0#;2 = 2913 kPa, g; = Mp} = 0.94 X 2913 = 2739 kPa
Step 3:
pL, = M =212 kPa
C3p(1t+e)(1-2v)  3x212(1 + 115) X (1 - 2x03)
G (1 + ) 2 X 0.05(1 + 03) = 4207 kPa
Step 4:
Ag 1.9 _
A€mm=__=_=4x1 3,
(A€t = 3G = 3 a257 ~ 37 X 10
ey % . Py 005 224 -
(A€ P = 77 In D = T35 M g0 = 26 % 10
Step 5: Let Ap’ = 4 kPa; then Ag =3 X Ap’ = |12 kPa.
First stress increment after the initial yield follows.
Step6: p’' =224 + 4 =228kPa,qg =719 + 12 = 8§3.9 kPa,
R 8.9
pe=p + My 228 + 094 % 228 262.9 kPa
Step 7:
LA p 025 w8 L
8 = Then o 1+ 115 M opg = 21 %10
Step 8:
N-x . p' (025 -005) 228 B
2 - £ - L9 _ 3
8 = Tl = s Iy = T X 10
Step 9:
q . 83.9 )
Ae? = Agf ———— =16 X103 —/—0mM8M =], 3
£ = 0% MG - pi2) 0 928 - 2620m) - V610
Step 10:
€ ﬂ = .i_ = =3
A =35 T Txaor o HOX W
Step 1k

Ae, = Ae; + Aef = (10 + 1.6) X 107 = 2.6 x 10~*
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Step 12: 300
250 —— = - - B et
£ = (AE )i T A8, = (2.6 + 21) X 107% = 4.7 x 1072 i
_. 200 ! —
5
Step 13: S 150 e
o
£, = (A& mua + Ag, = (5.7 + 2.6) X 107? = 8.3 x 1072 100 ;
Step 14: 50
{
0 . !
€ =€ TESMD=(83+4T3) x 10" =98 x 107 0 100 200 300 400 500
g x 107
(@)
The spreadsheet program and the stress—strain plots are shown in the table below
and Figs. E6.8a,b. There are some slight differences between the calcutated val- o2 100 200 300 __ a0 500
ues shown above and the spreadsheet because of number rounding. . L N
Drained Case 1
S 15 -
Given data Calculated values :\ 20 \ -
A 0.25 M 0.94 AP 4kPa 25 \ _
« 0.05 A, 125 Ag  12kPa 30 P ;
b, 24 e  2.38 G 4207.0 kPa 4 _ 15 | i —
8, 1.15 P} 291.4 kPa Aeg 0.0026 ; ®)
o 200kPa | g} 2742kPa | Ae5  0.0057 ! FIGURE E.85.5
4 250 kPa 214 224.0 kPa
v 0.3 q, 71.9kPa

Sample B, Undrained Test

“Selacted increment.

‘ Step 1:
Tabulation =
;
o m o a, = Mp; B2 — 1 = 094 x 200 %g—g—l=94kpa
P Iag ¢ L3 ac, Iag, ag asg a Asl Agg  Eg=They g °
OPal  (kPal {kPa)  (KPab (X107} (X101 {x 107 (X100 kP (x 107 107N (x 10 (x W
Step 2:
0 0 0 0 0.0 00 00 a0 00 0.0 0.0 3
2240 00 719 2500 26 26 00 00 42070 &7 57 57 "y = , e — e, 2.38 - LIS
2280 120 838 2628 21 a7 16 16 44844 g8 26 8.2 w s pr=expl—— | = o025 )~ 137 kPa
2320 240 958 2767 20 67 6 19 45638 09 27 108 "  Mp = 09;1 X 137 = 1288 kPa
2360 360 1079 2916 20 a7 16 21 48431 09 30 18.0 e & P '
2400 480 1189 3076 20 0.7 16 25 47225 08 23 173 . Step 3
2040 600 1M5 3244 18 126 15 28 48019 08 T 209 » ] ep >
2480 720 1439 322 19 145 5 32 w8813 08 40 249 m Ip(1 + e (1 - 2v) 3 x 2001 + 1.15) x {1 - 2% 03)
220 840 1559 3608 1.9 163 15 37 40?04 as 9.4 e G - - = = 3969.2 kPu
560 960 1679 3803 1.8 18.2 15 42 50401 038 50 4 "y k(1 + ) 2x005(1 + 03)
2800 1080 1788 4005 1.8 200 14 43 51194 o8 57 0.1 e
4.0 1200 1918 4214 18 217 14 58 519§ 08 6.6 s T Step 4:
W80 1320 2089 4431 17 235 14 69 57782 08 7.7 543 uy A 94
2720 1440 2158 4654 17 25.2 1.4 X 5357.6 0.7 ] 836 T (AE:)"““‘I = % — m = 79 x 1“—3
2760 1560 2279 4884 1.7 269 14 1.0 9437.0 0.7 1.7 75.4 8 B
2000 1689 2398 5120 17 228 12 B1 58164 07 159 913 e
2840 1800 2519 5362 16 0.2 13 37 6SBES 07 244 1187 12§ Step 5: Let Ap' = 3 kPa.
2800 1920 2639 5610 16 9 13 520 6753 07 527 1623 1w |
2910 2000 2728 B788 1.2 331 10 2902 5450 07 290.9 %93 4

