- Calculation Method - The $\boldsymbol{F m c}^{\mathbf{2}}$ may be configured to calculate the results of the prove's repeatable trips in one of the following methods:
- 0-Average Meter Factor Method - The resultant MF is the average of the meter factors of all repeatable trips. The trip meter factors are checked for repeatability.). Note: If "Dual Detect" is enabled, the Average Meter Factor Method is automatically utilized.
- 1 - Average Data Method - The resultant MF is calculated from the average round trip pulses, temperatures, pressures, and density of all repeatable trips. The trip pulses are checked for repeatability.
- MF Accept Mode - The $\boldsymbol{F m c}^{\mathbf{2}}$ can be configured to determine the acceptability of new meter factors based on certain criteria, and automatically implement the new MF (if configured to do so - see "Automatically Accept MF? below). Newly determined MF's will be referred to the meter's "Normal" flow rate before being checked. (See section 4.5.5.1.2 on page 95 for inputting a meter's Normal ('Base') Flow Rate.) The User selectable options are:
- 0 - The new MF is always acceptable (not automatic test will be performed; the MF acceptability is based on User decision) (with the exception that the new MF must fall within 0.5000 to 2.0000).
- 1 - The new MF must pass "Test 1 ". Test 1 passes if the new MF deviates from the current MF by less than the entry Test 1 percent deviation limit.
- 2 - The new MF must pass "Test 2" to be acceptable. Test 2 passes if the new MF does not deviate from the average of historical MFs (2-12) by more than the entry for Test 2 percent deviation limit. (For setting the number of MFs in the historical average, see Section 4.8.2.1.2, "METER FACTORS HISTORICAL", on page 129)
- 3 - The new MF must pass "Test 1 " and "Test 2 " to be acceptable. See page 111 for additional details regarding Test 1 and Test 2.
- 4 - The new MF must lie within the 80% confidence range around the average of the historical MFs in order to be acceptable.
- 5 - The new MF must lie within the 90% confidence range around the average of the historical MFs in order to be acceptable.
- 6 - The new MF must lie within the 95% confidence range around the average of the historical MFs in order to be acceptable.
- 7 - The new MF must lie within the 99% confidence range around the average of the historical MFs in order to be acceptable.
- 8 - The new MF is never acceptable.

Notes:

i. The 80% confidence range is more stringent than the 99\% confidence range.
ii. If the MF Accept Mode is set to $1-7$, and the new MF is passed the acceptance criteria, the 'Acceptable []' box will be selected (' $[X]$ ') on the standard prove report template.

Section 4 - Operation

- 4 - Estimate the batch average flow rate and 'look up' the meter factor; use this meter factor as the batch average meter factor. Prior batch totals will be recalculated using the new batch average meter factor.

Meter Factor vs. Flow Rate Curve

Meter
Factor Values

Flow Rate Values

Figure 65 - Meter Factor vs. Flow Rate Curve
The above figure shows twelve points representing a Meter Factor vs. Flow Rate curve. A meter factor curve (dotted line) is calculated between the points using the point-slope formula:
$m=\left(y_{2}-y_{1}\right) \div\left(x_{2}-x_{1}\right)$
Where:
y_{2} and y_{1} represent known meter factor values (y_{2} is the lower flow rate; y_{1} is higher); x_{2} and x_{1} represent the known corresponding flow rates of meter factors y_{2} and y_{1}; m is the unknown slope between the two points.
Once the slope has been calculated, any meter factor value between the flow rates utilized in the point-slope formula can be calculated using the formula:
$y=m\left(x-x_{1}\right)+y_{1}$,
Where:
y_{1} is the known meter factor corresponding to known flow rate x_{1} from the point-slope formula;
m is the calculated slope from the point-slope formula;
y represents the unknown meter factor corresponding to the present flow rate x .

4.9.1.5. Prove Report

The Prove default report template provides information associated with the displacement prove of a liquid meter.

$\boldsymbol{T M}_{\text {Technologies }}$

Displacement Prover Report
Page 1 of 2
Report No: 40
Flow Computer ID: FOIT-100
Location: CC, TX USA

Meter	Info
Tag	$:$
S/N	Meter \#1
Model $:$	
Size $:$	
K factor:	$1000.00 \mathrm{Pls} / \mathrm{bbl}$

Fluid Info		
Tag	Crude	
Group	$:$	5
Density	$:$	25.0 API
CTL Table	$:$	API 2004
CPL Table	$:$	API 2004

