
 

 

 

1.1 

Chapter 1:  Introduction 

1.1 Practical column base details in steel structures 

1.1.1 Practical column base details 

Every structure must transfer vertical and lateral loads to the supports. In some cases, beams 

or other members may be supported directly, though the most common system is for columns 

to be supported by a concrete foundation. The column will be connected to a baseplate, which 

will be attached to the concrete by some form of so-called „holding down“ assembly. 

Typical details are shown in Figure 1.1. The system of column, baseplate and holding down 

assembly is known as a column base. This publication proposes rules to determine the 

strength and stiffness of such details. 
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Figure 1.1 Typical column base details 
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Other column base details may be adopted, including embedding the lower portion of column 

into a pocket in the foundation, or the use of baseplates strengthened by additional horizontal 

steel members. These types of base are not covered in this publication, which is limited to 

unstiffened baseplates for I or H sections. Although no detailed guidance is given, the 

principles in this publication may be applied to the design of bases for RHS or CHS section 

columns. 

Foundations themselves are supported by the sub-structure. The foundation may be supported 

directly on the existing ground, or may be supported by piles, or the foundation may be part 

of a slab. The influence of the support to the foundation, which may be considerable in certain 

ground conditions, is not covered in this document. 

Concrete foundations are usually reinforced. The reinforcement may be nominal in the case of 

pinned bases, but will be significant in bases where bending moment is to be transferred. The 

holding down assembly comprises two, but more commonly four (or more) holding down 

bolts. These may be cast in situ, or post-fixed to the completed foundation. Cast in situ bolts 

usually have some form of tubular or conical sleeve, so that the top of the bolts are free to 

move laterally, to allow the baseplate to be accurately located. Other forms of anchor are 

commonly used, as shown in Figure 1.2. Baseplates for cast-in assemblies are usually 

provided with oversize holes and thick washer plates to permit translation of the column base. 

Post-fixed anchors may be used, being positioned accurately in the cured concrete. Other 

assemblies involve loose arrangements of bolts and anchor plates, subsequently fixed with 

cementicious grout or fine concrete. Whilst loose arrangements allow considerable translation 

of the baseplate, the lack of initial fixity can mean that the column must be propped or guyed 

whilst the holding down arrangements are completed. Anchor plates or similar embedded 

arrangements are attached to the embedded end of the anchor assembly to resist pull-out. The 

holding down assemblies protrude from the concrete a considerable distance, to allow for the 

grout, the baseplate, the washer, the nut and a further threaded length to allow some vertical 

tolerance. The projection from the concrete is typically around 100 mm, with a considerable 

threaded length. 

Post-fixed assemblies include expanding mechanical anchors, chemical anchors, undercut 

anchors and grouted anchors. Various types of anchor are illustrated in Figure 1.2. 
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Figure 1.2 Alternative holding-down anchors 

The space between the foundation and the baseplate is used to ensure the baseplate is located 

at the correct absolute level. On smaller bases, this may be achieved by an additional set of 

nuts on the holding down assemblies, as shown in Figure 1.3. Commonly, the baseplate is 

located on a series of thin steel packs as shown in Figure 1.4, which are usually permanent. 

Wedges are commonly used to assist the plumbing of the column. 

 

Figure 1.3 Baseplate with levelling nuts 

The remaining void is filled with fine concrete, mortar, or more commonly, non-shrink 

cementicious grout, which is poured under and around the baseplate. Large baseplates 



 

 

 

1.4 

generally have holes to allow any trapped air to escape when the baseplate is grouted. 
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Figure 1.4 Baseplate located on steel packs 

The plate attached to the column is generally rectangular. The dimensions of the plate are as 

required by design, though practical requirements may mean the base is larger than 

necessitated by design. Steel erectors favour at least four bolts, since this is a more stable 

detail when the column is initially erected. Four bolts also allow the baseplate to be adjusted 

to ensure verticality of the column. Bolts may be located within the profile of the I or H 

section, or outside the profile, or both, as shown in Figure 1.1. Closely grouped bolts with 

tubular or conical sleeves are to be avoided, as the remaining concrete may not be able to 

support the column and superstructure in the temporary condition. 

Bases may have stubs or other projections on the underside which are designed to transfer 

horizontal loads to the foundations. However, such stubs are not appreciated by steelwork 

erectors and should be avoided if possible. Other solutions may involve locating the base in a 

shallow recess or anchoring the column directly to, for example, the floor slab of the 

structure. 

Columns are generally connected to the baseplate by welding around part or all of the section 

profile. Where corrosion is possible a full profile weld is recommended. 
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1.1.2 Pinned base details 

Pinned bases are assumed in analysis to be free to rotate. In practice pinned bases are often 

detailed with four holding down bolts for the reasons given above, and with a baseplate which 

is significantly larger than the overall dimensions of the column section. A base detailed in 

this way will have significant stiffness and may transfer moment, which assists erection. In 

theory, such a base should be detailed to provide considerable rotational capacity, though in 

practice, this is rarely considered. 

 

1.1.3 Fixed base details 

Fixed (or moment-resisting) bases are assumed in analysis to be entirely rigid. Compared to 

pinned bases, fixed bases are likely to have a thicker baseplate, and may have a larger number 

of higher strength holding down assemblies. Occasionally, fixed bases have stiffened 

baseplates, as those shown in Figure 1.5. The stiffeners may be fabricated from plate, or from 

steel members such as channels. 

Stiffener

 

Figure 1.5 Typical stiffened column base detail 
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1.1.4 Resistance of column bases 

Eurocode 3, Section 6 and Annex L contain guidance on the strength of column bases. 

Section 6 contains principles, and Annex L contains detailed application rules, though these 

are limited bases subject to axial loads only. The principles in Section 6 cover the moment 

resistance of bases, though there are no application rules for moment resistance and no 

principles or rules covering the stiffness of such bases. 

Traditional approaches to the design of moment-resisting bases involve an elastic analysis, 

based on the assumption that plane sections remain plane. By solving equilibrium equations, 

the maximum stress in the concrete (based on a triangular distribution of stress), the extent of 

the stress block and the tension in the holding down assemblies may be determined. Whilst 

this procedure has proved satisfactory in service over many years, the approach ignores the 

flexibility of the baseplate in bending, the holding down assemblies and the concrete. 

 

1.1.5 Modelling of column bases in analysis 

Traditionally, column bases are modelled as either pinned or as fixed, whilst acknowledging 

that the reality lies somewhere within the two extremes. The opportunity to either calculate or 

to model the base stiffness in analysis was not available. Some national application standards 

recommend that the base fixity be allowed for in design. 

The base fixity has an important effect on the calculated frame behaviour, particularly on 

frame deflections. 

 

1.2 Calculation of column base strength and stiffness 

1.2.1 Scope of the publication 

In recent years, Wald, Jaspart and others have directed significant research effort to the 

determination of resistance and stiffness. Based on the results of this research, 

recommendations for the design and verification of moment-resisting column bases could be 

drafted. This permits the modelling in analysis of semi-continuous bases in addition to the 

traditional practice of pinned and fixed bases. Both resistance and stiffness can be determined. 

This publication contains proposals for the calculation of the capacity and of the stiffness of 

moment-resisting bases, with the intention that these be included in Eurocode 3. This 

publication is focused on I or H columns with unstiffened baseplates, though the principles in 

this publication may be applied to baseplates for RHS or CHS columns. Embedded column 

base details are excluded from the recommendations in this publication 
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The effect of the concrete-substructure interaction on the resistance and stiffness of the 

column base is excluded. 

 

1.2.2 ‘Component’ method 

The philosophy adopted in this publication is known as the ‘component’ method. This 

approach accords with the approach already followed in EC3 and, in particular, Annex J, 

where rules for the determination of beam to column strength and stiffness are presented.  

The component approach involves identifying each of the important features in the base 

connection and determining the strength and stiffness of each of these ‘components’. 

The components are then ‘assembled’ to produce a model of the complete arrangement. Each 

individual component and the assembly model are validated against test results. 

 

1.3 Document structure 

Section 2 of this document contains details of the components in a column base connection, 

namely: 

• The compression side - the concrete in compression and the flexure of the baseplate.  

• The column member. 

• The tension side - the holding-down assemblies in tension and the flexure of the baseplate. 

• The transfer of horizontal shear. 

Each sub-section covers a component and follows the following format: 

• A description of the component. 

• A review of existing relevant research. 

• Details of the proposed model. 

• Results of validation against test data. 

Section 3 describes the proposed assembly model and demonstrates the validity of the 

proposals compared to test data. Section 4 makes recommendations for the practical use of 

this document in analysis of steel frames. Section 5 makes recommendations for the 

classification of bases as sway or non-sway, in braced and unbraced frames. 
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2.1 

Chapter 2:  Component characteristics 

2.1 Concrete in compression and base plate in bending 

2.1.1 Description of the component 

The components concrete in compression and base plate in bending including the grout 

represent the behaviour of the compressed part of a column base with a base plate. The 

strength of these components depend primarily on the bearing resistance of the concrete 

block. The grout is influencing the column base bearing resistance by improving the 

resistance due to application of high quality grout, or by decreasing the resistance due to poor 

quality of the grout material or due to poor detailing. 

The deformation of this component is relatively small. The description of the behaviour of 

this component is required for the prediction of column bases stiffness loaded by normal force 

primarily. 

2.1.2 Overview of existing material 

The technical literature concerned with the bearing strength of the concrete block loaded 

through a plate may be treated in two broad categories. Firstly, investigations focused on the 

bearing stress of rigid plates, most were concerned the prestressed tendons. Secondly, studies 

were concentrated on flexible plates loaded by the column cross section due to an only 

portion of the plate. 

The experimental and analytical models for the components concrete in compression and 

plate in bending included the ratio of concrete strength to plate area, relative concrete depth, 

the location of the plate on the concrete foundation and the effects of reinforcement. The 

result of these studies on foundations with punch loading and fully loaded plates offer 

qualitative information on the behaviour of base plate foundations where the plate is only 

partially loaded by the column. Failure occurs when an inverted pyramid forms under the 

plate. The application of limit state analysis on concrete can include the three-dimensional 

behaviour of materials, plastification and cracking. Experimental studies (Shelson, 1957; 

Hawkins, 1968, DeWolf, 1978) led to the development of an appropriate model for column 

base bearing stress estimation that was adopted into the current codes.  

The separate check of the concrete block itself is necessary to provide to check the shear 

resistance of the concrete block as well as the bending or punching shear resistance according 

to the concrete block geometry detailing. 

The influence of a flexible plate was solved by replacing the equivalent rigid plate (Stockwell, 

1975). This reasoning is based on recognition that uniform bearing pressure is unrealistic and 
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that maximum pressure would logically follow the profile shape. This simple practical 

method was modified and checked against the experimental results, (Bijlaard, 1982; Murray, 

1983). Eurocode 3 ( Annex L, 1990) adopted this method in conservative form suitable for 

standardisation using an estimate including the dimensions of the concrete block cross-section 

and its height. It was also found (DeWolf and Sarisley, 1980; Wald, 1993) that the bearing 

stress increases with larger eccentricity of normal force. In this case is the base plate in larger 

contact with the concrete block due to its bending. In case, when the distance between the 

plate edge and the block edge is fixed and the eccentricity is increased, the contact area is 

reduced and the value of bearing stress increases. In case of the crushing of the concrete 

surface under the rigid edge is necessary to apply the theory of damage. These cases are 

unacceptable from design point of view and are determining the boundaries of above 

described analysis. 

 

2.1.3 Proposed model 

2.1.3.1 Strength 

The proposed design model resistance of the components concrete in compression and base 

plate in bending is given in Eurocode 3 Annex L, 1990. The resistance of these components is 

determined with help of an effective rigid plate concept.  

The concrete block size has an effect on the bearing resistance of the concrete under the plate. 

This effect can be conservatively introduced for the strength design by the concentration 

factor 

k  =    
a   b

a   b
    j

1 1
 (2.1.1) 

where the geometry conditions, see Figure 2.1.1, are introduced by 
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This concentration factor is used for evaluation of the design value of the bearing strength as 
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follows 

f  =  
k   f

   j

j ckβ
γ

j

c

 (2.1.4) 

where joint coefficient is taken under typical conditions with grout as βj = 2 / 3. This factor 

βj represents the fact that the resistance under the plate might be lower due to the quality of 

the grout layer after filling. 
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Figure 2.1.1 Evaluation of the concrete block bearing resistance 

The flexible base plate, of the area Ap can be replaced by an equivalent rigid plate with area 

Aeq, see Fig 2.1.2. The formula for calculation of the effective bearing area under the flexible 

base plate around the column cross section can be based on estimation of the effective width 

c.  The prediction of this width c can be based on the T-stub model.  The calculation secures 

that the yield strength of base plate is not exceeded. Elastic bending moment resistance of the 

base plate per unit length should be taken as 

M t f y′=
1

6

2
 (2.1.4) 

and the bending moment per unit length on the base plate acting as a cantilever of span c is, 

see Figure 2.1.3. 

M f cj′ =
1

2

2
 (2.1.4) 
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Figure 2.1.2 Flexible base plate modelled as a rigid plate of effective area with effective 

width c 

When these moments are equal, the bending moment resistance is reached and the formula 

evaluating c can be obtained 

1

2

1

6

2 2
f c t fj y=  (2.1.4) 

as 

c =  t 
f  

3 f

y

j M0γ
 (2.1.5) 

The component is loaded by normal force FSd. The strength, expecting the constant 

distribution of the bearing stresses under the effective area, see Figure2.1.3 is possible to 

evaluate for a component by 

F F A f c t L fsd Rd eq j w j≤ = = +( )2  (2.1.6) 
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Figure 2.1.3 The T stub in compression, the effective width calculation 

The improvement of effective area due to the plate behaviour for plates fixed on three or four 

edges can be based on elastic resistance of plates (Wald, 1995) or more conservatively can be 

limited by the deformations of plate as is reached for cantilever prediction. This improvement 

is not significant for open cross sections, till about 3%. For tubular columns the plate 
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behaviour increase the strength up to 10% according to the geometry. 

The practical conservative estimation of the concentration factor, see Eq. (2.1.1), can be 

precised by introduction of the effective area into the calculation; into the procedure Eq. 

(2.1.1) - (2.1.3). This leads however to an iterative procedure and is not recommended for 

practical purposes. 

The grout quality and thickness is introduced by the joint coefficient βj, see SBR (1973). For 

βj = 2 / 3, it is expected the grout characteristic strength is not less than 0,2 times the 

characteristic strength of the concrete foundation fc.g ≥ 0,2 fc and than the thickness of the 

grout is not greater than 0,2 times the smaller dimension of the base plate tg ≤ 0,2 min (a ; b). 

In cases of different quality or high thickness of the grout tg ≥ 0,2 min (a ; b), it is necessary 

to check the grout separately. The bearing distribution under 45° can be expected in these 

cases, see Figure 2.1.4., (Bijlaard, 1982). 