First stress increment after the initial yield follows.
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Step 6:
P =pi— Ap' =200 - 3 =197 kPa
, —x 0.05/(0.25-0.08
= (‘ué).,m(‘l?)du : = zso(%) ( ) = 250.9 kPa
Step 7:
q=Mp"/§—fj=0.94X197vj%—l=97kPa
Step 8:
At = Tre ’;—‘,;= —%h]%; -0.35 x 10 ?
Step %
Aef = —Ag; =035 %107
Step 10:
Aeh = Aep ATZ(p'q—‘p;/z) =035 x 10°} Wgﬁw—z) - 054 x 107
140 T } B H
120 : = et mﬁ:»,ff
mo}?éf. e
g 80 e
w0 |
20— | .
OJ0 10 40 50 60 70 80
g x 1073
@
CD 20 40 60 80
L e s T S —
40
AN f
3 N
00— e |
120
()

FIGURE EG.8¢c,d

Step 11:

6.8 CALCULATED STRESS-STRAIN RESPONSE

_Ag _ 97941

- 27 -3
3G 3 x 3969.2 024 x 10

A

Step 12: Ae, = €} + Ae? = (0.24 + 0.54) X 1072 = 0.78 x 10~

Step 13 ¢, = ¢,
Step14: p = p,
Step15: Au=p

The spreadsheet program and the stress-strain plots are shown in the table below

and Figs. E6.8c,d.

= (A€ imial + A8y = (7.9 + 0.78) X 1072 - 87 x 1072
t g =200+ % = 2323 kPa
—p'=233-197 = 353 kPa

Undrained Triaxial Test

Given data

Calculated values

-
A 0.25 M 0.94 Ap  3kPa

K 0.05 R, 1.25 Ag 9 kPa

e 24 =38 2.38 G 3969.2 kPa
8y 1.15 P 1373 kPa 5 0

P 200 kPa q;

129.2 kPe [ 0.0079

303

Pe 250 kPa Py 200.0 kPa
v 03 q, 94.1 kPa
Auy 106.8 kPa
Tabulation
Eq =
3 L3 9 Ay Ay asf G Aeg ar, Taeq & 4 Au
IkPal  (KPal  (KPa) (x 10°%) {x 107 (x 107} (wPa) (x 107" (x10%) {x W07 (x10°% (&Pal (KPal
] 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0
2000 2500 94t 0.0 a9 00 39892 79 7.8 7.8 79 B4 N4
1970 2808 970  -0.4 0.4 0.5 33385 02 0.8 8.7 87 2323 353
1940 2518 €87 -04 0.4 0.6 18799 02 08 95 95 2337 392
191.0 2528 1023 -04 04 06 38204 02 08 104 104 2341 4349
1880 2539 1047  -04 04 27 37R0B 02 09 113 1.3 2349 469
1850 2548 1070 -D.4 0.4 08 37013 02 1.0 123 123 2387 507
1820 2560 1082  -0.4 0.4 0.3 36418 02 11 134 134 2364 S4.4
178.0 2570 112 -04 0.4 10 35822 02 12 s 145 2301 581
1760 2581 1131 -04 0.4 11 B:27 02 1.3 158 158 2377 #137
173.0 2582 1148 04 04 12 3612 02 1.4 171 1740 2383 863
170.0 2604 1166  -0.4 04 13 34038 02 1.6 18.7 187 2389 689
167.0 2615 1182  -04 04 16 33441 0.2 7 20.3 03 94 724
184.0 2827 1197 D4 04 V7 32845 02 19 222 222 2399 759
181.0 2638 1211 -0.4 0.8 20 32250 0. 22 4.4 244 2404 794
1580 2662 1225  -0.4 04 24 31655 0.1 25 269 269 2408 828
1550 2664 1237 D4 04 29 31058 01 3.0 299 299 2412  BE2
1520 2678 1248 05 0.5 35 384 01 a7 s 336 2416 896
1450 2681 1258 06 [\ ] 486 28868 0.1 a7 M2 382 2420 930
1480 2705 1268  -0% 05 63 29773 04 64 447 447 2423 963
1430 2719 1278 -0% 05 99 28678 01 10.0 546 546 2428 936
1400 2733 1286 05 0.5 214 28082 0.1 215 76.1 761 2428 1028
137.4 2746 1292 04 04 6388 27527 0.4 8387 7128 128 2431 1057
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What's next . . We have concentrated on isctropic consolidation of soils and axisym-
metric conditions during shearing. The concepts and methodology developed arg -

CHAPTER 6 A CRITICAL STATE MODEL TO INTERPRET S0IL BEHAVIOR

equally applicable to plane strain or other loading conditions. in nature, most soils
are one-dimensionally consolidated, called K -consolidation. Next, we will consider
K, -consalidation using the critical state model.

