

Debugging Velocity Plots Code, 12.02.14

If joint angles in radians are used for the calculation, and final velocity values are multiplied by (180/pi), the resulting
velocity plot is: (units are presumably meters/second)

If joint angles in radians are used for the calculation, and there is no final conversion of velocity units, the resulting velocity
plot is:
 ~ velocity values are much too small to correspond to any practical units

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5
Curvilinear Velocity

Time (s)

V
e
lo

c
it
y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
Curvilinear Velocity

Time (s)

V
e
lo

c
it
y

If joint angles in degrees are used for the calculation, and there is no final conversion of velocity units, the resulting
velocity plot is:
 ~ note that this has the same general shape as the first plot above, but the main peak is much more jagged and has a
larger peak value than in the first plot above.


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

Matlab code used to create the above plots: 
 
 
load JointAngles_Data.out; 

  
jointAngles = JointAngles_Data; 
  

% Data format:  

%  Column 1: Task Number 

%  Column 2: Timestep (20 ms) 

%  Column 3: Shoulder Angle (in degrees) 

%  Column 4: Elbow Angle (in degrees) 

%  Column 5: Target/Goal Shoulder Angle (in degrees) 

%  Column 6: Target/Goal Elbow Angle (in degrees) 

 

% Select one of the two following units for the calculation: 

q = jointAngles(:,3:6)*(3.14159/180.0);  % joint angles in units of radians 
q = jointAngles(:,3:6);                  % joint angles in units of degrees 
 

derivative = diff(q);   % Take the derivative of the joint angle data set 

 
% correct for missing derivative at last timestep of movement 
derivative(100,:) = derivative(99, :); 
 
% Arm segment lengths, in meters 

L1 = 0.33; 
L2 = 0.32; 
 
 
 
 
 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3
Curvilinear Velocity

Time (s)

V
e
lo

c
it
y



 
% Calculate X and Y velocities using the Jacobian 

for i = 1:100,   % for each timestep of the movement 
    deriv1 = derivative(i,1); 
    deriv2 = derivative(i,2); 

     
    xComponent1 = -L1*sin(q(i,1)); 
    xComponent2 = -L2*sin(q(i,1)+q(i,2)); 
    xComponent3 = -L2*sin(q(i,1)+q(i,2)); 

     
    yComponent1 = L1*cos(q(i,1)); 
    yComponent2 = L2*cos(q(i,1)+q(i,2)); 
    yComponent3 = L2*cos(q(i,1)+q(i,2)); 

     
    xTerm1 = (xComponent1 + xComponent2)*deriv1; 
    xTerm2 = (xComponent3)*deriv2; 
    yTerm1 = (yComponent1 + yComponent2)*deriv1; 
    yTerm2 = (yComponent3)*deriv2;  

     
    velocity_x_singleStep = xTerm1 + xTerm2; % note that - sign is accounted for above 
    velocity_y_singleStep = yTerm1 + yTerm2; 

     
    velocity_x(i) = velocity_x_singleStep; 
    velocity_y(i) = velocity_y_singleStep; 

     
    deriv1 = 0.0; 
    deriv2 = 0.0; 

     
    velocity_x_singleStep = 0.0; 
    velocity_y_singleStep = 0.0; 

     
end 
  

 
% Calculate curvilinear velocity from X and Y velocities 

for k = 1:100, 
   velocity_curvilinear(k) = sqrt((velocity_x(k)*velocity_x(k)) + 

(velocity_y(k)*velocity_y(k))); 
end 

  

  
time_array = 0.02:0.02:2.0; 

  
figure; 
%plot(time_array, velocity_curvilinear.*(180.0/3.14159));  % convert from rad to degrees 
plot(time_array, velocity_curvilinear);   % Don’t perform any data conversion 
title('Curvilinear Velocity');  
xlabel('Time (s)'); 
ylabel('Velocity'); 

 
 
 