The influence of packing under the steel plate can be neglected for the design (Wald at al, 

1993). The influence of the washer under plate used for erection can be also neglected for 

design in case of good grout quality fc.g ≥ 0,2 fc. In case of poor grout quality fc.g ≤ 0,2 fc it is 

necessary to take into account the anchor bolts and base plate resistance in compression 

separately.  
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Figure 2.1.4 The stress distribution in the grout 

 

2.1.3.2 Stiffness 

The elastic stiffness behaviour of the T-stub components concrete in compression and plate in 

bending exhibit the interaction between the concrete and the base plate as demonstrated for 

the strength behaviour. The initial stiffness can be calculated from the vertical elastic 

deformation of the component. The complex problem of deformation is influenced by the 

flexibility of the base plate, and by the concrete block quality and size. 
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The simplified prediction of deformations of a rigid plate supported by an elastic half space is 

considered first including the shape of the rectangular plate. In a second step, an indication is 

given how to replace a flexible plate by an equivalent rigid plate. In the last step, assumptions 

are made about the effect of the size of the block to the deformations under the plate for 

practical base plates. 

The deformation of a rectangular rigid plate in equivalent half space solved by different 

authors is given in simplified form by Lambe & Whitman, 1967 as 

δ
α

r

r

c r

F a

E A
= , (2.1.6) 

where 

δr is the deformation under a rigid plate, 

F the applied compressed force, 

ar the width of the rigid plate, 

Ec the Young's modulus of concrete, 

Ar the area of the plate, Ar = ar L , 

L  the length of the plate, 

α a factor dependent on ratio between L and ar . 

 

The value of factor α depends on the Poison's ratio of the compressed material, see in 

Table  2.1.1, for concrete (ν ≈ 0,15). The approximation of this values as ra/L85,0≈α  

can be read from the following Table 2.1.1.  

Table 2.1.1  Factor α and its approximation 

L / ar 
α according to 

(Lambe and Whitman, 1967) 

Approximation as 

α ≈ 0 85, /L a r  

1 0,90 0,85 

1,5 1,10 1,04 

2 1,25 1,20 

3 1,47 1,47 

5 1,76 1,90 

10 2,17 2,69 

 

With the approximation for α, the formula for the displacement under the plate can be 

rewritten 
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δ r
c r

F

E L a
=

0 8 5,
 (2.1.7) 

A flexible plate can be expressed in terms of equivalent rigid plate based on the same 

deformations. For this purpose, half of a T-stub flange in compression is modelled as shown 

in Figure 2.1.5. 

δ E  Ip

x
cfl

 

Figure 2.1.5 A flange of a flexible T-stub 

The flange of a unit width is elastically supported by independent springs. The deformation of 

the plate is a sine function, which can be expressed as 

δ (x) = δ sin ( ½ π x / cfl ) (2.1.8) 

The uniform stress on the plate can then be replaced by the fourth differentiate of the 

deformation multiplied by E Ip, where E is the Young's modulus of steel and Ip is the moment 

of inertia per unit length of the steel plate with thickness t (Ip = t3 / 12). 

σ(x) = Es Ip ( ½ π / c fl )
4
 δ sin (½ π x / cfl ) = Es 

t
3

1 2
 ( ½ π / cfl )

4
 δ sin ( ½ π x / cfl ) (2.1.9) 

The concrete part should be compatible with this stress 

δ(x) = σ(x) hef / Ec (2.1.10) 

where hef is the equivalent concrete height of the portion under the steel plate. Assume that 

hef = ξ cfl hence  

δ(x) = σ(x) ξ c fl / Ec (2.1.11) 

Substitution gives 

δ sin (½ π x / cfl ) = E t3 / 12 (½ π / c fl )
4
 δ sin ( ½ π x / cfl ) ξ c fl / Ec (2.1.12) 

This may be expressed as 
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c  =  t fl
3

( )π
ξ

2

1 2

4
E

E c

 (2.1.13) 

The flexible length cfl may be replaced by an equivalent rigid length cr such that uniform 

deformations under an equivalent rigid plate give the same force as the non uniform 

deformation under the flexible plate: 

cr = cfl 2 / π  (2.1.14) 

The factor ξ represents the ratio between hef and cfl. The value of hef can be expressed as α ar. 

From Tab. 2.1 can be read that factor α for practical T-stubs is about equal to 1,4. The width 

ar is equal to tw + 2 cr, where tw is equal to the web thickness of the T-stub. As a practical 

assumption it is now assumed that tw equals to 0,5 cr which leads to 

hef = 1,4 ⋅ (0,5 + 2) cr = 1,4 ⋅ 2,5 c fl 2 / π = 2,2 c fl  (2.1.15) 

hence ξ = 2,2 

For practical joints can be estimated by Ec ≅ 30 000 N / mm2
 and E ≅ 210 000 N / mm2

, which 

leads to 

c  =  t  t fl
3 3

( ) ( )
, ,

π
ξ

π2

12

2

12
2 2

2 1 0 0 0 0

30 0 0 0
1 98

4 4
E

E c

≈ ≅ . (2.1.16) 

or  

cr = 1,26 t ≈ 1,25 t , (2.1.17) 

which gives for the effective width calculated based on elastic deformation 

a  =  t  +  2 , 5  t  eq.e l w  (2.1.18) 

The influence of the finite block size compared to the infinite half space can be neglected in 

practical cases. For example the equivalent width ar of the equivalent rigid plate is about tw + 

2 cr. In case tw is 0,5 cr and cr = 1,25 t the width is ar = 3,1 t. That means, peak stresses are 

even in the elastic stage spread over a very small area. 

In general, a concrete block has dimensions at least equal to the column with and column 

depth. Furthermore it is not unusual that the block height is at least half of the column depth. 

It means, that stresses under the flange of a T-stub, which represents for instance a plate under 

a column flange, are spread over a relative big area compared to ar = 3,1 t. If stresses are 

spread, the strains will be low where stresses are low and therefore these strains will not 

contribute significantly to the deformations of the concrete just under the plate. Therefore, for 
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simplicity it is proposed to make no compensation for the fact that the concrete block is not 

infinite. 

From the strength procedure the effective with of a T-stub is calculated as 

a  =  t  +  2  c  =  t  +  2 t 
f

3 f
eq.str w w

y

j γ M 0

 (2.1.19) 

Based on test, see Figure 2.1.7 - 2.1.8, and FE simulation, see Figure 2.1.9, it may occur that 

the value of aeq.str is also a sufficient good approximation for the width of the equivalent rigid 

plate as the expression based on elastic deformation only. If this is the case, it has a practical 

advantage for the application by designers. However, in the model aeq.str will become 

dependent on strength properties of steel in concrete, which is not the case in the elastic stage, 

On Figure 2.1.6 is shown the influence of the base plate steel quality for particular example 

on the concrete quality - deformation diagram for flexible plate t = tw = 20 mm, 
Leff = 300 mm, F = 1000 kN.  From the diagram it can be seen that the difference between 

aeq.el = tw + 2,5 t and aeq.str = tw + 2 c is limited. 
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Figure 2.1.6 Comparison of the prediction of the effective width on concrete - deformation 

diagram for particular example for unlimited concrete block kj = 5, base plate and web 

thickness 20 mm, L = 300 mm, force F = 1000 kN 

The concrete surface quality is affecting the stiffness of this component. Based on the tests 

Alma and Bijlaard, (1980), Sokol and Wald, (1997).  The reduction of modulus of elasticity 
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of the upper layer of concrete of thickness of 30 mm was proposed (Sokol and Wald, 1997) 

according to the observation of experiments with concrete surface only, with poor grout 

quality and with high grout quality.  For analytical prediction the reduction factor of the 

surface quality was observed from 1,0 till 1,55.  For the proposed model the value 1,50 had 

been proposed, see Figure 2.1.12 and 2.1.13, see Eq. (2.1.20). 

The simplified procedure to calculate the stiffness of the component concrete in compression 

and base plate in bending can be summarised in Eurocode 3 Annex J form as  

E275,1

LaE

E85,0*5,1

LaE

E

F
k

el.eqcel.eqc

c ===
δ

, (2.1.20) 

where 

aeq.el the equivalent width of the T-stub, ae.el  = tw + 2,5 t, 

L the length of the T-stub, 

t the flange thickness of the T-stub, the base plate thickness, 

tw the web thickness of the T-stub, the column web or flange thickness. 

 

2.1.4 Validation 

The proposed model is validated against the tests for strength and for stiffness separately. 50 

tests in total were examined in this part of study to check the concrete bearing resistance 

(DEWOLF, 1978, HAWKINS, 1968). The test specimens consist of a concrete cube of size 

from 150 to 330 mm with centric load acting through a steel plate. The size of the concrete 

block, the size and thickness of the steel plate and the concrete strength are the main 

variables. 
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Figure 2.1.7 Relative bearing resistance-base plate slenderness relationship (experiments 

DeWolf, 1978, and Hawkins, 1968) 

Figure 2.1.7 shows the relationship between the slenderness of the base plate, expressed as a 

ratio of the base plate thickness to the edge distance and the relative bearing resistance. The 

design approach given in Eurocode 3 is in agreement with the test results, but conservative. 

The bearing capacity of test specimens at concrete failure is in the range from 1,4 to 2,5 times 

the capacity calculated according to Eurocode 3 with an average value of 1,75. 
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Figure 2.1.8 Concrete strength - ultimate load capacity relationship (Hawkins, 1968) 
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The influence of the concrete strength is shown on Figure 2.1.8, where is shown the validation 

of the proposal based on proposal tw + 2 c. A set of 16 tests with similar geometry and 

material properties was used in this diagram from the set of tests (Hawkins, 1968). The only 

variable was the concrete strength of 19, 31 and 42 MPa. 
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Figure 2.1.9 Comparison of the stiffness prediction to Test 2.1, (Alma and Bijlaard, 1980), 

concrete block 800x400x320 mm, plate thickness t = 32,2 mm, T stub length L = 300 mm 

The stiffness prediction is compared to tests Alma and Bijlaard, (1980) in Figure 2.1.9. and 

2.1.10. The tests of flexible plates on concrete foundation are very sensitive to boundary 

conditions (rigid tests frame) and measurements accuracy (very high forces and very small 

deformations). The predicted value based on eq. (2.1.7) is the local deformation only. The 

elastic global and local deformation of the whole concrete block is shown separately. 

Considering the spread in test results and the accuracy achievable in practice, the comparison 

shows a sufficiently good accuracy of prediction. 
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Figure 2.1.10 Comparison of the stiffness prediction to Test 2.2, (Alma and Bijlaard, 1980), 

concrete block 800x400x320 mm, plate thickness t = 19 mm, T stub length L = 300 mm 
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Figure 2.1.11 Comparison of the stiffness prediction to Test W97-15, repeated loading, 

cleaned concrete surface without grout only (Sokol and Wald, 1997), concrete block 

550 x 550 x 500 mm, plate thickness t = 12 mm, T stub length L = 335 mm 
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Figure 2.1.12 Comparison of the stiffness prediction to Test W97-15 repeated and increasing 

loading, cleaned concrete surface low quality grout (Sokol and Wald, 1997), concrete block 

550 x 550 x 500 mm, plate thickness t = 12 mm, T stub length L = 335 mm 

The comparison of local and global deformations can be shown on Finite Element (FE) 

simulation. In Figure 2.1.11 the prediction of elastic deformation of rigid plate 100 x 100 mm 

on concrete block 500 x 500 x 500 mm is compared to calculation using the FE model. 
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Figure 2.1.13 Calculated vertical deformations of a concrete block 0,5 x 0,5 x 0,5 m loaded to 

a deflection of 0,01 mm under a rigid plate 0,1 x 0,1 m; in the figure on the right, the 

deformations along the vertical axis of symmetry δaxis are given and the calculated 

deformations at the edge δedge, included are the global elastic deformations according to 

δglob = F h /(Ec Ac), where Ac  is full the area of the concrete block 

Based on these comparisons, the recommendation is given that for practical design, besides 

the local effect of deformation under a flexible plate, the global deformation of the supporting 

concrete structure must be taken into consideration. 
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2.2 Column flange and web in compression 

2.2.1 Description of the component 

In this section, the mechanical characteristics of the “column flange and web in compression” 

component are presented and discussed. This component, as its name clearly indicates, is 

subjected to tension forces resulting from the applies bending moment and axial force in the 

column (Figure 2.2.1). 

The proposed rules for resistance and stiffness evaluation given hereunder are similar to those 

included in revised Annex J of Eurocode 3 for the “beam flange and web in compression” 

component in beam-to-column joints and beam splices. 

 

Figure 2.2.1 Component “column flange and web in compression” 

 

2.2.2 Resistance 

When a bending moment M and a axial force N are carried over from the column to the 

concrete block, a compression zone develops in the column, close to the column base; it 

includes the column flange and a part of the column web in compression. The compressive 

force Fc carried over by the joint may, as indicated in Figure 2.2.2, is quite higher than the 

compressive force F in the column flange resulting from the resolution, at some distance of 

the joint, of the same bending moment M and axial force N. In Figure 2.2.2, the forces F and 

Fc are applied to the centroï d of the column flange in compression. 

Risk of yielding or instability 
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This assumption is usually made for sake of simplicity but does not correspond to the reality 

as the compression zone is not only limited to the column flange. 

The force Fc, quite localized, may lead to the instability of the compressive zone of the 

column cross-section and has therefore to be limited to a design value which is here defined in 

a similar way than in Annex J for beam flange and web in compression : 

)/(... fccRdcRdfbc thMF −=  (2.2.1) 

where : 

Mc.Rd  is the design moment resistance of the column cross-section reduced, when 

necessary, by the shear forces; Mc.Rd takes into consideration by itself the potential 

risk of instability in the column flange or web in compression; 

hb is the whole depth of the column cross-section; 

tfb is the thickness of the column flange. 

 

 

 

• M and N applied as in Figure 2.2.1 

• F = N/2 + M/(hb-tfb) 

• Fc = N/2 + M/z 

⇒ F < Fc 

 

 

 

 

Figure 2.2.2 Localized compressive force in the column cross-section 

located close to the column base 

It has to be pointed out that Formula (2.2.1) limits the maximum force which can be carried 

over in the compressive zone of the joint because of the risk of loss of resistance or instability 

in the possibly overloaded compressive zone of the column located close to the joint. It 

therefore does not replace at all the classical verification of the resistance of the column cross-

z 

Fc 

F 

hc - tfc 
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section. 

It has also to be noted that formula (2.2.1) applies whatever is the type of connection and the 

type of loading acting on the column base. It is also referred to in the preliminary draft of 

Eurocode 4 Annex J in the case of composite construction and applies also to beam-to-column 

joints and beam splices where the beams are subjected to combined moments and shear and 

axial compressive or tensile forces. It is therefore naturally extended here to column bases. 

The design resistance given by Formula (2.2.1) has to be compared to the compressive force 

Fc (see Figure 2.2.2) which results from the distribution of internal forces in the joint and 

which is also assumed to be applied at the centroï d of the column flange in compression. It 

integrates the resistance of the column flange and of a part of the column web; it also covers 

the potential risk of local plate instability in both flange and web. 