6.9 K,-CONSOLIDATED SOIL RESPONSE

When a soil is one-dimensionally consclidated, anisotropy is conferred on the
soil structure. The soil properties are no longer the same in all directions. We
can use our simple critical state model to provide insights into K,-consolidated
soils although the model, as described, cannot handle anisotropy. We will assume
that the yield surface is unaltered, that is, remains an ellipse, for K,-consolidated
soils. The normal consolidation line for a K,-consolidated sail is shifted to the
left of the normal consolidation line of an isotropically consolidated soil (Fig.
6.15b) because p’ for a K, -consolidated soil is

P 1+2K, ,
P 3 o

compared with p’ = ¢} for an isotropically consolidated soil. Recall that X, is
the lateral earth pressure coefficient at rest.

q
CsL
TSP—atter X
consclidation
© - TSP—after 1satropic
G . »* consolidation
Ll Dl . o R
73 o bbb o L
' Y ’,['
Vo .
o y
e .
i K —~cansolidation path
H
o Unleading path
o

K ,-cansalhdation path

(b)

FIGURE 8.15 Comparison between a K -consolidated soil and an isotropically
consolidated soil.
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Let us compare the probable response of two samples, sample A and sample
B, of a soil. Sample A is K,-consolidated while sample B is isotropically consol-
idated. Both samples are normally consolidated to a void ratio e. The K,-con-
solidated sample requires a lower mean effective stress to achieve the same void
ratio as an isotropically consolidated sample (Fig. 6.15). The ESP from the iso-
tropically consolidated sample is OB and for the K -consolidated sample itis OA
(Fig. 6.15a). You should recall from Chapter 3 that the stress path for isotropic
consolidation is g/p’ = 0 and for K,-consolidation is

q 30— K,)
p' 1 + 2K,

Let us unload both samples to an effective stress p,, by reducing the vertical
stress. The stress path during unloading of sample A will not follow the loading
path because upon unloading X, increases nonlinearly with mean effective stress
as the soil sample becomes overconsolidated {Chapter 4). The unloading effec-
tive stress path for sample A is AD but for sample B it is BC (Fig. 6.15a). The
void ratio is now different—the initial void ratio for sample A is ep while for
sample B it is €.

Let us now conduct a CU test on each sample. Because of the different
initial void ratio of the two samples, prior to shearing, you should expect different
undrained shear strength. The TSP for each sample has a slope of 3:1 as depicted
in Fig. 6.15a. The effective stress paths within the initial yield surface for both
samples are vertical and intersect the initial yield surface at the same point, Y.
Sample B requires a higher deviatoric stress to bring it to yield compared with
sample A because the initial deviatoric stress on sample A is ¢, = (1 — K,)u;
but is g, = 0 for sample B. Therefore, sample A only requires a deviatoric stress
increment of Ag, = g, — {1 = K,)o} to bring it to yield compared with g, for
sample B. Why do both samples have the same yield stress although each sample
has a different consolidation stress history? Stress history has no effect on the
elastic response: that is, the elastic response is independent of stress history.

Beyond ¥, the yield surface expands, excess pore waler pressures increase
significantly, and the effective stress paths bend toward the critical state line (Fig.
6.15a). In the CU test, the volume of the soil remains constant, so the paths to
failure in (e, p') space for both samples are horizontal lines represented by DG
{sample A) and CF {sample B). Sample A fails at G, which is at a lower deviatoric
stress than at F, where sample B fails (Fig, 6.15a). The implication is that two
samples of the same soil with different stress histories will have different shear
strength even if the initial mean effective stresses before shearing and the slope
of the stress path during shearing are the same.

Let us see whether we can develop an equation to estimate the undrained
shear strength of a K ,,-consolidated soil based on the ideas discussed in this chap-
ter and using Skempton’s pore water pressure coefficients (Chapter 5). Consider
a saturated soil that has been K ,-consolidated and then subjected to total stresses
Av; and Ad; to bring it to failure. The initial stress conditions are {o}), > 0 and
(o3), = K,(a}),. Upon applicalion of the stresses, Ad; and Ag,, the gross stresses
on the soil are

oy = {ai), Ay {6.52)
o} = (o) + Ay — Au {6.53)
a3 = Ko(oi)o + Aoy (6.54)

oy = Kdm), + Aoy — Au (6.55)
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For a saturated soil, Skempton’s coefficient 8 = 1, and from Eq. (5.44) rglaticnships among results from simple soil tests, critical state parameters, and soil

Au = Agy + A(Ao; = Aoy) (6.56}

Substituting Eq. (6.56) into Eq. (6.55) gives 6.10 RELATIONSHIPS BETWEEN SIMPLE
SOIL TESTS, CRITICAL STATE PARAMETERS,