Report Date/Time: $08 / 10 / 14$ 16:46:38

Run	Time Sec (s)	Flow b/h	Temp Pvr	$\operatorname{deg} . F$ Mtr	Press Pvr	$\begin{aligned} & \text { psig } \\ & \text { Mtr } \end{aligned}$	Fwd Pulses	Total Pulses	MF Us	Used
1	114.532	2983.8	75.7	75.6	150	151	10011.272	20027.447	4.74326	6 [X]
2	114.515	2984.2	75.8	75.6	150	151	10009.597	20027.517	4.74304	4 [X$]$
3	114.463	2985.6	76.0	75.3	151	151	10014.932	20032.111	4.74100	0 [X$]$
4	114.501	2984.6	75.8	75.5	151	152	10010.271	20010.570	4.74676	6 [X]
5	114.566	2982.9	75.8	75.7	150	151	10007.289	20010.607	4.74724	4 [X]
6	114.503	2984.5	75.6	75.6	151	152	10008.914	20009.007	4.74777	7 [X]
7	114.502	2984.6	75.8	75.7	150	152	10007.558	20018.981	4.74519	9 [X]
8	114.531	2983.8	75.8	75.3	150	151	10012.143	20025.404	4.74290	0 [X]
9	114.511	2984.3	75.8	75.5	150	151	10007.042	20019.196	4.74476	6 [X$]$
10	114.506	2984.4	75.7	75.6	151	151	10016.052	20022.091	4.74450	0 [X$]$
11	114.517	2984.2	75.8	75.2	150	151	10014.534	20033.048	4.74093	3 [X]
12	114.524	2984.0	76.0	75.6	150	151	10002.847	20007.553	4.74741	1 [X]
13	114.506	2984.4	75.6	75.4	150	152	10004.192	20021.065	4.74445	5 [X]
14	114.477	2985.2	75.8	75.5	150	151	10019.994	20027.843	4.74274	4 [X]
15	114.466	2985.5	75.8	75.5	151	151	10005.946	20006.420	4.74779	9 [X]
16	0.000	0.0	0.0	0.0	0	0	0.000	0.000	0.00000	0 [
17	0.000	0.0	0.0	0.0	0	0	0.000	0.000	0.00000	0 [
18	0.000	0.0	0.0	0.0	0	0	0.000	0.000	0.00000	0
19	0.000	0.0	0.0	0.0	0	0	0.000	0.000	0.00000	0
20	0.000	0.0	0.0	0.0	0	0	0.000	0.000	0.00000	0 [
21	0.000	0.0	0.0	0.0	0	0	0.000	0.000	0.00000	[
22	0.000	0.0	0.0	0.0	0	0	0.000	0.000	0.00000	0
23	0.000	0.0	0.0	0.0	0	0	0.000	0.000	0.00000	[
24	0.000	0.0	0.0	0.0	0	0	0.000	0.000	0.00000	0
25	0.000	0.0	0.0	0.0	0	0	0.000	0.000	0.00000	O [
26	0.000	0.0	0.0	0.0	0	0	0.000	0.000	0.00000	0 [
27	0.000	0.0	0.0	0.0	0	0	0.000	0.000	0.00000	0 [
28	0.000	0.0	0.0	0.0	0	0	0.000	0.000	0.00000	0 [
29	0.000	0.0	0.0	0.0	0	0	0.000	0.000	0.00000	0 [
30	0.000	0.0	0.0	0.0	0	0	0.000	0.000	0.00000	[]
31	0.000	0.0	0.0	0.0	0	0	0.000	0.000	0.00000	0 [
32	0.000	0.0	0.0	0.0	0	0	0.000	0.000	0.00000	[
33	0.000	0.0	0.0	0.0	0	0	0.000	0.000	0.00000	0 [
34	0.000	0.0	0.0	0.0	0	0	0.000	0.000	0.00000	0 [
35	0.000	0.0	0.0	0.0	0	0	0.000	0.000	0.00000	0 [

Prove Result:	PROVE COMPLETED
Calc. Method	$=1(0=A v g$. Meter Factor, $1=$ Avg. Data)
Range	$=26.6280 \quad$ Standard Deviation $=9.1185$
Repeatability	$=0.1331 \%$ Max $\Rightarrow 15$ runs in 35 within 0.1700%

HMF	Date	MF	Deviation		HMF	Date	MF		Deviation
1	$08 / 10 / 14$	$\mathbf{4 . 7 4 4 6}$	$\mathbf{+ 3 7 4 . 4 6} \%$	6		0.0000	$+0.00 \%$		
2		0.0000	$+0.00 \%$	7		0.0000	$+0.00 \%$		
3		0.0000	$+0.00 \%$	8		0.0000	$+0.00 \%$		
4		0.0000	$+0.00 \%$	9		0.0000	$+0.00 \%$		
5		0.0000	$+0.00 \%$	10		0.0000	$+0.00 \%$		