 

2.2.3 Stiffness 

The deformation of the column flange and web in compression is assumed not to contribute to 

the joint flexibility. No stiffness coefficient is therefore needed. 

 

2.3 Base plate in bending and anchor bolt in tension 

When the anchor bolts are activated in tension, the base plate is subjected to tensile forces and 

deforms in bending while the anchor bolts elongate. The failure of the tensile zone may result 

from the yielding of the plate, from the failure of the anchor bolts, or from a combination of 

both phenomena.  

Two main approaches respectively termed "plate model" and "T-stub model" are referred to in 

the literature for the evaluation of the resistance of such plated components subjected to 

transverse bolt forces.  

The first one, the "plate model", considers the component as it is - i.e. as a plate - and formulae 

for resistance evaluation are derived accordingly. The actual geometry of the component, which 

varies from one component to another, has to be taken into consideration in an appropriate way; 

this leads to the following conclusions : 

• the formulae for resistance varies from one plate component to another; 

• the complexity of the plate theories are such that the formulae are rather complicated and 

therefore not suitable for practical applications. 
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The T-stub idealisation, on the other hand, consists of substituting to the tensile part of the joint 

T-stub sections of appropriate effective length l eff , connected by their flange onto a presumably 

infinitely rigid foundation and subject to a uniformly distributed force acting in the web plate, see 

Figure 2.3.1. 

 

eff

web

flange

F

t

e m

l

 

Figure 2.3.1 T-stub on rigid foundation 

In comparison with the plate approach, the T-stub one is easy to use and allows to cover all the 

plated components with the same set of formulae. Furthermore, the T-stub concept may also be 

referred to for stiffness calculations as shown in (Jaspart, 1991) and Yee, Melchers, 1986). 

This explains why the T-stub concept appears now as the standard approach for plated 

components and is followed in all the modern characterisation procedures for components, and 

in particular in Eurocode 3 revised Annex J (1998) for beam-to-column joints and column bases. 

In the next pages, the evaluation of the resistance and stiffness properties of the T-stub are 

discussed in the particular context of column bases and proposals for inclusion in forthcoming 

European regulations are made. 

 

2.3.1 Design resistance of plated components 

2.3.1.1 Basic formulae of Eurocode 3 

The T-stub approach for resistance, as it is described in Eurocode 3, has been first introduced by 

Zoetemeijer (1974) for unstiffened column flanges. It has been then improved (Zoetemeijer, 

1985) so as to cover other plate configurations such as stiffened column flanges and end-plates. 

In  Jaspart (1991), it is also shown how to apply the concept to flange cleats in bending. 
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In plated components, three different failure modes may be identified : 

a) Bolt fracture without prying forces, as a result of a very large stiffness of the plate (Mode 3) 

b) Onset of a yield lines mechanism in the plate before the strength of the bolts is exhausted 

(Mode 1) 

c) Mixed failure involving yield lines - but not a full plastic mechanism - in the plate and 

exhaustion of the bolt strength (Mode 2). 

Similar failure modes may be observed in the actual plated components (column flange, end 

plates, …) and in the flange of the corresponding idealised T-stub. As soon as the effective 

length l eff  of the idealised T-stubs is chosen such that the failure modes and loads of the actual 

plate and the T-stub flange are similar, the T-stub calculation can therefore be substituted to that 

of the actual plate. 

In Eurocode 3, the design resistance of a T-stub flange of effective length l eff  is derived as 

follows for each failure mode : 

Mode 3:   bolt fracture (Figure 2.3.2.a) 

F BRd t Rd, .3
= Σ  (2.3.1) 

Mode 1:   plastic mechanism (Figure 2.3.2.b) 

F
m

mRd
eff pl Rd

,
,

1

4
=

l
 (2.3.2) 

Mode 2:   mixed failure (Figure 2.3.2.c) 

F
m B n

m nRd
eff pl Rd t Rd

,
, .

2

2
=

+
+

l Σ
 (2.3.3) 

 



 

 

 

2.20 

F

B

Rd.3

t.Rd
B

t.Rd

F

B

Rd.1

B

Q Q

e

n m

Q Q

Bt.RdB
t.Rd

F
Rd.2

Mode 3 Mode 1 Mode 2

 

Figure 2.3.2 Failure modes in a T-stub 

In these expressions :  

mpl,Rd  is the plastic moment of the T-stub flange per unit length ( 0My
2 /ft

4

1 γ ) 

with t = flange thickness, fy = yield stress of the flange, γM0 = partial safety 

factor) 

m and e   are geometrical characteristics defined in Figure 2.3.2. 

Σ Bt.Rd   is the sum of the design resistances Bt.Rd of the bolts connecting the T-stub 

to the foundation (Bt.Rd = 0,9 As fub / γMb where As is the tensile stress area of 

the bolts, fub the ultimate stress of the bolts and γMb a partial safety factor) 

n  designates the place where the prying force Q is assumed to be applied, as 

shown in Figure 2.3.2 (n = e, but its value is limited to 1,25 m). 

l eff   is derived at the smallest value of the effective lengths corresponding to all 

the possible yield lines mechanisms in the specific T-stub flange being 

considered. 

 

The design strength FRd of the T-stub is derived as the smallest value got from expressions 

(2.3.1) to (2.3.3) : 

F F F FRd Rd Rd Rd= min( , , ), , ,1 2 3
 (2.3.4) 

In Jaspart (1991), the non-significative influence of the possible shear-axial-bending stress 

interactions in the yield lines on the design capacity of T-stub flanges has been shown. 

In Annex J, the influence on Mode 1 failure of backing plates aimed at strengthening the column 

flanges in beam-to-column bolted joints is also considered. A similar influence may result, in 
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column bases, from the use of washer plates. The effect of the latter on the base plate resistance 

will be taken into consideration in a similar way than it is done in Annex J for backing plates. 

This calculation procedure recommended first by Zoetemeijer has been refined when revising the 

Annex J of Eurocode 3. 

Eurocode 3 distinguishes now between so-called circular and non-circular yield lines 

mechanisms in T-stub flanges (see Figure 2.3.3.a). These differ by their shape and lead to 

specific values of T-stub effective lengths noted respectively leff,cp and leff,np. But the main 

difference between circular and non-circular patterns is linked to the development or not of 

prying forces between the T-stub flange and the rigid foundation : circular patterns form without 

any development of prying forces Q, and the reverse happens for non-circular ones. 

The direct impact on the different possible failure modes is as follows : 

Mode 1 :  the presence or not of prying forces do not alter the failure mode which is linked in 

both cases to the development of a complete yield mechanism in the plate. Formula 

(2.3.2) applies therefore to circular and non-circular yield patterns. 

Mode 2 : the bolt fracture clearly results here from the over-loading of the bolts in tension 

because of prying effects; therefore Mode 2 only occurs in the case of non-circular 

yield lines patterns. 

Mode 3 : this mode does not involve any yielding in the flange and applies therefore to any 

T-stub. 

As a conclusion, the calculation procedure differs according to the yield line mechanisms 

developing in the T-stub flange (Figure 2.3.3.b) : 

F F FRd Rd Rd= min( ; ), ,1 3
 for circular patterns  (2.3.5.a) 

F F F FRd Rd Rd Rd= min( ; ; ), , ,1 2 3
 for non-circular patterns  (2.3.5.b) 

In Annex J, the procedure is expressed in a more general way. All the possible yield line 

patterns are considered through recommended values of effective lengths grouped into two 

categories : circular and non-circular ones. The minimum values of the effective lengths - 

respectively termed leff,cp and leff,np - are therefore selected for category. The failure load is 

then derived, by means of Formula (2.3.4), by considering successively all the three possible 

failure modes, but with specific values of the effective length : 
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Mode 1 : );min( ,,1, nceffcpeffeff lll =  (2.3.6.a) 

Mode 2 : l leff eff nc, ,2 =  (2.3.6.b) 

Mode 3 : - (2.3.6.c) 
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(a) Different yield line patterns 

0

0,2

0,4

0,6

0,8

1

0 0,5 1 1,5 2 2,5

Mode 1

Mode 2

Mode 3

Mode 1*

F B/ Σ   t.Rd

4  eff  Mpl.Rd  / Σ Bt.Rdl

 

(b) Design resistance 

Figure 2.3.3 T-stub resistance according revised Annex J 

 

2.3.1.2 Alternative approach for Mode 1 failure 

The accuracy of the T-stub approach is quite good when the resistance is governed by failure 

modes 2 and 3. The formulae for failure mode 1, on the other hand, has been seen quite 

conservative, and sometimes too conservative, when a plastic mechanism forms in the T-stub 

flange (Jaspart, 1991). 
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Therefore the question raised whether refinements could be brought to the T-stub model of 

Eurocode 3 with the result that the amended model would provide a higher resistance for failure 

mode 1 without altering significantly the accuracy regarding both failure modes 2 and 3. 

In (Jaspart, 1991), an attempt has been made in this respect. In the Zoetemeijer’s approach, the 

forces in the bolts are idealised as point loads. Thus, it is never explicitly accounted for the actual 

sizes of the bolts and washers. If this is done, the following resistance may be expressed for 

Mode 1 (Jaspart, 1991): 

[ ]F
n e m

mn e m nRd

w eff pl Rd

w
,

, ,( )

( )1

18 2

2
=

−
− +

l
 (2.3.7) 

with ew = 0.25 dw (dw designates the diameter of the bolt/screw or of the washer if any.  

Of course, Equation (2.3.7) confines itself to Zoetemeijer's formulae (2.3.2) when distance ew is 

vanishing. 

During the recent revision of Annex J of Eurocode 3, formula (2.3.7) which describes the Mode 

1 failure as dependent on the actual bolt dimensions has been agreed for inclusion as an 

alternative to formula (2.3.2).  
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2.3.2 Initial stiffness of plated components  

2.3.2.1 Application of the T-stub approach 

For plated components, it is also referred to the T-stub concept, see Figure 2.3.4.  

 

 

 

 

 

 

 

 

 

Figure 2.3.4 T-stub elastic deformability 

In a T-stub, the tensile stiffness results from the elastic deformation of the T-stub flange in 

bending and of the bolts in tension (the role of the latter is plaid by the anchor bolts in section 

2.3.3 dealing explicitly with column bases). When evaluating the stiffness of the T-stub, the 

compatibility between the respective deformabilities of the T-stub flange and of the bolts has to 

be ensured : 

bp ∆=∆*  (2.3.8) 

where ∆p* is the deformation of the end-plate at the level of the bolts; 

∆b  is the elongation of the bolts. 

In Jaspart (1991), expressions providing the elastic initial stiffness of the T-stub are proposed; 

they allow the coupling effect between the T-stubs to be taken into consideration. These 

expressions slightly differ from those given in the original publication of Yee and Melchers 

(1986). 

The elongation ∆b of the bolts simply results from the elongation of the bolt shank subjected to 

tension: 
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b
S

b L
AE

B=∆  (2.3.9) 

where bL is approximately defined as the length of the bolt shank in Eurocode 3. 

From these considerations, the elastic deformation of the two T-stub may be derived : 

p,i
p kE

F
=∆  (2.3.10) 

where the stiffness coefficient ki,p is expressed as : 

1

p,i )q
4

1

8

1
(Zk

−





 −= α  (2.3.11) 
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1

l
+

=
α

 (2.3.12) 

In these formulae : 

 33 tb/2Z l=  )n75,0m(2 +=l  

 3
1 25,1 ααα −=  b is the T-stub length 

 
32

2 86 ααα −=  l/n75,0=α  

All the geometrical properties are defined in Figure 3.2.4. 

The validity of these formulae has been demonstrated in Jaspart (1991) on the basis of a quite 

large number of comparisons with test results on joints with end-plate and flange cleated 

connections got from the international literature. 

 

2.3.2.2 Simplified stiffness coefficients for inclusion in Eurocode 3 

The application of the T-stub concept to a simplified stiffness calculation - as that to be 

included in a code such Eurocode 3 - requires to express the equivalence between the actual 

component and the equivalent T-stub in the elastic range of behaviour and that, in a different 

way than at collapse; this is achieved through the definition of a new effective length called 

l eff ini,
 which differs from the  l eff  value to which it has been referred to in section 2.3.1. In 
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view of the determination of the stiffness coefficient kip, two problems have to be 

investigated: 

• the response of a T-stub in the elastic range of behaviour; 

• the determination of leff ini, . 

These two points are successively addressed hereunder. 

T-stub response 

The T-stub response in the elastic range of behaviour is covered in section 2.3.1.1. The 

corresponding expressions are rather long to apply, but some simplifications may be 

introduced: 

• to simplify the formulae: n is considered as equal to 1,25 m; 

• to dissociate the bolt deformability (Figure 2.3.5.c) from that of the T-sub (Figure 2.3.5.b). 

The value of q given by expressions (2.3.12) may then be simplified to : 

32

3

2

1

86

25,1
q

αα
αα

α
α

−
−

==  (2.3.13) 

as soon as it is assumed, as in Figure 2.3.5.b, that the bolts are no more deforming in tension 

( )As = ∞ . q further simplifies to: 

282,1q =  (2.3.14) 

by substituting 1,25 m to 0,75 n as assumed previously. 

The stiffness coefficient given by formula (2.3.11) therefore becomes : 

3
ini,eff

3

p,i )m5,4(2

t64,193

Z

64,193
k

l
==  (2.3.15) 

The effective length  ,inieffl has been substituted to b. 
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Figure 2.3.5 Elastic deformation of the T-stub 

Finally : 

3

3
ini,eff

3

3
ini,eff

p,i m

t

m

t
063,1k

ll
≈=  (2.3.16) 

In the frame of the assumptions made, it may be shown that the prying effect increases the 

bolt force from 0,5 F to 0,63 F (Figure 2.3.5.c). In Eurocode 3, the deformation of a bolt in 

tension is taken as equal to : 

s

b
b AE

LB=∆  (2.3.17) 

By substituting B by 0,63 F in (2.3.17), the stiffness coefficient of a bolt row with two bolts 

may be derived : 

b

s
b,i L

A
6,1k =  (2.3.18) 

 

Definition of effective length ll   eff,ini 

In Figure 2.3.5.c, the maximum bending moment in the T-stub flange (points A) is expressed 

as Mmax = 0,322 F m. Based on this expression, the maximum elastic load (first plastic hinges 

in the T-stub at points A) to be applied to the T-stub may be derived : 
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In Annex J, the ratio between the design resistance and the maximum elastic resistance of 

each of the components is taken as equal to 3/2 so : 

MO

y
2

ini,eff
eRd

f

m859,0

t
F

2

3
F

γ
l

l ==  (2.3.20) 

As, in Figure 2.3.5.b, the T-stub flange is supported at the bolt level, the only possible failure 

mode of the T-stub is the development of a plastic mechanism in the flange. The associated 

failure load is given by Annex J as: 

Mo

y
2

eff
RdRd m

ft
FF

γ
l

==  (2.3.21) 

where l eff  is the effective length of the T-stub for strength calculation. 