78 = Keloi)o = Aoy =~ doy) AND SOIL STRENGTHS

Solving for Av; — Aos, we obtain

K (o1), = o3
Agy ~ Ay, = % (6.57)
At failure,
1 !
( ) =3 {l{o1)o + o] — [Ko(o])o + Adyl}
) ! (6.58)
5 [(Aol - AU‘) + (1 Kv)(ai)u]

Substituting Eq. (6.57) into Eq. (6.58) gives

Sa = % [%_—"3 + (1 - Kg)(a;)ﬂ (6.59)

o _ L+ sin ¢y,

oy 1 —sin ¢,

At failure,

which by substitution into Eq. (6.59) leads to

Se _ Su _ sindnfK, + A(L - K]
o oy 1+ (24 — 1) sin d)] (6.60)

1%}

The essential points are:

1. A K -consolldated sample of a soil is likely to have a dtffenmt un-
drained skear strength than an isotropically consolidated sample of
the same soil even If the initial confining pressures before shearing are
the same and the slopes of the stress paths are also the same.

2. Failure stresses in soils are dependent on the stress history of the soil.

3. Stress history does not influenice the elastic response of soils

What's next .. We have established the main ideas behind the critical state model
and used the model to estimate the response of soils to loading. The CSM can also
be used with results from simple soil tests {e.g., Atterberg limits} to make estimates
of the soil strengths. In the next section, we will employ the CSM to build some

Wood and Wroth (1978) and Wood (1990) used the critical state model te cor-
relate results from Atterberg limit tests with various engineering properties of
fine-grained soils. We are going to present some of these correlations. These
correlations are very useful when limited test data are available during the pre-
liminary design of geotechnical systems or when you need to evaluate the quality
of test results. The correlations utilized water content, which at best iy accurate
to 0.1%. Most often water content results are reported to the nearest whole
number and consequently significant differences can occur between the actual
test results and the correlations, especially those involving expenentials. Since
we are using CSM and index properties, the relationships only pertain to re-
molded or disturbed soils.

6.10.1 Undrained Shear Strength of Clays
at the Liquid and Plastic Limits

Wood (1990), using test results reported by Youssef et al. (1965) and Dumbleton
and West (1970), showed that

{Su)rL _

(5L (6:61)

where R depends on activity (Chapter 2) and varies between 30 and 100, and the
subscripts PL and LL denote plastic limit and liquid limit, respectively. Wood
and Wroth (1978) recommend a value of R = 100 as reasonable for most soils.
The recommended value of (s,)py, culled from the published data, is 2 kPa {the
test data showed variations between 0.9 and 8 kPa) and that for (s5.)p; is 200 kPa.
Since most soils are within the plastic range these recommended values place
lower (2 kPa) and upper (200 kPa) limits on the undrained shear strength of
disturbed or remolded clays.

6.10.2 Vertical Effective Stresses
at the Liquid and Plastic Limits

Wood (1990) used results from Skempton (1970) and recommended that
(o) = 8 kPa (6.62)

The test results showed that (o), , varies from 6 Lo 58 kPa. Laboratory and field
data also showed that the undrained shear strength is propertional to the vertical
effective stress. Therefore

’ (0)p = R(o;)LL =~ 800 kPa (6.63)
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6.10.3 Undrained Shear Strength-Vertical
Effective Stress Relationship

Normalizing the undrained shear strength with respect 1o the vertical effective
stress we get a ratio of

fuo_ 2 200
o T E% a0 " 0.25J (6.64)

Mesri (1975) reported, based on soil test resuits, that sor. = 0.22, which is in
good agreement with Eq. (6.64) for normally consolidated soils.

6.10.4 Compressibility Indices (» and C.)
and Plasticity Index

The compressibility index C, or X is usually obtained from a consolidation test.
In the absence of consolidation test results, we can estimate C, or A from the
plasticity index. With reference to Fig. 6.16,

(o )eL

*(pr - eLL) =Aln "
(o)

=AInR

Now, ey, = wi LG, epr. = wp G,, and G, = 2.7. Therefore, for R = 100,

A
Wil - pr-ﬁinR~1.7h
and
A = 0,61, (6:65)
or
C.=23h =138/, (6.66)

Equation (6.65) indicates that the compression index increases with plasticity
index.

r
v
'
'
'
'
'
'
'
'
'

bl Ede Ina;

FIGURE 6.18 |ilustrative graph of & versus InZ,.
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6.10.5 Undrained Shear Strength,
Liquidity Index, and Sensitivity

Let us build a relationship between liguidity index and undrained shear strength.
The undrained shear strength of a soil at a waler content w, with reference to its
undrained shear strength at the plastic limit, is obtained from Eq. (6.22} as

E L _ e,‘p(c‘ w)