By identification of expressions (2.3.20) and (2.3.21), l eff ini,  may be derived : 

effeffini,eff 85,0859,0 lll ==  (2.3.22) 

Finally, by introducing equation (2.3.22) in the expression (2.3.18) giving the value of ki,p for 

any plated component : 

3

3
1,eff

p,i
m

t85,0
k

l
=  (2.3.23) 

 

 

2.3.3 Extension to base plates 

To evaluate the resistance and stiffness properties of a base plate in bending and anchor bolts 

in tension, reference is also made to the T-stub idealisation. 

 

2.3.3.1 Resistance properties 

Three failure modes are identified in Section 2.3.1.1 for equivalent T-stubs of beam end-

plates and column flanges: Mode 1, Mode 2 and Mode 3. Related formulae may be applied to 

column base plates as well. 

But in the particular case of base plates, it may happen that the elongation of the anchor bolts 
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in tension is such, in comparison to the flexural deformability of the base plate, that no prying 

forces develop at the extremities of the T-stub flange. In this case, the failure results either 

from that of the anchor bolts in tension (Mode 3) or from the yielding of the plate in bending 

(see Figure 2.3.6) where a “two hinges” mechanism develops in the T-stub flange. This 

failure is not likely to appear in beam-to-column joints and splices because of the limited 

elongation of the bolts in tension. This particular failure mode is named “Mode 1*”. 

F*

B B

Rd.1

 

Figure 2.3.6 Mode 1** failure 

The corresponding resistance writes : 

m

m2
F

Rd.pleff**
1.Rd

l
=  (2.3.24) 

When the Mode 1* mechanism forms, large base plate deformations develop; they may result 

in contacts between the concrete block and the extremities of the T-stub flange, i.e. in prying 

forces. Further loads may therefore be applied to the T-stub until failure is obtained through 

Mode 1 or Mode 2. But to reach this level of resistance, large deformations of the T-stub are 

necessary, what is not acceptable in design conditions. The extra-strength which separates 

Mode 1* from Mode 1 or Mode 2 in this case is therefore disregarded and Formula (2.3.24) is 

applied despite the discrepancy which could result from comparisons with some experimental 

tests. 

As a result, in cases where no prying forces develop, the design resistance of the T-stub is 

taken as equal to : 

( )3,Rd
**

1,RdRd F,FminF =  (2.3.25) 

when FRd,3 is given by formula (2.3.1). 

In other cases, the common procedure explained in section 2.3.1 is followed. 

The criterion to distinguish between situations with and without prying forces is discussed in 

section 2.3.3.3. 

As explained in Section 2.3.1.1, circular and non-circular yield line patterns have to be 
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differentiated when deriving the effective length effl  of the T-stub : 

• The non-circular patterns referred to in revised Annex J of Eurocode 3 cover cases where 

prying forces develop at the extremities of the plated component.  

• The circular patterns develop without any prying. 

Concerning Mode 1* failure, only circular patterns have therefore to be taken into 

consideration and the non-circular patterns proposed by Eurocode3 have to be disregarded. 

Mode 1* identifies then exactly to Mode 1 and, in order to ensure that the design resistances 

provided by formulae (2.3.2) and (2.3.24) are equal, the effective lengths for circular patterns 

defined in revised Annex J have to be multiplied by a factor 2 before being implemented in 

Formula (2.3.24).  

Besides that, non-circular patterns not involving prying forces in the bolts may occur. These 

ones may be considered through Formula (2.3.24), but by introducing appropriate effective 

length characteristics. The lowest of the effective lengths between those derived for circular 

and non-circular patterns respectively is that which will determines the design resistance of 

the T-stub. 

Table 2.3.1 indicates how to select the values of effl  for two classical base plate 

configurations, in cases where prying forces develop and do not develop. 
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It has to be noted that these formulae only apply to base plates where the anchor bolts are not 

located outside the beam flanges, as indicated in Figure 2.3.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Cases covered        (b) Cases not covered 

Figure 2.3.9 Limits of validity of the formulae given in Figures 2.3.7 and 2.3.8. 

 

2.3.3.2 Stiffness properties 

The elastic deformation of a T-stub in tension is discussed in section 2.3.2.1 and accurate 

formulae for stiffness evaluation are suggested. They have been used in section 2.3.2.2 to 

derive simplified expressions for inclusion in Revised Annex J of Eurocode 3. 

• the stiffness coefficient for the T-stub flange in bending : 

3

3
eff

p m

t85,0
k

l
=  (2.3.26) 
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• the stiffness coefficient for the anchor bolts in tension: 

b

s
b L

A
6,1k =  (2.3.27) 

where Lb is the anchor bolt length described hereunder. These two expressions relate to 

situations where prying forces develop at the extremities of the T-stub flange as a result of a 

limited bolt-axial deformation in comparison with the bending deformation of the flange. 

In "no prying cases", the deformation p∆  of the base plate is easily derived as : 

p,i

p
kE

F
=∆  (2.3.28.a) 

where the stiffness coefficient ki,p is expressed as : 

3

3
ini,eff

p,i
m2

tl
k =  (2.3.29.b) 

and that of the bolts (without preloading) : 

b,i

b
kE

F
=∆  (2.3.30.a) 

with : 

b

s
b,i L

A2
k =  (2.3.31.b) 

Lb is the effective free length of the anchor bolts (Figure 3.2.10). It is defined as the sum of 

two contributions Lfl and Lel. Lfl is the free length of the anchor bolts, i.e. the part of the bolt 

which is not embedded. Lel is the equivalent free length of the embedded part of the anchor 

bolt; it may be approximated to 8d (Wald, 1993), where d is the nominal diameter of the 

anchor bolt. Should the embedded length of the bolt be shorter than 8d, then the actual length 

of the bolt would be considered. A justification of this definition of Lel is given in section 

2.3.5. 
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Lfl

L

d

el

L

 

Figure 2.3.10 Effective length of the anchor bolts 

If the approximation of the leff,ini value suggested in section 2.3.3.2 is again considered - 

formula (2.3.26) -, the stiffness coefficient for the base plate in the case of "no prying" 

conditions may be finally expressed as : 

3

3
eff

p,i
m

tl
425,0k =  (2.3.32) 

 

2.3.3.3 Boundary for prying effects 

The elastic deformed shape of a T-stub in tension depends on the relative deformability of the 

flange in bending and the anchor bolts in tension (see section 2.3.2). In Figure 3.2.11, the bolt 

and flange deformations compensate such that the contact force Q just vanishes. For a higher 

bolt deformability, no contact will develop, while contact forces will appear for a lower bolt 

deformability. The situation illustrated in Figure 2.3.11 therefore constitutes a limit case to 

which a prying boundary may be associated. This is expressed as follows : 

3
eff

s
2

boundary.b
t

Anm7
L

l
= . (2.3.33) 

If, as a further assumption, n is defined as equal to 1,25 m (section 2.3.2.2), then : 

3
eff

s
3

boundary.b
t

Am82,8
L

l
= . (2.3.34) 

nm

F

Q = 0

Θ p
∆

b

∆b =  Θp n

Q = 0
 

Figure 2.3.11 The T-stub deformation when prying force Q vanishes 
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If Lb is higher than Lb,boundary, then the following formulae apply : 

• formulae (2.3.32) and (2.3.31.b) for stiffness; 

• formulae (2.3.24) and (2.3.1) for resistance. 

In the opposite case, other formulae have to be referred to : 

• formulae (2.3.26) and (2.3.27) for stiffness; 

• formulae (2.3.1), (2.3.2) – or (2.3.7) – and (2.3.3) for resistance. 

 

 

2.3.3.4 Agreement between the simplified and sophisticated stiffness models 

In the following figures, the validity of the simplifications brought to the theoretical stiffness 

model presented in section 2.3.2.1 to derive the so-called simplified model described in 

sections 2.3.2.2 and 2.3.3.2 is shown on three examples : 

• T-stub with : mm333,458
eff =l , Lb = 150 mm, As = 480 mm², m = 50 mm (Figure 

2.3.12.a), where the n/m ratio takes the following values:  0,5; 1,0; 1,5 and 2.0 .  

• T-stub with : mm333,458eff =l , Lb = 300 mm, As = 480 mm², m = 50 mm , 

(Figure 2.3.12.b), where the n/m ratio takes the following values : 0,5; 1,0; 1,5 and 2.0 .  

• T-stub with : mm333,458eff =l , Lb = 600 mm, As = 480 mm², m = 50 mm,  (Figure 

2.3.12.c), where the n / m ratio takes the following values : 0,5; 1,0; 1,5 and 2.0 . 

The boundary between "prying" and "no prying" fields is computed by means of formulae 

(2.3.33) and (2.3.34) for the theoretical and simplified models respectively. 
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(a) Lb = 150 mm 
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(b) Lb = 300 mm 



 

 

 

2.38 

 t / m

Simplified model

Sophisticated model (n / m = 0,5)

0 0,2 0,4 0,6 0,8 1 1,2
0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

Lb = 600 mm

 

 

 t / m

Simplified model

Sophisticated model (n / m = 1,0)

0 0,2 0,4 0,6 0,8 1 1,2
0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

Lb = 600 mm

 

 

 t / m

Simplified model

Sophisticated model (n / m = 1,5)

0 0,2 0,4 0,6 0,8 1 1,2
0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

Lb = 600 mm

 

 

 t / m

Simplified model

Sophisticated model (n / m = 2,0)

0 0,2 0,4 0,6 0,8 1 1,2
0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

Lb = 600 mm

 

(c) Lb = 600 mm 

Figure 2.3.12 Comparisons between theoretical and simplified models 
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2.3.4 Anchorage of the bolts in the concrete block 

Different types of anchor bolts are used as shown in Figure 2.3.13. 

a) b) f)c) d) e)

 

cast-in-place (a), undercut (b), adhesive (c), grouted (d), expansion (e), anchoring to grillage 

beams (f) 

Figure 2.3.13 Basic types of anchoring 

The anchoring resistance is provided by CEB rules based on the ultimate limit state concept. 

As already said, this resistance has to be such that the anchor bolts fail in tension before the 

anchorage (pull-out of the anchor, failure of the concrete, …) reach its own resistance. 

For a single anchor, the following failure modes have to be considered (CEB, 1994): 

• Pull-out failure (NRd.p ) 

• Concrete cone failure (NRd.c) 

• Splitting failure of the concrete (NRd.sp) 

Similar verifications are required for anchor groups. 

d

a

t 1

hef

th

a
1

h 1

e p

0,7 t 1

 

Figure 2.3.14 The geometry of the in-situ-cast headed anchor bolts 
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The most economical solutions for anchoring are, for instance, hooked bars for light 

anchoring, cast-in-place headed anchors and bounded anchors to drilled holes. The more 

expensive anchoring systems such as “grillage beams embedded in concrete” are designed for 

large frames. Models for the anchoring design resistance compatible with Eurocodes have 

been published in CEB Guide (CEB, 1997) and by Eligehausen in (Eligehausen, 1990) and 

(Eligehausen, 1991). 

The calculation of the anchoring design resistance of cast-in-situ headed anchor bolts loaded 

in tension is presented here below. 

The pullout failure design resistance may be obtained as: 

MphkpRd ApN γ/
.

=  (2.3.35) 

where pk is taken in non-cracked concrete as: 

pk = 11,0 fck   (2.3.36) 

and Ah is the bearing area of the head; for circular head of diameter dh, it writes: 

Ah = π (dh
2
 - d

2
) / 4    (2.3.37) 

The concrete cone failure design resistance is given as 

N.ucrN.reN.ecN.s0
N.c

N.c0
c.Rdc.Rd A

A
NN ΨΨΨΨ= ,  (2.3.38) 

where 

McefckcRk hfkN γ/5,15,0

1

0

.
=  (2.3.39) 

is the characteristic resistance of a single fastener. The coefficient k1 could be taken for non 

cracked concrete as: 

]mm/N[0,11k1 =  (2.3.40) 

The geometric effect of spacing p and edge distance e is included in calculation of the area of 

the cone, see Figure 2.3.15, as: 

2
N.cr

0
N.c pA =  (2.3.41) 

( ) ( )2N.cr1N.crN.c ppppA ++=  (2.3.42) 
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for examples in Figure 2.3.15.a and 2.3.15.b or as: 

( ) N.crN.crN.c pp5,0eA +=  (2.3.43) 

for Figure 2.3.15c.  

It is possible to consider approximately: 

efN.crN.cr h0,3e0,2p ≅≅  (2.3.44) 

0,5 p

p1

0,5 pp2

cr.N
p

p

p

0,5 pecr.N

cr.N

cr.N

a) b) c)

cr.N

cr.N

 

Figure 2.3.15 An idealised concrete cone, individual anchor (a), anchor group (b), single 

anchor at edge (c) 

The disturbance of the stress distribution in the concrete may be introduced through the 

following parameter: 

1
e

e
3,07,0

N.cr
N.s ≤+=Ψ  (2.3.45) 

The parameter Ψec.N  takes into account the group effect. Parameter Ψre.N  is used for small 

embedded depths (hef ≤ 100 mm). The resistance is increased in non-cracked concrete by 

parameter Ψure N. ,= 1 4 . 

The splitting failure for the in-situ-cast anchors is prevented if the concrete is reinforced or by 

limiting: 

The spacing: 

pmin = 5 dh ≥ 50 mm (2.3.46) 

The edge distances: 
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emin = 3 dh ≥ 50 mm (2.3.47) 

And the height of the concrete block: 

hmin = hef + th + c∅ , (2.3.48) 

where: 

th is thickness of the anchor bolt head and 

c∅ the required concrete cover for reinforcement. 

For fastenings with an edge distance e > 0,5 hef  in all directions, a check of the characteristic 

pull-out resistance may be omitted. 

hef

d

d h

th

a h

 

Figure 2.3.16 Headed embedded anchor bolt 

The detailed complex description of the evaluation formulae for the design resistance of 

different types of fastenings in tension is included in the CEB Guide (CEB, 1997).  When 

calculating the anchoring resistance, the tolerances for the position of the bolts should be 

taken into account according to Eurocode 3, clause 7.7.5 (ENV 1992-1-1, Part 1.1). 

 

2.3.5 Definition of the equivalent free length of the anchor bolts 

The relative displacement ∆ between the surface of a concrete foundation and an embedded 

bar subjected to tension forces has been observed experimentally by Salmon (1957), Wald 

(Wald et al, 1993; Wald, 1995).  From these experimental observations, the length Lt on 

which the tensile stress in the embedded part of the bar decreases from a σ  value (at the 

concrete surface) to a zero value is seen to be approximately equal to 24 d.  This length may 

obviously vary during the loading and dramatically change because of local looses of bound 

resistance between steel and concrete.  In the calculations of the stiffness properties of the 

anchor bolts in tension, a constant stress in the bar σ is assumed to act on a so-called 

equivalent free length Lel (see Figure 2.3.10); ∆ is therefore expressed as: 
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s

el

AE

LB
=∆  (2.3.49) 

If σbx designates the bond stress between the concrete and the embedded bar (see Figure 

2.3.17), the axial stress σx along the bar writes: 

dx
d

4x

0

bx
x ∫−=

σ
σσ  (2.3.50) 

where σ = B/As is the axial stress in the non-embedded part of the bar at the concrete surface. 

L

B
σbx

t

x  

Figure 2.3.17 Example of  bond stress distribution along the embedded bar 

In x = Lt (Figure 2.3.17), σx equals zero and therefore: 

dx
d

tL
bx∫=

0

4σ
σ . (2.3.51) 

The strain along the bar writes ε σx x E= / ; by considering this relation and Equations 

(2.3.50) and (2.3.51), the elongation of the bar ∆ may be expressed as:  

.
4 2

00

dx
Ed

dx
t tt L L

x
bx

L

x ∫ ∫∫ ==∆ σε   (2.3.52) 

From Equation (2.3.52), ∆ is seen to depend on the distribution of σbx stresses along the bar. 

Hereunder three different assumptions are made for what regards the distribution: constant, 

linear and parabolic.  

• If σbx is constant and independent of x (σbx = σb ), see Figure 2.3.18: 

s
L

d E

b t=
2

2σ
 (2.3.53) 
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L

B
σ

b

t  

Figure 2.3.18 Constant distribution of bond stresses along the embedded bar 

σ
σ

b
t

d

L
=

4
 (2.3.54) 

and: 

E

L

ELd

Ld

Ed

L t

t

ttb

24

22
2 σσσ

===∆  (2.3.55.a) 

AE

LF eqtb=∆  (2.3.55.b) 

Finally by comparing Equations (2.3.55.b) and (2.3.49):   

d
L

L t
el 12

2
==  (2.3.56) 

• If the bond stress varies linearly, as shown in Figure 2.3.19: 

Ed

Ltb

3

2
2

0σ
=∆  (2.3.57) 

L

B
σb0

t  

Figure 2.3.19 Linear distribution of bond stresses along the embedded bar  

σ
σ

b
t

d

L0 2
=  (2.3.58) 

and: 

d
dL

L t
el 8

3

24

3
===  (2.3.59) 
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• If the bond stress varies non-linearly, as shown in Figure 2.3.20 (cubic parabola): 

 

L

B
σb0

t
 

Figure 2.3.20 Non-linear distribution of bond stresses along the embedded bar 

Ed

Ltb

5

2
2

0σ
≅∆  (2.3.60) 

and: 

d
dL

L t
el 8,4

5

24

5
=== . (2.3.61) 

In order to select the distribution of bound stresses in an appropriate way, FEM simulations 

corroborated by experiments (Wald et al, 1995; Sokol, Wald, 1997) have been carried out in 

Prague. An example of such simulations is shown in Figure 2.3.21. From these numerical work, 

the linear distribution of bound stresses has been selected and, as a result, the equivalent free 

length of the embedded part of the anchor bolt is considered as equal to: 

dLel 8=  (2.3.62) 

as indicated in section 2.3.3.2. 
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Figure 2.3.21 FEM simulation of bolt elongation 
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Results of comparisons between experimental tests and Equation (2.3.62) are shown in 

Figures 2.3.22 and 2.3.23. The agreement is seen to be quite good.  
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Figure 2.3.22 Comparison to experiments with long bolts (Wald et al, 1995) d = 24 mm, 
fck = 40,1 MPa 
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Figure 2.3.23 Comparison to experiments with long bolts (Sokol and Wald, 1997), 

d = 24 mm, fck = 33,3 MPa,  

In the case of short anchor bolts with an embedded length smaller than 24d, Formula (2.3.62) 

no more applies. 
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2.3.6 Experimental validation of the proposed formulae 

In the following figures, comparisons between experimental tests on isolated T-stubs in 

tension and the models for characterisation described in this section are presented. 

Three curves are reproduced on each diagram: 

• The experimental curve B-∆; 

• The theoretical curve based on the more sophisticated available models for stiffness and 

strength prediction (the model is said “complex”); 

• The theoretical curve based on the more simple available rules for stiffness and strength 

prediction (the model is said “simplified”); 

The comparisons of these simplified and complex calculation models give very similar results 

(except for experiments W97-01 and W97-02). On the other hand, a quite good agreement 

with the experimental tests is observed. 

In tests W97-01 and 97-02, the resistances given by the complex and simplified models are 

significantly different. The explanation is the following: according to the simplified model, 

prying forces develop between the T-stub and the concrete foundation while no such prying 

forces develop according to the complex model. The formulae used for the strength prediction 

are therefore different. Anyway, the level of safety and accuracy of the simplified curve 

remains quite good in both tests by comparison with the experimental results.  
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Figure 2.3.24 Load- deflection diagrams for experiments W 97-01 and W 97-02 (Sokol and 

Wald, 1997). Bolts M24, plate 20 mm, m = 32 mm, n = 40 mm, concrete block 

550 x 550 x 500 mm. No collapse was reached due to loading cell limitation 
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Figure 2.3.25 Load-deflection diagrams for experiments W 97-03 and W 97–04 (Sokol and 

Wald, 1997). Bolts M24, plate 20 mm, m = 52 mm, n = 40 mm, concrete block 550 x 550 x 

500 mm. Mode 2 collapse (breaking of bolts and plate mechanism). 
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Figure 2.3.26 Load-deflection diagrams for experiments W 97-05 and W 97-06. (Sokol and 

Wald, 1997). Bolts M24, plate 12 mm, m = 32 mm, n = 40 mm, concrete block 550 x 550 x 

500 mm. Mode 2 collapse (breaking of bolts and plate mechanism). 
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Figure 2.3.27 Load-deflection diagrams for experiments W 97-11 and W 97-12. (Sokol and 

Wald, 1997). Bolt M24, plate 20 mm, m = 67 mm, n = 40 mm, concrete block 550 x 550 x 

500 mm. Mode 2 collapse (breaking of bolts and plate mechanisms). 
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Figure 2.3.28 Load-deflection diagrams for experiments W 97-07 and W 97-08. (Sokol and 

Wald, 1997). Bolts M24, plate 12 mm, m = 52 mm, n = 40 mm, concrete block 550 x 550 x 

500 mm. Mode 1 collapse and collaspe in concrete block (W 97–07) and no collapse reached 

because of very large deformations (W 97 – 08). 
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Figure 2.3.29 Load deflection diagram for experiment W 97-09 and W 97-10. (Sokol and 

Wald, 1997). Bolts M24, plate 12 mm, m = 65 mm, n = 40 mm, concrete block 

550 x 550 x 500 mm. Collapse in the concrete block (W 97–09)  and no collapse reached 

because of very large deformations (W 97–10). 
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2.4 Shear transfer 

2.4.1 General introduction 

Horizontal shear force may be resisted by (see Fig. 2.4.1): 

a) Friction between the base plate, grout and concrete footing, 

b) Shear and bending of the anchor bolts,  

c) A special shear key, which is for example a block of I-stub or T-section or steel pad 

welded onto the underside of the base plate,  

d) Direct contact, which can be achieved by recessing the base plate into the concrete 

footing. 

 

(a) (b) (c) (d)

 

Figure 2.4.1 Column bases loaded by horizontal shear force. 

In most cases, the shear force can be resisted through friction between the base plate and the 

grout. The friction depends on the minimum compressive load and on the coefficient of 

friction. Prestressing the anchor bolts will increase the resistance of the shear force transfer by 

friction. 

Sometimes, for instance in slender buildings, it may happen that due to horizontal forces 

(wind loading) the normal compressive force is absent or is a tension force. In such cases, the 

horizontal shear force usually cannot be transmitted through friction between the base plate 

and the grout. If no other provisions are installed (e.g. shear studs), the anchor bolts will have 

to transmit these shear forces. 

Because the grout does not have sufficient strength to resist the bearing stresses between the 

bolt and the grout, considerable bending of the anchor bolts may occur, as is indicated in Fig. 

2.4.2. The main failure modes are rupture of the anchor bolts (local curvature of the bolt 

exceeds the ductility of the bolt material), crumbling of the grout, failure (splitting) of the 

concrete footing and pull out of the anchor bolt.  

Due to the horizontal displacement, not only shear and bending in the bolts will occur, but 

also the tensile force in the bolts will be increased due to second order effects. The horizontal 

component of the increasing tensile force gives an extra contribution to the shear resistance. 
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The increasing vertical component gives an extra contribution to the transfer of load by 

friction. These factors explain the shape of the load deformation diagram in Fig. 2.4.2. 

Fh

δh

0

F
h

δh
(e)

Fv

 

Figure 2.4.2 Column base loaded by shear and tension. 

The thickness of the grout layer has an important influence on the horizontal deformations. In 

the tests reported by the Stevin Laboratory (Stevin, 1989), deformations at rupture of the 

anchor bolts were between about 15 and 30 mm, whilst grout layers had a thickness of 15, 30 

and 60 mm. The deformations have to be taken into account in the check of the serviceability 

limit state.  Because of the rather large deformations that may occur, this check may govern 

the design. 

The size of the holes may have a considerable influence on the horizontal deformations, 

especially of course when oversized holes are applied.  It may be useful in such cases to apply 

larger washers under the nuts, to be welded onto the base plate after erection, or to fill the 

hole by a two component resin. For the application of such resin, reference is made to (ECCS, 

1994). 

For the design of fasteners, the CEB has published a Design Guide (CEB, 1996). In section 

2.4.2, the CEB design model for shear load transfer is summarised. 

In the Stevin Laboratory (Stevin, 1989), a model for the load deformation behaviour of base 

plates loaded by combinations of tension or compression and shear has been developed. This 

model is described in section 2.4.3. 

In section 2.4.4, the test results obtained in Delft (Stevin, 1989) are compared with the CEB 

model and the Stevin Laboratory model. 

It is noted that in the models as explained here, only the behaviour of the base plate and the 

anchor bolts is considered. For other failure modes (for the concrete) reference is made to the 

CEB Design Guide. 
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2.4.2 CEB Design Guide model 

2.4.2.1 Introduction 

In the CEB Design Guide (CEB, 1996), the load transfer from a fixture (e.g. base plate) into 

the concrete is covered. The CEB Design Guide covers many types of anchors and the 

possible failure modes of the concrete. The design of the fixture (e.g. the base plate) must be 

performed according to the appropriate code of practice. In case of steel fixtures a steel 

construction code is used. 

Much background information can be found in the CEB state of the art report: "Fastenings to 

concrete and masonry structures" (CEB, 1994). It reviews the behaviour of fastenings in 

concrete and masonry for the entire range of loading types (including monotonic, sustained, 

fatigue, seismic and impact loading), as well as the influence of environmental effects, based 

on experimental results. Existing theoretical approaches to prediction of the behaviour of 

anchors are described. 

The CEB Design Guide consists of three parts: 

Part I: General provisions. 

 1. Scope. 

 2. Terminology. 

 3. Safety concept. 

 4. Determination of action effects. 

 5. Non cracked concrete. 

 6. General requirements for a method to calculate the design resistance of a 

fastening. 

7. Provisions for ensuring the characteristic resistance of the concrete member. 

 

Part II: Characteristic resistance of fastenings with post installed expansion and undercut 

anchors. 

 8. General. 

 9. Ultimate limit state of resistance elastic design approach. 

 10. Ultimate limit state of resistance plastic design approach. 

 11. Ultimate limit state of fatigue. 

 12. Serviceability limit state. 

13.  Durability. 

 

Part III: Characteristic resistance of fastenings with cast in place headed anchors. 

 14. General. 

 15. Ultimate limit state of resistance elastic design approach. 

 16. Ultimate limit state of resistance plastic design approach. 
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 17. Ultimate limit state of fatigue. 

 18. Serviceability limit state. 

 19. Durability. 

 References. 

 

The Design Guide makes a distinction between elastic analysis and plastic analysis. The use 

of elastic analysis is compulsory when the expected mode of failure is brittle. A brittle failure 

may be assumed in the case of concrete break-out, splitting failure or rupture of steel with 

insufficient ductility. The required ductility is determined by the degree of load redistribution 

assumed in the analysis. For example, in a plastic analysis, the ductility must be sufficient to 

accommodate yielding of all anchors on the tension side. It is stated that in the case of ductile 

behaviour of the anchorage, the elastic design approach is conservative. 

For the transfer of shear forces, two methods are considered, namely: 

• Friction between the fixture (e.g. base plate) and the grout or concrete and 

• Shear/bending of the anchors.  

These two methods are described in chapter 4: "Determination of action effects".  

 

2.4.2.2 Friction between base plate and grout/concrete 

In section 4.1 of the CEB Guide it is stated that when a bending moment and/or a 

compression force is acting on a fixture, a friction force may develop, which for simplicity 

may conservatively be neglected in the design of the anchorage. If it is to be taken into 

account, then the design value of this fric tion force VRd,f may be taken as: 

VRd,f  = VRk,f / γMf = µ ·  CSd / γMf   (2.4.1) 

with 

µ  = coefficient of friction 

CSd = compression force under the fixture due to the design actions 

γMf  = 1.5  (ultimate limit state) 

γMf  = 1.3  (limit state of fatigue) 

γMf  = 1.0  (serviceability 1imit state) 

 

In general, the coefficient of friction between a fixture and concrete may be taken as µ = 0.4. 

The friction force VRd,f should be neglected if the thickness of grout beneath the fixture is 

thicker than 3 mm (e.g. in case of levelling nuts), see Fig. 2.4.3(b) and for anchorages close to 

an edge, see Fig. 2.4.3(c). 
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In the elastic design approach, the friction force calculated by equation (2.4.1) is usually 

subtracted from the shear force acting on the fixture and in the plastic design approach it is 

added to the design shear resistance of the fastening. 

For anchorages close to an edge it is generally assumed that the edge failure starts from the 

anchors closest to the edge. The resistance of the anchorage is increased if the friction force is 

acting on the side of the fixture farthest away from the edge (Fig. 2.4.3.(d)), but is not 

influenced by a friction force acting on the failed concrete (Fig. 2.4.3(c)).  

 

Figure 2.4.3 Friction force due to a resulting compression reaction on the fixture. In cases 

(a) and (d), friction force may be considered in the design. In cases (b) and (c), friction force 

should not be considered in the design (Fig. 16 in the CEB Design Guide). 

In conclusion, it can be stated that for "normal column bases", according to the CEB Guide, 

load transfer through friction should be neglected because of the fact that in normal steel 

constructions the thickness of the grout is always more than 3 mm. 
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2.4.2.3 Shear/bending of anchor bolts (elastic)  

In section 4.2.1.3 of the CEB Guide, guidance is given for the design of anchors and concrete 

when anchors are loaded by shear, if elastic analysis is assumed. Much attention is paid to the 

distribution of the shear loads on the anchors. 

(a) Distribution of shear loads 

All anchors in a group are assumed to participate in carrying shear loads if the following two 

conditions are met: 

(i) The edge distance is sufficiently large to ensure steel failure of the anchor; and 

(ii) The anchors are welded to or threaded into the fixture, or in the case of anchorages 

with a clearance hole in the fixture, the diameter of the clearance hole is dc ≤ 1.2d. The 

bolt is then assumed to bear against the fixture, see Fig. 2.4.4(a). 