(Su)eL

Putting G, = 2.7, A = 0.6/, in the above equation and recalling that

W~ Wp

i

2

I =

we get

|&), = (5,)pc exp{—4.61,) =~ 200 exp{—4.6,) (6.67)

Clays laid down in saltwater environments and having flocculated structure
(Chapter 2) often have in situ (natural) water contents higher than their liquid
limit but do not behave like a viscous liquid in their natural state. The flocculated
structure becomes unstable when fresh water leaches out the salt. The undistri-
buted or intact undrained shear strengths of these clays are significantly greater
than their disturbed or remolded undrained shear strengths. The term sensitivity,
S,, is used to define the ratio of the intact undrained shear strength to the re-
molded undrained shear strength:

(54),
, = 6.68
(), ©8)
wlere i denotes intact and r denotes remolded. From Eq. (6.67) we can write
| 5), ~ 200 exp(-a.61s) | (6:69)

For values of S, > 8, the clay is called a quick clay. Quick clay, when dis-
turbed, can flow like a viscous liquid (f; > 1). Bjerrum (1954) reported test data
on quick clays in Scandinavia, which yield an empirical relationship between S,
and I, as

I =12 log,s S, (6.70)

6.11  SUMMARY

In this chapter, a simple critical stale model (CSM) was used to provide some
insight inta soil behavior. The maodel replicates the essential features of soil be-
havior but the quantitative predictions of the model may not match real soil
values. The key featlure of the critical state model is that every soil fails on a
unigue surface in (g, p', €) space. According to the CSM, the failure stress state
is insufficient to guarantee failure; the soil must also be loose enough (reaches
the critical void ratio). Every sample of the same soil will fail on a stress state
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that lies on the critical state line regardless of any differences in the initial stress
state, stress history, and stress path among samples.

The model makes use of an elliptical yield surface that expands to simulate
hardening or contracts to simulate softening during loading. Expansion and con-
traction of the yield surface are related to the normal consolidation line of the
soil. Imposed stress states that lie within the initial yield surface will cause the
soil to behave elastically. Imposed stress states that lie outside the initial yield
surface will cause the soil to yield and to behave elastoplastically. Each imposed
stress state that causes the soil to yield must lie on a yield surface and on an
unloading/reloading line corresponding to the preconsolidation mean effective
stress associated with the current yield surface.

The CSM is not intended to replicate all the details of the behavior of real
soils but to serve as a simple framework from which we can interpret and un-
derstand the important features of soil behavior.

Practical Examples
EXAMPLE 6.9

An oil tank foundation is to be located on a very soft clay, 6 m thick, underiain
by a deep deposit of stiff clay. Soil tests at a depth of 3 m gave the following
results: A = 0.32, x = 0.06, 05 = 26°, OCR = 1.2, and w = 55%. The tank has a
diameter of 8 m and is 5 m high. The dead load of the tank and its foundation is
350 kN. Because of the expected large settlement, it was decided to preconsoli-
date the soil by quickly filling the tank with water and then allowing consolidation
to take place. To reduce the time to achieve the desired level of consolidation,
sand drains were installed at the site. Determine whether the soil will fail if the
tank is rapidly filled to capacity. What levels of water will cause the soil to yield
and to fail? At the end of the consolidation, the owners propose to increase the
tank capacity by welding a section on top of the existing tank. However, the
owners do not want further preconsolidation or soil tests. What is the maximum
increase in the tank height you would recommend so that the soil does not fail
and settlement does not exceed 75 mm? The dead load per meter height of the
proposed additional section is 40 kN. The unit weight of the oil is 8.5 kN/m*.

Strategy The soil is one-dimensionally consolidated before the tank is placed
on it. The loads from the tank will force the soil to consolidate along a path that
depends on the applied stress increments. A soil element under the center of the
tank will be subjected to axisymmetric loading conditions. If the tank is loaded
quickly, then undrained conditions apply and the task is to predict the failure
stresses and then use them to calculate the surface stresses that would cause
failure. After consolidation, the undrained shear strength will increase and you
would have to find the new failure stresses.

Solution 6.9
Step 1: Calculate initial values.

e, = wG, = 055 X 2.7 = 1.49
K™= =1 —sind,, =1 - sin 26° = 0.56
K& = K=(OCR)¥? = 056 x (12)"2 = 0,61

(g.)o = 1 — K5)ok

M, =

8.11 SUMMARY

L, G, -1 21-1
L P S R T
o, = ¥z = 6.69 x 3 =201 kPa
al, = K&a,, = 0.61 x 20.1 = 123 kPa
ol = OCR X i, = 1.2 X 20.1 = 24.1 kPa

1+2Kx , 1+2x%06l
Po = 3 Jm

g, = (1 — KX)aly = (1 — 0.61) X 20.1 = 7.8 kPa

The stresses on the initial yield surface are:

1+ 2K 1+2x056

(p)o = o) = x 241 = 17 kPa

3 3
(1 - 0.56) x 24.1 = 10.6 kPa
6sin ¢, _  6sin26°
3 — sin ¢fs 3 — sin 26°

= 1.03

X 9.8 = 6.69 kN/m’

311

x 20.1 = 149 kPa = 15 kPa

' 17
o =e t (A= K) ln%‘- +xinpl = 149 + (026 — 006) In < + 006 In 15 = 208

Step 2: Calculate the stress increase from the tank and also the

consolidation stress path.

D? x 8
Area of tank: A = “T =T = 027

Vertical surface stress from water: y.h = 9.8 X 5 = 49 kPa

350
Vertical surface stress from dead load: 5027 =7 %Pa

Total vertical surface stress: g, = 49 + 7 = 56 kPa

32
1
Vertical stress mcrease: Ao, - q, {1 - (T(f/l)l) ]

1 342 B
= f-i,[l - (——1 " (%)2) ]— 0.784,

)

, _ Y N (!

Radial stress increase: Ao, = 5 ( v) 1+ (™
_ 4 . _ 2(1 + 0.5)
=4 (0209 - g
=0.2lg,

Ag, 021

=2 =0,
Ao, o078~ 0%

Ao, = 078 X 56 - 437 kPa, Ac, = 021 X 56 = 11.8 kPa,
437 +2x 11

= 224kPa
Ap 3
Ag = 437 - 11.8 = 319 kPa
. - Ag 319 _ 2
Slope of TSP = ESP during consolidation: A_p = a4 1.4

yield.

i+ (%)113’2)

Step 3: Calculatc the initial yield stresses and excess pore water pressure at
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q Failure line
. TSP
A4z
F// Auy .
N ]Aaf
E %

lso_tmpu: consghdation
One-dimensional consolidetion
Failure line

—
rs

FIGURE E6.9

You. need to calculate 1he preconsolidated mean effective stress on

the isotropic consolidation line (point J, Fig. E6.9). You should note

that |(1?;)u, {g.)o} lies on the initial yield surface (point A4, Fig. E6.9)
Find p; using Eq. (6.4), that is o

. A 2
(0% + (ph)opl + _'_(?»;ZO =0

herefor 3 1 L Pe (10.6) /(1 03) =0 nd lvi D
B Solv fo W
[' 1] 7 t 7 + a mneg I p. We get

The yield stresses (point C, Fig. E6.9) are found f
Eq. {6.51); 1hat is, ) anerom

- Ip. 23.2
g, =Mp, [= - 1=103%15==. 1= y
¥ Vs 75~ 1= 114kPa
Y

y=po= 15kPa, Ag,=¢, —q, = 1l4 — 76 = 38 kPa

The excess pore water pressure at yield is

Ag, 38
Auy = APy'rézﬁ—’ZﬂkPa

~Ie

The vertical effective stress and vertical total siresses are

(a07), = 4p' + 30 = 0 +§ x 38 = 25 kPa
(a0,), = (Ad)), + Au, =25 + 27 = 52 kPa
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Step 4;: Calculate the equivalent surface stress.
_ (AUz),v _ 52
Ag, = 078 07E 6.7 kPa

The vertical surface stress from the dead load of the tank is 7 kPa,
which is greater than 6.7 kPa. Therefore, under the dead load the
soil will yield.

Step 5:  Culculate the failure stresses.
Failure occurs at point D, Fig. E6.9.

- 2.08 — 1.4y
Ag, = M exp(e—"-—k—%)) = 1.03 exp(—g—-—) = 6.5 kPa

0.32
o Agy 65
Ap, M o1s 6.3 kPa
T 65
Au, = Apy + o 6.3 + 13 10.9 kPa

(AG)), = Ap; + 3Ag; - 63 + 4 65 = 10,6 kPa
{A), = (Bol), + Auy = 106 + 109 = 21.5 kPa
Step 6: Calculate the height of water to bring the soil to failure,

(Ao}, 215
= === =276 kP
078 o7 ook
The vertical surface stress from the dead load of the tank is 7 kPa.
Therefore, the equivalent vertical surface stress from water is 27.6 —

7 = 20.6 kPa.

Equivalent surface stress: Ag, =

_ 206 _206
. 98

Therefore, you cannat fill the tank to capacity. You will have to fill
the tank with water to a height less than 2.1 m, allow the soil to
consolidate, and then increase the height of water gradually.

Step 7: Determine the failure stresses after consolidation.
The soil is consolidated along a stress path of slope 1.42:1 up to
point E, Fig. E6.9. Loading from E under undrained conditions (TSP
has a slope of 1.42: 1) will cause yielding immediately (E lies on the
yield surface) and failure will occur at F (Fig. E6.9).
pr=pL+ Ap =15 + 224 = 374 kPa
ep=e,—AnEE 149 -0321n 317—: =120

° o

Agr = M exp (ef ; eE) - 1.0 exp(M) - 16.1 kPa

21lm

Height of water: 5

032
Agq; _ 161

App =24t o 0156 kp

L VIR 6 kPa

A = Bpt + TE g6 1O i g kR

r=SPE T TR T Y Ty T

(Aul), = Apk + iAgr = 156 + £ X 16.1 = 264 kPa
(Aa)r = (Ac))r + Au, = 264 + 269 = 534 kPa
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Step 8: Calculate the equivalent surface stress and load.