 

Figure 2.4.4 Examples of anchorages with a large edge distance with a clearance hole in the 

fixture where all anchors will contribute to the transmission of shear forces. In case (a) the 

bolt is assumed to bear against fixture. In case (b) the sleeve is assumed to bear against the 

fixture (Fig. 20 in the CEB Design Guide). 

If the edge distance is small, so that concrete edge failure will occur and steel failure of the 

anchors will be precluded independent of the hole clearance, or if the hole clearance is larger 

than indicated in the previous paragraph, only those anchors having the lowest calculated 

resistance are assumed to carry loads. For example, see Figures 2.4.5 and 2.4.6. The 

positioning of slotted holes in the fixture parallel to the direction of the shear load can be used 

to prevent particular anchors in the group from carrying load. This method can be used to 

relieve anchors close to an edge, which would otherwise cause a premature edge failure (see 

Fig. 2.4.7). 
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Figure 2.4.5 Examples of load distribution for anchorages close to an edge or corner of the 

concrete member (Fig. 22 in the CEB Design Guide). 

 

 

Figure 2.4.6 Examples of load 

distribution if the hole clearance is large 

(Fig. 23 in the CEB Design Guide). 

Figure 2.4.7 Example of load 

distribution for an anchorage with slotted 

holes (Fig. 24 in the CEB Design Guide). 

For the resistance of anchor bolts, two cases are considered, namely (b) and (c): 

(b) Shear loads without lever arm  

Shear loads acting on anchors may be assumed to act without a lever arm if both of the 

following conditions are fulfilled. 
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(1) The fixture must be made of metal and in the area of the anchorage be fixed directly to 

the concrete without an intermediate layer or with a levelling layer of mortar with a 

thickness ≤ 3 mm.  

(2) The fixture must be adjacent to the anchor over its entire thickness. 

 

(c) Shear loads with lever arm  

If the conditions (1) and (2) of the preceding section (b) are not fulfilled, the length l of the 

lever arm is calculated according to equation (2.4.2): 

l =  a3  + el  (2.4.2) 

with 

el = distance between shear load and concrete surface 

a3 = 0.5 d  for post-installed and cast-in-place anchors (Fig. 2.4.8(a)) 

a3 = 0 if a washer and a nut are directly clamped to the concrete surface (Fig. 

2.4.8(b)) 

d = nominal diameter of the anchor bolt or thread diameter (Fig. 2.4.8(a)) 

 

 

Figure 2.4.8 Lever arm (Fig. 26 in the CEB Design Guide). 

The design moment acting on the anchor is calculated according to equation (2.4.3): 

MSd  = VSd ·  
l 

 αM 

  (2.4.3) 
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The value of αM depends on the degree of restraint of the anchor at the side of the fixture. No 

restraint (αM = 1.0) should be assumed if the fixture can rotate freely (see Fig. 2.4.9(a)). Full 

restraint (αM = 2.0) may be assumed only if the fixture cannot rotate (see Fig. 2.4.9(b)) and 

the hole in the fixture is smaller than 1.2d (the bolt is then assumed to bear against the fixture, 

see Fig. 2.4.4(a)) or if the fixture is clamped to the anchor by a nut and a washer (see Fig. 

2.4.8). If restraint of the anchor is assumed, the fixture and/or the fastened element must be 

able to take up the restraint moment. 

 

Figure 2.4.9 Examples of fastenings (a) without and (b) with full restrain of the anchor at 

the side of the fixture (Fig. 27 in the CEB Design Guide). 

 

2.4.2.4 Plastic analysis 

In section 4.2.2 of the CEB Guide, plastic analysis is dealt with. In section 4.2.2.1, the field of 

application is given. It is stated that in a plastic analysis it is assumed that significant 

redistribution of anchor tension and shear forces will occur in a group. Therefore, plastic 

analysis is acceptable only when the failure is governed by ductile steel failure of the anchor. 

It is stated that pull-out or pull-through failure of the anchor may occur at large displacements 

allowing for some redistribution of tension forces. However, there may not be a significant 

redistribution of shear forces. In view of the lack of information on the required behaviour, a 

plastic analysis should not be used for this type of failure. 

To ensure a ductile steel failure the CEB Guide gives several conditions that should be met. 

These conditions concern: 

(1) The arrangement of the anchors. It may be assumed that base plates meet these 

conditions. 
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(2) The ultimate strength of a fastening as governed by concrete failure, should exceed its 

strength as governed by steel failure (equation (2.4.4)): 

Rd,c  ≥  1.25 Rd,s ·  fuk /fyk    (2.4.4) 

with 

 Rd,c = design concrete capacity of the fastening (concrete cone, splitting or pull out 

failure (tension loading) or concrete pry-out or edge failure (shear loading)) 

 Rd,s  =  design steel capacity of the fastening 

Equation (2.4.4) should be checked for tension, shear and combined tension and shear 

forces on the anchors. 

(3) The nominal steel strength of the anchors should not exceed fuk = 800 Mpa. The ratio of 

nominal steel yield strength to nominal ultimate strength should not exceed  fyk / fuk = 

0.8, while the rupture elongation (measured over a length equal to 5d) should be at least 

12%. 

(4)  Anchors that incorporate a reduced section (e.g. a threaded part) should satisfy the 

following conditions: 

 (a)  For anchors loaded in tension, the strength Nuk of the reduced section should either 

be greater than 1.1 times the yield strength Nyk of the unreduced section, or the 

stressed length of the reduced section should be ≥ 5d (d = anchor diameter outside 

reduced section). 

 (b) For anchors loaded in shear or which are to redistribute shear forces, the beginning 

of the reduced section should either be ≥ 5d below the concrete surface or in the 

case of threaded anchors the threaded part should extend ≥ 2d into the concrete. 

 (c) For anchors loaded in combined tension and shear, the conditions (a) and (b) above 

should be met. 

(5) The steel fixture should be embedded in the concrete or fastened to the concrete without 

an intermediate layer or with a layer of mortar with a thickness ≤ 3 mm. 

(6) The diameter of the clearance hole in the fixture should be ≤ 1.2d (the bolt is assumed 

to bear against fixture; see Fig. 2.4.4(a)).  

 

 



 

 

 

2.61 

2.4.2.5 Conclusions for the applicability of the CEB Design Guide for base plates 

• From the above conditions, especially condition (5), it becomes clear that according to the 

CEB Design Guide plastic design is only allowed for base plates without grout layer or 

with a grout layer not thicker than 3 mm. For usual base plate construction this means that 

according to the CEB Design Guide, plastic design is not allowed. 

• The above conclusion means that according to the CEB Design Guide, the only applicable 

method for base plates with grout layers thicker than 3 mm is elastic design with the 

model "Shear loads with lever arm", where the influence of the grout is disregarded. This 

seems logical since the grout does not have sufficient resistance to prevent high bending 

moments in the anchors.  

• In condition (2) the relation between the required design concrete capacity of the fastening 

and the design steel capacity of the fastening is given. It appears that for e.g. 8.8 anchors it 

gives: 

Rd,c  ≥  1.56 Rd,s (2.4.5) 

In this COST publication it is assumed that failure of the concrete will not occur before 

failure of the base plate or anchor. The above requirement seems adequate to ensure this 

prerequisite.  

 

2.4.2.6 Resistance functions for shear load 

In section 9.3.1 of the Design Guide, the following required verifications in the case of shear 

loading are given (elastic design approach): 

• Steel failure, shear load without lever arm (VRk,s) 

• Steel failure, shear load with lever arm (VRk,sm) 

• Concrete pry-out failure 

• Concrete edge failure 

 

For VRk,s and VRk,sm the following equations are given: 

VRk,s    =    k2 ·  As ·  fyk (2.4.6) 

VRk,sm  =    
 αM ·  MRk.s 

 l 
   ≤  VRk,s  (2.4.7) 

with  
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k2 = 0.6 (2.4.8) 

As = stressed cross section in the shear plane 

MRk,s  = M
0
Rk,s ( 1- NSd /NRd,s) (2.4.9) 

M0
Rk,s = characteristic bending resistance of an individual anchor 

M
0
Rk,s = 1.5 Wel ·  fyk (2.4.10) 

NRd,s = NRk,s / γ Ms (2.4.11) 

NRk,s = As ·  fyk (2.4.12) 

γMs = 1.20  if fuk  ≤  800 Mpa  and  fyk / fuk  ≤  0.8 (2.4.13) 

γMs = 1.50  if fuk  ≥ 800 Mpa  or  fyk / fuk  ≥  0.8 (2.4.14) 

NSd = applied normal force 

αM = factor depending on the support conditions, see Fig.  2.4.9 

l = length of lever arm 

 

In section 2.4.4 of this COST publication, a comparison of the CEB model with test results 

obtained in the Stevin Laboratory will be presented, together with a comparison of the Stevin 

Laboratory model. The Stevin Laboratory model is presented in the next section. 

 

2.4.3 Stevin Laboratory Model 

2.4.3.1 Introduction 

In normal steel construction a grout layer up to 60 mm thickness may be applied under the 

base plate. In most cases the shear force can be transmitted via friction between the base plate 

and the grout. Because the grout does not have sufficient strength to resist the bearing stresses 

between the bolt and the grout, considerable bending of the anchor bolts may occur, as is 

indicated in Fig. 2.4.2.  

Fig. 4.2.10 gives one of the test specimens that were tested in the Stevin Laboratory (Stevin, 

1989). It shows the bending deformation of the anchor bolts and also the crumbling of the 

grout and final cracking of the concrete. 

In this section, the structural behaviour of anchor bolts loaded by combinations of shear and 

tensile force will be analysed. 
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Figure 2.4.10 One of the tested specimens loaded by a combination of shear force and tensile 

force. 

2.4.3.2 The analytical model  

In Fig. 2.4.11, the deformations and some important measures are indicated. Fig. 2.4.12 

shows the schematisation of the deformations and the forces, which are taken into account in 

the analytical model. In the Figures, the following symbols are used: 

As = tensile stress area of the anchor bolt 

Ft = applied tensile force 

Fh = applied shear force (horizontal force) 

Fw = friction force between base plate and grout 

Nb = normal force in the grout 

Fa = normal force in the anchor bolt 

δa = elongation of the anchor bolt 

δb = compression of the grout layer 

δh = horizontal displacement of the base plate 

v = actual thickness of the grout layer 

vr = thickness of the grout layer in the analytical model: vr = v + 0.5 db  (vr = l 

as in CEB) 

db = bolt diameter
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Figure 2.4.11 Deformation and some measurements of the tested anchor bolts. 

 

Figure 2.4.12 Schematisation of the deformations and forces in the analytical model. 
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Due to the horizontal displacement of the base plate, bending of the bolts will occur. Also, the 

tensile force in the bolt (Fa) will increase. Due to this, the shear force Fw between grout and 

base plate will increase too. 

Already at rather small horizontal deformations (δh), the tensile force Fa in the bolt reaches the 

yield force Fyb = As ·  fyb. This means that the bending moments in the anchor bolts rapidly 

decrease and the horizontal component Fah of Fa (Fig. 2.4.12) rapidly increases. Also the 

friction force Fw will increase. 

Because of the high tensile force in the bolt, the bending moments in the bolt will be small. In 

the analytical model the bending moments in the bolts are not taken into account. The bearing 

stresses of the grout-bolt contact are not taken into account either, because they are small 

compared to other forces. 

For the horizontal equilibrium it follows: 

F + 
 + v

 F = F w

ar

h
ah

δ
δ

 (2.4.15) 

Fw  =  fw ( Fa  )F  
 + v

  v
t

ar

br −
δ
δ−

 (2.4.16) 

with  

fw  =  coefficient of friction grout-base plate. 

 

For the deformation it follows: 
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Because δ2
h is small compared with δa, this can be simplified to: 

) + ( v 2 = bar
2
h δδδ  (2.4.18) 

For the "elastic" part of the behaviour, δa and δb can be written as: 
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Because Egrout Agrout is much greater than EAs, δb will be small compared with δa. Therefore δb 

is not taken into account further. 

Because of the geometry it follows: 

v +  =  + v
2
r

2
har δδ  (2.4.21) 

For (2.4.15), (2.4.16) and (2.4.18) can be written with (2.4.21): 
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δh   =  δar
 v 2  (2.4.24) 

For every δh the elongation δa can be calculated via (2.4.24), then with (2.4.19) the force Fa 

and with (2.4.22) and (2.4.23) the horizontal force Fh. 

The above formulae are valid for  Fa ≤ Fay, where 

Fay  =  As ⋅ fyb  (2.4.25) 

For  Fa  = Fay  it follows with (2.4.22), (2.4.23) and (2.4.25): 

Fh  = 

v + 

A f

2
r

2

h

sy

δ
 (δh + fw vr)  –  fw Ft (2.4.26) 

with 

E

f 2
 v = 

y

rhδ  (2.4.27) 

For the coefficient of friction fw,d the following design values are proposed: 

• sand-cement mortar  fw,d = 0.20 

• special grout (e.g. Pagel IV) fw,d = 0.30 
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2.4.3.3 Comparison with one of the tests  

To demonstrate the analytical model, one of the test results is calculated, namely DT6 in 

(Stevin, 1989). In this test, a tensile force Ft = 141 kN was kept constant in the column, while 

the horizontal force Fh was increased. 

 

Figure 2.4.13 Test specimen DT6. 

Data: 

 - 2 anchor bolts M20, grade 8.8 

 - fub = 1076 N/mm
2
 (measured value) 

 - fyb = 861 N/mm
2
 (assumed as 0.8 fub) 

 - εub = 12% (measured value) 

 - As = 245 mm
2
 

 - grout = sand-cement mortar 

 - v = 30 mm 

 

Calculation: 

 vr   =  v + 0.5 db  =  30  +  0.5 ⋅ 20  =  40 mm 

For δh according to (2.4.27) it follows: 

Sand-cement mortar 
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 δh   =  vr mm 3.6= 
000 210

861  2
 40 = 

E

f2
yb ⋅

 

For Fh according to (2.4.26) it follows (2 bolts): 

 Fh   =  
22

3

40 + 6.3

10245  861
−⋅⋅

 (3.6  +  0.20 ⋅ 40) ⋅ 2  -  0.20 ⋅ 141   =   122 - 28 = 94 kN 

E.g., for δh = 2 ⋅ 3.6 = 7.2 mm, it follows: 

 Fh   =  158 - 28   =  130 kN 

Fig. 2.4.14 gives the test result together with the result of the analytical model. The value Fv.Rd 

= 105 kN is explained in the next section. 

 

 

Figure 2.4.14 Comparison of the analytical model with the result of test DT6. 

It is noted that in Fig. 2.4.14 a linear relationship is assumed till the value of δh equals δh 

according to (2.4.27) and Fa equals As fyb. This part of the load deformation curve is called 

"elastic". 

Failure occurred in the anchor bolts (rupture) at the edge of the base plate, due to local high 

bending strains. 
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2.4.3.4 Ultimate design strength 

The ultimate strength is a function of the strength of the various parts in the column base and 

of the ductility of the anchor bolts. A greater ductility allows a greater horizontal 

displacement and thus a greater Fah (Fig 2.4.12) and consequently a greater Fh. 