53.
Equivalent surface stress: Agq, = AL 334 _ 68.5 kPa

078 078
Surface load applied during cousolidation: 350 + Hy.A = 350 + 5 % 9.8 x 5027

= 28132 kN
Possible additional surface load: 68.5 X A = 68.5 X 50.27 = 34436 kN

Total surface load: 28132 + 3443.6 = 6256.8 kN

Step 9: Find the additional height to bring the soil to failure after
consolidation. Let A4 be the additional hcight.

(5 + Ahdy,p4 + 350 + additional load per meter X Ah = 6256.8
S5+ Ak x 85 % 5027 4 350 + 40Ah - 6256.8

and Ak = 8.1m.
Step 10: Calculate the mean effective stress to causc 75 mm settlement,
_Ae __H p'
Py, T T T,
where H is the thickness of the very soft clay layer. Therefore,
6000 P
=X
75 1+120 032 In 374
. p' =408 kPa
Ap" = p' —pr =408 — 374 =34 kPa, Aq =142 X Ap' = 1.42 % 34 ~ 48 kPa
., Ag 4.8
= + —L =3, — =
Au= Ap 142 34 + 142 6.8 kPa

Ao; = Ap" + 3A7 = 34 + £ X 48 = 6.6 kPa,
Au, = Ao, + Au =66 + 68 = |34 kPa

Step 11:  Calcutate the height of oil for 75 mm settlement.

i tress: Ag, = —= = = =17
Equivalent surface stress: Agq, 078 - 078 17.2 kPa
. . 17.2
Additional height of tank: Ah = 35 " 2.0

Since the tank was preloaded with water and water is heavier than
the oil, it is possible 1o get a further increase in height by (9.8/85 —
1)5 = 0.76 m. To be conservative, because the analysis only gives an
estimate, you should recommend an additional height of 2.0 m, n

EXAMPLE 6.10

You reyuested a laboratory to carry out soil tests on samples of soils extracted
at different depths from & borehole. The laboratory results are shown in Table
E6.10a. The tests at depth 5.2 m were repeated and the differences in results
were about 10%. The average results are reported for this depth. Are any of the

results suspect? If so, which are?
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TABLE E6.10a

w WeL Wi Su
Depth (%} (%) (%) (kPa) A
2.1 22 12 a2 102 0.4
1 24 15 3 10 01z
42 29 15 29 10 0.09
5.2 24 17 35 35 04
6.4 17 13 22 47 0.07
8.1 23 12 27 85 04

Strategy Tt appeats that the results at depth 5.2 m are accurate. Use the_ equa-
tions in Section 6.10 to predict A and 5, and then compare the predicted with the
laboratory test resulis.

Solution 6.10

Step 1: Prepare atauble and calculate h and s,,. )
v Usep Eq. (6.65) to predict h and Eq. (6.67) to predict s.. See Table
E6.10b. -

Step 2: Compare laboratory test results with predicted results.

The s, value at 2.1 m is suspect because all the other ‘values.seem
reasonable. The predicted value of s, at depth 4.2 m is low in
comparison with the laboratory test results. However, lhe‘ \fvau_:r ]
content af this depth is the highest reported bul the plasticity index is
about average. If the water content were about 24% (th{a average of
the water content just above and below 4.2 m), the predicted s, is 10.4
kPa compared with 10 kPa from laboratory tests. The water content
at 4.2 m is therefore suspect. o

The s, value at 6.4 m, water content, and liguid limit appear
suspicious. Even if the water content were taken as the average for

TABLE E6.10b

Laboratory results Calculated results

L
Depth w Wiy Wy 5,

(mf (%) {%} {%) (kPa) N A bl A {kPa)
21 22 12 32 102 0.14 20 0.50 0.12 20.1
3 24 15 31 10 012 18 0.56 0.096 15.0
4.2 29 15 29 10 0.09 14 1.00 0.084 2.0
5.2 24 17 3% k) 0.1 18 0.39 0.108 334
6.4 17 13 22 47 0.07 9 0.44 0.064 25.9
81 23 12 27 85 0.1 15 0.73 0.09 6.9
Average 23.2 14.0 29.3