It can also be noted that δh should be limited, both at serviceability and at ultimate limit state. 

To predict the ultimate strength (if governed by the anchor bolt) a relation must be found 

between the local strain in the bolt and the horizontal deformation. Furthermore, the strain 

capacity (ductility) of the various anchor materials must be known. 

In the tests it was clear that the applied 4.6 grade anchor bolts were much more ductile than 

the 8.8 grade bolts. A difference in ductility can also be found in the requirements in the 

relevant product standards. 

It appeared not easy to establish a reliable model for the strains and to find reliable data for 

the bending strain capacity of various anchor bolt materials. Therefore, a simplified method is 

proposed for the strength of 4.6 and 8.8 grade anchor bolts. This simplified method is adopted 

in the Dutch Standard (NEN 6770, 1990). 

• 4.6 anchors: 
γ

⋅

Mb

sub
v.Rd

Af375.0
  =  F  (2.4.28) 

• 8.8 anchors: 
γ

⋅

Mb

sub
v.Rd

Af25.0
  =  F  (2.4.29) 

with  γMb  =  1.25. These resistance functions are similar to the "normal" Eurocode 3 functions 

for bolts loaded in shear: 

• 4.6 and 8.8 bolts: 
γ

⋅

Mb

sub
v.Rd

Af60.0
  =  F  (2.4.30) 

After checking the design resistance, the horizontal displacements should be checked for the 

serviceability limit state and for the ultimate limit state. 

 

2.4.4 Comparison with test results  

2.4.4.1 Test results and comparison with the Stevin Laboratory model  

In the test programme (Stevin, 1989), 16 tests were carried out. In Fig. 2.4.15 the main 

dimensions of the test specimens are given. Table 2.4.1 gives a summary of the parameters in 

the test programme, while in table 2.4.2 a summary is given of the main test results and a 
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comparison with the proposed resistance functions, according to the Stevin Laboratory model 

(= NEN 6770). 

 

Figure 2.4.15 Test specimens; in the tests with 4.6 grade anchor bolts, four bolts were 

applied and in the tests with 8.8 grade anchors two bolts. 

Table 2.4.1   Parameters in the tests. 

Part of the base 

plate structure 
Parameter Variation 

Grout Type of grout Special grout  Pagel IV 

  Sand - cement mortar  2:1 

  No grout 

 Thickness of grout 15 mm 

  30 mm 

  60 mm 

Anchor bolt Strength and dimension 4.6  M20 

  8.8  M20 

 Anchoring length 250 mm with a bend at the end of the bar 

  600 mm with anchor plate 

Concrete Reinforcement With reinforcement 

  Without reinforcement 
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Table 2.4.2   Summary of test results and comparison with design values according to the 

proposed resistance functions (Stevin, 1989). 
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*
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T
es

t 
/ 

d
es

ig
n
 v

al
u
e 

   Mpa MPa Mm kN kN  kN  

DT1 

DT2 

DT3 

DT4 

DT5 

DT6 

DT7 

DT8 

DT9 

DT10 

DT11 

DT12 

DT13 

DT14 

DT15 

DT16 

4 

4 

4 

4 

2 

2 

2 

2 

4 

2 

4 

2 

4 

4 

2 

4 

4.6 

4.6 

4.6 

4.6 

8.8 

8.8 

8.8 

8.8 

4.6 

8.8 

4.6 

8.8 

4.6 

4.6 

8.8 

4.6 

290 

290 

290 

290 

- 

- 

- 

- 

290 

- 

290 

- 

280 

283 

- 

309 

423 

423 

423 

423 

1152 

1076 

1070 

1045 

423 

1049 

423 

1176 

414 

411 

1089 

443 

30 

30 

30 

30 

30 

30 

30 

60 

60 

60 

15 

15 

60 

60 

30 

30 

182 

121 

121 

121 

141 

141 

141 

141 

121 

141 

121 

141 

121 

121 

200 

200 

170 

250 

240 

240 

178 

200 

190 

230 

180 

228 

270 

255 

320 

305 

200 

255 

Cracking 

Cracking 

Rupture 

Rupture 

Rupture 

Rupture 

Rupture 

Rupture 

Pull-out 

Rupture 

Cracking 

Rupture 

Rupture 

Cracking 

Cracking 

Cracking 

124 

124 

124 

124 

113 

105 

105 

102 

124 

102 

124 

115 

122 

121 

107 

130 

1.37 

2.06 

1.94 

1.94 

1.57 

1.90 

1.81 

2.25 

1.45 

2.23 

2.17 

2.21 

2.62 

2.52 

1.87 

1.96 

  *) Cracking  = cracking of the concrete 

 Rupture   = rupture of the anchor 

 Pull-out  = pull-out of the anchor 

 **) These values were calculated with the measured material properties and dimensions. 

 

2.4.4.2 Comparison with the CEB model  

First the application of the CEB model is demonstrated for one of the tests. Test DT5 is taken 

as an example, see also table 2.4.2 and 2.4.3: 

Bolts M20, grade 8.8 

fub-measured = 1152 Mpa 

take fyk = 0.8 ·  1152  =  922 MPa 

take γMs = 1.20  (for 8.8 bolts) 
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As = 4/d
2

s⋅π   =  245 mm2    ds  = 17.66 mm 

NRk,s = As ·  fyk   =  245 ·  922 ·  10
-3
  =  226 kN 

NRd,s = NRk,s / γMs =  226 / 1.20  =  188 kN 

NSd  =  141 / 2 = 70.5 kN 

Wel = 
32

d3

s
⋅π

  =  
32

66.17
3⋅π

  =  541 mm
3 

M0
Rk,s = 1.5 Wel ·  fyk  =  1.5 ·  541 ·  922  =  748 ·  103  Nmm 

MRk,s = M
0
Rk,s ( 1- NSd /NRd,s)  = 748 ·  10

3
 (1 – 70.5 / 188) =  468 ·  10

3  
Nmm 

VRk.s = k2 ·  As ·  fyk  =  0.6 ·  245 ·  922 ·  10
-3

  =  136 kN 

VRk,sm = 
 αM ·  MRk.s 

 l 
  =  

2 ·  468 ·  10
3
 

 30 + 20/2
 10-3  =  23.4 kN   ≤  VRk.s  =  136  kN   

For the test with 2 bolts it follows 2 ·  23.4 = 46.8 kN ~  47 kN,  see table 2.4.3.  

Table 2.4.3:  Comparison of test results with design values according to the CEB model and 

Stevin Laboratory model. 

Test 
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 kN kN  Nm Nm mm kN   

DT1 

DT2 

DT3 

DT4 

DT5 

DT6 

DT7 

DT8 

DT9 

DT10 

DT11 

DT12 

DT13 

DT14 

DT15 

DT16 

59 

59 

59 

59 

188 

176 

175 

171 

59 

171 

59 

192 

57 

58 

178 

63 

45.50 

30.25 

30.25 

30.25 

70.50 

70.50 

70.50 

70.50 

30.25 

70.50 

30.25 

70.50 

30.25 

30.25 

100.00 

50.00 

0.77 

0.51 

0.51 

0.51 

0.37 

0.40 

0.40 

0.41 

0.51 

0.41 

0.51 

0.37 

0.53 

0.52 

0.56 

0.79 

235 

235 

235 

235 

748 

699 

695 

678 

235 

681 

235 

763 

227 

230 

707 

251 

54 

115 

115 

115 

468 

418 

414 

398 

115 

401 

115 

483 

107 

109 

310 

52 

40 

40 

40 

40 

40 

40 

40 

70 

70 

70 

25 

25 

70 

70 

40 

40 

11 

23 

23 

23 

47 

42 

41 

23 

13 

23 

37 

77 

12 

13 

31 

10 

15.6 
10.9 
10.4 

10.4 
3.8 
4.8 
4.6 

10.1 
13.7 
10.0 
7.3 

3.3 
26.2 
24.4 
6.5 
24.5 

1.4 
2.0 
1.9 

1.9 
1.6 
1.9 
1.8 

2.3 
1.5 
2.2 
2.2 

2.2 
2.6 
2.5 
1.9 
2.0  

*) Calculated with the measured material properties and dimensions as given in table 2.4.2. 

**) The Stevin values are taken from table 2.4.2. 
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2.4.5 Conclusions  

2.4.5.1 Regarding the models 

The CEB model gives very conservative results, especially when a large tensile force is 

present and / or the length l (thickness of the grout layer) is large. The main reason is that the 

CEB model does not take account of the positive influence of the grout layer. The CEB model 

does not give rules to determine the deformation. 

The Stevin Laboratory model gives much more consistent results. It gives also rules to 

determine the deformation. 

2.4.5.2 Regarding the observed behaviour 

• The strength in shear of anchor bolts is considerably lower than the shear strength of bolts 

in bolted connections between steel plates. 

• The ductility of the anchor bolts is an important factor for the strength. The lower ductility 

of 8.8 grade bolts compared to 4.6 grade bolts is reflected in the lower coefficient of the 

resistance function.  

 33.1  =  2  67.0  =  
400

800
  

375.0

25.0
  =  

4.6 - F

8.8 - F

v.Rd

v.Rd ⋅⋅ 1 

• The influence of a tensile force Ft in the column can be neglected for the determination of 

the shear resistance. 

• The shear resistance is almost independent of the thickness of the grout layer. 

• The deformations are greatly dependent on the thickness of the grout layer. 

• The type of grout has virtually no influence on the shear resistance. 

• A "better" grout, e.g. "Pagel IV" gave less deformations in the tests. In general it can be 

stated that the quality of the grout layer has great influence on the strength and especially 

the deformations. 

• In the design, not only the shear resistance should be checked, but also the deformations at 

serviceability and ultimate limit state. 

• It is obvious that also other failure modes, like splitting of the concrete block, etc., should 

be checked. For this check the CEB Design Guide is probably a good guidance. 
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Chapter 3:  Assembly procedure 

3.1 Influence of load history 

Once the resistance, stiffness and deformation capacity of the joint components have been 

calculated, the next step is to determine the resistance, stiffness and rotational capacity of the 

whole joint. The procedure to follow in this process is called the "assembly procedure".  

In section 3.2 an overview of assembly procedures resulting from the COST C1 project is 

given, whereas in section 3.3 a simplified assembly procedure is described for practical 

design purposes. 

Unlike beam-to-column joints, an important aspect of assembly procedures and their 

comparison with test results for column bases is the (monotonic) loading history applied to 

the joint. In case of beam-to-column joints without normal force in the beam, the rotation of 

the joints is only dependent on the applied moment. In the case of base plate joints, however, 

the moment-rotation characteristic is also dependent on the normal force in the column. 

Consider the base plate joint of Figure 3.1.1. 

M-NSd Sd

 

Figure 3.1.1 Base plate joint. 

Assume that the base plate is loaded to its moment resistance MRd = 160 kNm in combination 

with a normal compressive force NRd = -660 kN. 

With help of a design model, design moment-rotation diagrams are calculated as shown in 

Figure 3.1.2. In this figure two lines are indicated, the solid line labelled "proportional" and 

the dotted line labelled "non-proportional".  

In the proportional case, the moment MSd is applied to the joint together with a normal force 



 

 

3.2 

NSd equal to NRd ·  MSd / MRd. In other words, when the MSd is equal to zero, NSd is equal to 

zero and when MSd is equal to MRd, NSd is equal to NRd. 

In the non-proportional case, it is assumed that the normal force NRd is applied first to the 

joint and that then the moment MSd is applied step by step until it reaches MRd. 

 

Rotation

Moment

Proportional

Non Proportional (N=const)

Both sides of the joint in

compression

Left side anchor bolts in tension, right side

concrete in compression

 

Figure 3.1.2 Design moment-rotation diagram for the joint of Figure 3.1.1. 

From Figure 3.1.2 it can be seen that the initial stiffness under non-proportional loading is 

much higher then under proportional loading. This is because concrete in compression is 

much stiffer than anchor bolts in tension. In the case of non-proportional loading during the 

initial loading steps, both sides of the joint are firmly held in contact by the normal force NRd. 

That means that hardly no deformations occur, even if a small moment is applied to the joint. 

When the moment MSd exceeds a certain value, the left side of the joint is no longer in 

compression and the anchor bolts are activated. The joint looses then its high stiffness. 

In case of proportional loading, the anchor bolts on the left hand side of the joint are activated 

immediately. The initial stiffness is therefore lower than in the case of non-proportional 

loading, where the anchor bolts are inactive. 

In Figure 3.1.2 it can be seen that the design moment resistance of the joint is independent of 

the load history applied (proportional or non-proportional) to the joint. The normal force in 

the column has a critical effect on the design moment resistance. 

When the normal force NSd acting at a joint is a tensile force, the initial stiffness in case of 

non-proportional loading will probably be lower than in case of proportional loading because 

due to the tensile normal force, all anchor bolts will be held in tension during the initial load 
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steps of non-proportional loading, which will result in a high flexibility. 

Load history is important when reviewing the assembly procedures and also when comparing 

tests with design models. For instance, in many cases, tests are performed with non-

proportional loading and design models assume proportional loading. The test results and the 

design models may in that case not be compared directly with each other and a correction 

needs to be made to take the load history into account. 

In design pracitice, a proportional load history is normally considered. 

 

3.2 Review of existing models 

3.2.1 Overview 

Chapter 2 describes how the load - deformation curve of each individual component of a 

column base joint may be determined.  In order to end up with a moment-rotation curve, 

which represents the global behaviour of the joint, the component characteristics have to be 

assembled.  For this purpose, appropriate analytical or mechanical models are used, for 

example spring models.  The assembly of the components of a column base joint with an end 

plate is similar to that of beam-to-column joints.  However, the assembly is significantly 

affected by the interaction of normal forces and bending moments.  

Mechanical Analytical  

Model Sophisticate

d 

Two 

dimensional 

 

Complex 

Model 

 

Simplified 

Stiffness 

 

Simplified 

Strength 

 

Simplified 

Strength 

 

Simplified 

Strength and 

stiffness 

M-φ  curve Non-linear Non-linear Stiffness Strength Strength Non-linear 

Components 

description 

Non-linear Bi-linear Stiffness 

only 

Strength 

only 

Strength 

only 

Bi-linear 

Effective 

area of an 

equivalent 

rigid plate 

Annex L [1] 

 
c

c

cc

 

Rectangular 

for H section 

c
c

 

Rectangular 

for H section 

c
c

 

Annex L [1] 

 
c

c

cc

 

Rectangular 

 

c
c

0,8 b  

Web 

neglected 

c
c

c
 

Stress to 

concrete 

Non-linear 

springs 

Elasto-plastic 

(12 stress 

patterns) 

Three 

patterns only 

Plastic only Plastic only Plastic only 

Compatibility Yes Yes Yes Not for 

strain 

Simplified Simplified 

Reference Guisse et al, 

1996 

Wald, 

1995 

Wald et al., 

1996 

Wald et al., 

1996 

Guisse et al, 

1996 

Steenhuis, 

1998 

Figure 3.2.1 Comparison of different assembly procedures 



 

 

3.4 

Different prediction models are available for calculation, for list of models see Wald, 1993. 