S10* 35 1.8 4.1

*3TD is standard deviation.
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the borehole, the s, values predicted (=1 kPa) would be much lower
than the laboratory results. You shouid Iepeat the tests for the sample
taken at 6.4 m. The s, value at 8.1 m is suspect because all the other
values seem reasonable at these depths. u
EXERCISES
L ]
Assame G, = 2.7, where necessary.
Theory
6.1 Prove that
1+ 2K?
° " T+ 2k= OCR
6.2 Prove that
Ko = 6 - 2M,
6+ M,
6.3  Show that the effective stress path in one-dimensional consolidation 1s
4 _ 3M,
P 6- M,
6.4  Show, for an isotropically heavily overconsolidated clay, thar s, = 0.5Mp/(0.5R Jrw
6.5 S!uiwlt:lz;[ er : e = fl)\ - x) In 2 where ¢r is the voud ratio on the critical state line when
{) ., aand e, 1s the void ratio on the normal consolidation [ine corresponding to p' -
6.6 IT’ll:)e[ :\;larer con:e;n u{a SOH;,S 55% and A = 0.15. The soil is to be isolropically consolidated
¢ expecled volume changes against mean effective stress if the logd | i
are (2) Ay = 1 nd () oud increment ratios
6.7 Plot tl;'z v:friﬂ"iun of Skempton’s pore water pressure coefficient at failore, A , with over-
consolidation ratj i : i ° '
Pl io using the CSM for two clays: one with &l = 21° and the other with
6.8

A fill of height Sm with v,,, = 18 kN/m® is constructed to
of a soft normally consolidated soil. Test at 4 depth of 2
resnlts: w = 45%, ¢, = 23.5°,
surface.

Preconsolidate a site consisting
In in the soil gave the following
A =025, and x = 0.05. Gronndwater is at the ground

(@) Show that the current stress state of the soil

given by prior to loading lies un the yield surface

e - oo o &
F=Y-ppi+ 5=0
(b) The fill is rapidly placed in lifts of 1 m. The

dissipate before the next lift is
and in (e, p') space.

€Xcess pore water pressnre is allowed to
placed. Show how the soil will behave in (g, p') space

6.9

6.10

6.13

6.14

6.17
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Problem Solving

The following data were obtained from a consolidation test on a clay soil. Determine A
and k.

P (kPa) 25 50 200 400 800 1600 800 400 200
e 1.65 1.64 1.62 1.57 1.61 1.44 1.45 1.46 1.47

The waler content of a sample of saturated soit at a mean cffective stress of 10 kPa is
85%. The sample was then isotropically consolidated using a mean effective siress of 150
kPa. At the end of the consohdation the water content was S0%. The sample was then
isotropically unloaded to a mean effective stress of 100 kPa and the water content in-
creased by 1%. (a) Draw the normal consolidation line and the unloading/reloading line
and (b) draw the initial yield surface and the critical state linc in {g, p'), (e, p'), and
(e, In p") spaces if d¢; = 25°

Determine the failure stresses under {(a) a CU test and {b) a CD test for the conditions
described in Exercise 6.10.

A CU triaxial test was conducted on a normally econsolidated sample of a saturated clay.
The water content of the clay was 5% and its undrained shear strength was 22 kPa.
Estimate the undrained shear strength of & sample of this clay if R, = 15, w = 30%, and
the initial stresses were the same as the sample that was tested. The parameters for the
normally consohdated clay are A = 0.28, « = 0.06, and &/, = 25.3°,

Two samples of a soft clay are 1o be tested in u conventional triaxial apparatus. Both
samples were isotropically consolidated under a cell pressure of 250 kPa and then allowed
to swell back to a mean effective stress of 175 kPa. Sample A is to be tested under drained
conditions while sample B is to be tested under undrained conditions. Estimate the stress-
strain, volumetric strain (sample A), and excess pore waler pressure (sample B) responses
for the two samples. The soil parameters are A = 0.15, k = 0.04, ¢, = 26.7°, ¢, = 1.08,
and v' = 0.3.

Determine and plot the stress-strain (g versus €;) and volume change (e, versus g,) re-
sponses for an overconsolidated soil under a CI) test. The soil parameters are A = 0.17,
k= 0.04, bl = 25°, V' = 0.3, g, = 0.92, p, = 280 kPa, and OCR = 8.

Repeat Exercise 6.14 for an undrained triaxial compression (CU) test and compare the
results with the undrained triaxial extension test.

A sample of a clay 15 isotropically consolidated to a mean effective stress of 300 kPa and
is isotropically unloaded to a mean eftective stress of 250 kPa. An undrained triaxial
extension test is to be carried out by keeping the axial stress constant and increasing the
radial stress. Predict and plot the stress-strain (g versus €,) and the excess pore water
pressure {Au versus €;) respouses up to failure. The soil parameters are A = .23, k =
007, ¢!, = 24°, v = 0.3, and e, = 1.32.

Practical

A tank of diameter 5 m is to be located on a deep deposit of normally eonsolidated
homogeneous clay, 25 m thick. The vertical stress imposed by the tank at the surface is
75 kPa. Calculate the excess pore water pressure at depths of 2, 5, 10, and 20 m if the
vertical stress were to be applied instantaneously. The soil parameters are A = 0.26, k =
0.06, and $, = 24°. 'I'he average water conlent is 42% and groundwater level is at 1 m
below the ground surface.