Figure 3.2.1 gives a brief overview of the different assembly models based on component 

method, see Wald, 1995; Guisse at all., 1996; Wald, 1996; Steenhuis, 1998.  It can be seen 

that some models consider the full non-linear behaviour, while others only deal with the 

resistance or with the stiffness of the joint.  Most of the models fulfil the requirements for 

compatibility (i.e. equilibrium of internal forces, deformations, etc.), but some of them in a 

simplified way only. 

The mechanical model presented in Guisse at all, 1996 is based on a 2D non-linear spring 

simulation, see Figure 3.2.2. It can take into account not only the non-linear behaviour of each 

component, but it can also simulate the influence of changes of the effective area under 

bending.  This mechanical model is certainly useful for researchers performing scientific 

background studies and comparisons. Test results demonstrate a good accuracy of the model.  

However, the model is too complex for daily design practice.  A more practical approach is 

the component method to predict the design resistance, stiffness and deformation capacity. 

 

M
NSd

Sd

column web

c

c

c

plate to concrete contact

non-linear component behaviour

effective area

c

larger contact area

larger contact area

Force,  kN

Anchor bolt Base plate

Deformation

Concrete

Force,  kN

Deformation

Force,  kN

Deformation

anchor bolt

for bending

 

Figure 3.2.2 Mechanical model for the assembly procedure of components according to 

Guisse at all, 1996 

As can be seen in Figure 3.2.1, the various models use different approaches to determine the 

effective area.  In the models it is assumed that this effective area represents a rigid plate with 

a certain stress distribution in the compression zone.  It can be understood that the shape of 

this effective area will strongly influence the complexity of the assembly models.  This is 

because the assembly procedure should take the normal forces and the bending moments 

acting to the joint into account.  Their actual values will influence the position of the neutral 

axis of stresses, which also depends on the shape of the effective area. 

Most proposals for the effective area are based on the model given in Annex L of 

Eurocode 3 [1], which assumes plastic distribution of stresses in the concrete under the base 
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plate (bearing width ’c’).  Furthermore, the models assume a certain pattern for the 

compressive stresses.  The simplest approach is a full plastic stress distribution for the 

resistance calculation. 

M
N
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Sd

k
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k b
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k c
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Anchor bolt
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0
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200

0
0,5
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0
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Stiffness
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Sd

Sd

0

M, kNm

N, kN

M, kNm

Rotation, rad

0
0

N = konst.

Component AssemblingEffective bearing area

Modelling Stress patterns

Stiffness prediction

 

Figure 3.2.3 The Assembly based on rectangular shape of base plate Wald, 1995, the 

simplification to three patterns only for high bending moments and low bending moments 

respectively, the bi-linear load-deformation curves of the components and the moment-normal 

force diagram 
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Figure 3.2.4 The assembling with an effective area around the column flanges only 

Steenhuis, 1998. For high bending moments and low bending moments respectively, the bi-

linear load-deformation curves of the components and the moment-rotation diagram for the 

joint in comparison to test no W7-4.20-prop are shown, see Wald et al, 1995 

The prediction of the rotational stiffness has to be based on simplifications of the effective 
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area in order to allow for the development of a procedure with a limited degree of complexity.  

The simplified area using a rectangular shape enables taking all stress distributions (12 

patterns) into account.  A simpler solution, for example with only three categories of high, 

medium and low normal force is also an option, see Figure 3.2.3 from Wald, 1993, where fy 

represents yielding in the tension part and fj represents the concrete bearing resistance.  The 

simplest modelling takes the areas under the flanges only into account, see Figure 3.2.4 based 

on Steenhuis, 1998.  This has the advantage of simple modelling without losing accuracy 

under pure bending, when the contact is correctly predicted, but it has the disadvantage of 

losing the accuracy under high normal force and a very small bending moment, especially for 

cross sections with a significant effective area under the column web.  

 

3.2.2 Simplified ‘Prague’ model for resistance and stiffness 

3.2.2.1 Strength Design 

The effective bearing area Aeff and bearing strength fj is calculated according to Eurocode 3 

Annex L, 1992. This area is used for strength calculation Wald (1995).  The resistance of the 

tension part of column bases loaded by an axial force and a bending moment Ft.Rd, is 

calculated according to Eurocode 3 Annex J, 1998.  The equilibrium of internal forces could 

be calculated in elastic or plastic stages.  The active part of the effective area Aeff can be 

calculated from the equilibrium equation, see Figure 3.2.5. 

N A f FR d eff j t R d= − ∑ .  (3.2.1) 

M F r A f rR d t R d b eff j c= +∑ .  (3.2.2) 
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Figure 3.2.5 Equilibrium of internal forces 
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0
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Figure 3.2.6 Moment - normal force resistance diagram for column base introducing the 

internal force distribution in elastic and inelastic region, fy is representing yielding of the 

tension part, fj is bearing resistance of the concrete, see Wald, 1995 

 

3.2.2.2 Rotational Stiffness 

The rotational stiffness is determined according to stiffness model published in Eurocode 3 

Annex J, 1998. 

S
E z

k

j

ii

=
∑

2

1
µ

  (3.2.3) 

where E is the modulus of elasticity of the steel and z is the lever arm.  The ratio between the 

rotational stiffness µ with respect to the bending moment can be calculated as 

µ κ
ξ

= =








 ≥

S

S
M
M

j ini

j

Sd

R d

.
1  (3.2.4) 

In the formula above, ξ is shape parameter of the curve, κ is coefficient introducing the 

beginning of non-linear part of the curve and Msd is acting bending moment, see 

WALD, 1995. 

The extension of the model compared to Eurocode approach is the introduction of the normal 

force.  It is distinguished between three basic collapse modes of the base plate joint, see Wald 

and Sokol, 1995 and Wald and Sokol, 1997.  They differ by the bearing stress distribution 
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under the base plate with respect to the tension part, see Figure 3.2.7. 

The concrete bearing stress fj is never reached, when the column base joint is loaded by low 

axial force (compared to the ultimate bearing capacity).  The collapse occurs either by 

yielding of the bolts or by development a plastic mechanism in the base plate (pattern 1).  

When medium axial force is applied, the concrete bearing stress fj and the strength of the 

tension part Ft.Rd are reached at the collapse (pattern 2).  For a high axial force, collapse of the 

concrete occurs while stress in the tension part is not developed (pattern 3). 

 

elastic tension part

low axial force

pattern 1

plastic tension part

initial distribution

distribution at the collapse

high axial force

pattern 3

f j

medium axial force

pattern 2

f j

 

Figure 3.2.7 The stress distribution for three patterns of the base plate joint in initial and 

collapse stages 

The axial force N1.2 representing the boundary between low and medium forces is calculated 

for two anchor bolts, see Wald et al, 1996 and Wald, 1995. 
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where f t = F At Rd s. /  is equivalent stress in the tension part, ap, bp are dimensions of the 

effective area of the plate, see Figure 3.2.8, and z is the lever arm of anchor bolts.  
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Figure 3.2.8 Simplification of the effective area for the stiffness calculations 

 

The boundary between medium and high forces N2.3 is given by 
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Figure 3.2.9 The spring simulation of deformation of the base plate joint 
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Table 3.2.1  Values to be considered in stiffness calculation for different patterns Wald and 

Sokol, 1995 

 

Pattern 

Relevant 

Stiffness 

coefficients 

ki  

 

κ 

 

ξ 

 

Lever arm 

1 

Low axial force 

NSd ≤ N1.2 

 

kp, kb, kc 

 

1,1 

 

6 

 

( )pb1 ar2
3
1z +=  

2 

Medium axial 

force 

N1.2 < NSd < N2.3 

 

kp, kb, kc 

 

linear 

transition 

 

linear transition  

between z1  and  z3 

 

 

( )
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1
1

1
3

k
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3 
High axial force 

N2.3  ≤ NSd 

 

kc, kc 

 

1,5 

 

8 

 

z
a p

3 3
=  

 

 

3.2.3 Simplified ‘Liège’ model for resistance 

3.2.3.1 Introduction 

Experimental tests have been carried out at the University of Liège (Guisse et al, 1996) on 

column bases with two or four anchor bolts. They have shown that the column bases have a 

very high semi-rigid behaviour, even for so-called nominally pinned connections; this is 

known to be potentially beneficial when designing building frames. 

On the basis of the knowledge got from these tests and from the available literature, a simple 

analytical model aimed at predicting the ultimate and design resistances has been developed 

and validated through comparisons with the experiments. 

The model, which is briefly described in this section appears as an application of the 

principles of the component method, with some references to annexes L and J of Eurocode 3 

for what regards the characterization of the individual basic components. 

But nowadays a complete model requires also the prediction of the rotational stiffness of the 

column bases. 

However, the complexity of the problem is such that the development of a simple and reliable 

stiffness model appeared as quite contingent. Guisse et al therefore decided to focus on the 
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development of a scientific tool, i.e. a mechanical model, allowing, through rather long and 

iterative calculation procedures, to simulate accurately the non-linear response of the column 

bases from the first loading steps to failure. 

The interested reader will find details about the simple analytical model and the more 

sophisticated one in (Guisse et al, 1996). In the next paragraphs, guidelines on how to use the 

simple analytical model for the evaluation of the resistance of column bases are given. 

 

3.2.3.2 Scope of the presented model 

All the figures given here below relate to a "4 anchor bolts" configuration but the procedure 

applies both to "2 and 4 anchor bolts" configurations. The equations presented cover cases 

where a part of the concrete block is subjected to compressive forces (contact zone with the 

base plate). The model may easily be extended to cases where no contact forces develop 

between the block and the foundation (forces carried out by the anchor bolts in tension only). 

 

3.2.3.3 Description of the model 

 PRELIMINARY CALCULATIONS 

Evaluation of the resistance properties of the components 

- concrete in compression 

- anchor bolts in tension 

- base plate in bending 

Definition of the rigid equivalent plate 

- Calculation according Annex L Eurocode 3 (or improved procedure if available) → 

Aeff 

- Definition of a fictitious rigid equivalent plate beff x heff with an area equal to Aeff 

(Figure 3..2.10) 
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         heff = hc + 2c 

         beff = Aeff/heff 

Figure 3.2.10 Equivalent rectangular rigid plate  

- As an approximation, beff may be chosen as equal to 0,8 bc. 

 

 CALCULATION PROCEDURE 

At ultimate limit state (column based subjected to 
*
RdM  and 

*
RdN ), two different situations 

may occur : 

- bolts are activated in tension; 

- bolts are not activated in tension. 

- Two sets of formulae are available to cover both situations. 

The user first makes an assumption and decides whether, at first sight, anchor bolts are likely 

or not to be activated in tension. According to his decision, he follows hereafter one of the 

two procedures respectively named : 

- assembly procedure with no anchor bolts in tension; 

- assembly procedure with anchor bolts in tension. 

Inside the procedures, a criterion is given to check the validity of the assumption. If it is 

not fulfilled, the user selects then the procedure he had first disregarded. 

The proposed formulae simply results from the expression of the equilibrium between the 

applied bending moment and axial force and the resultant forces in the anchor bolts and/or the 

h’ c hc 

heff 

bc beff 

EC3 rigid equivalent plate 

Fictitious rectangular 

equivalent plate : 



 

 

3.13 

contact forces between the base plate and the concrete foundation (a rectangular distribution 

of contact stresses is assumed).   

 

Assembly procedure with no anchor bolts in tension 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.11 Internal and external forces if no anchor bolts in tension 

hcpr, which is defined as heff-2e, is derived from both following equilibrium equations (Figure 

3.2.11) : 

 

e
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At the same time, the values of 
*
RdM  and 

*
RdN  are extracted. 

The solution is valid as long as : 

dhhh effcpr −+≥ '  (3.2.9) 
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Assembly procedure with anchor bolts in tension 

 

 

 

 

 

 

 

 

Figure 3.2.12 Internal forces if one anchor bolt row in tension 

hcpr is derived from the three following equations (Figure 3.2.12) 
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 (3.2.12) 

The values of 
*
RdM  and 

*
RdM  are extracted at the same time. 

The solution is valid as long as : 

)'()'(5,0 dhhhdhh effcpreff −+<<−+  (3.2.13) 

d hcpr 

beff 

heff + h’ 

fj 

Fb(hcpr) 
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If cpreff hdhh >−+ )'(5,0 , then the anchor bolts are subjected to forces equal to their design 

resistances in tension and equations (3.2.10) to (3.2.12) have to be replaced by the following 

ones: 

jeff

RdtRd
cpr fb

FN
h .

* +
=  (3.2.14) 

e
N
M

Rd
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*

*

 (3.2.15) 
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−++

−
=

 (3.2.16) 

 

3.2.4 Simplified ‘Delft’ model for resistance and stiffness 

This paragraph presents an assembly procedure for determination of strength properties MRd 

under normal force NSd and rotational stiffness Sj for column base steel joints neglecting the 

contribution of the column web. The assembly procedure based on Eurocode 3 Annex L, but 

the contribution of the column web is neglected, see Figure 3.2.13. 
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Figure 3.2.13 Base plate joint used as example in assembly procedure 
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In Figure 3.2.13 the complicated behaviour of the base plate is simplified to a system with 

four springs: two springs acting in compression more or less under the flanges of the column 

and two springs acting in tension representing the anchor bolts. 

A designer needs to decide which springs will be activated to resist the loading on the joint 

(normal force NSd and moment MSd). This decision can be made as follows. Since the joint is 

loaded with a normal compressive force and it is loaded with a moment in clockwise 

direction, the right side of the joint will be activated in compression and not in tension. In the 

course of this paragraph it is assumed that Msd / NSd > zcom,r, so the left anchor bolts will be 

activated. The assembly procedure is of course not restricted to this loading case: NSd may be 

a tensile force and Msd may be opposite to clockwise. 

In Table 3.2.2 the assembly procedure is summarized for NSd as compressive force, Msd 

clockwise and Msd / NSd > zcom,r. 
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Table 3.2.2:  Summary sheet Assembly procedure neglecting the contribution of the column 

web, part curve “left bolts in tension, right concrete in compression”. 

Presentation for constant normal force NSd 

Range of validity: 
NSd zcom,r < MRd 

Presentation for proportional loading 
Range of validity: 
zcom,r < eS < ∞ 

eS = MSd / NSd 

  

NSd

MSd

z

zten, zco

kcom,rkten,l

δt r n,l

δcom,r

ϕ

   

NSd

MSd

z

zten ,l zcom,r

Fcom,rFten ,l

 

Strength 
 

MRd = the smallest of: 

  Ften,l,Rd z + zcom,r NSd 

  Fcom,l,Rd z - zten,l NSd 

z = zcom,r + zten,l 

 

Strength 
 
MRd = the smallest of: 

  
Ften,l,Rd  z

1 - 
zcom,r

eS

 

  
Fcom,r,Rd z

1 + 
zten,l

eS

 

z = zcom,r + zten,l 

 

Stiffness 
 

Sj = 
E z2

µ Σ 1/ki

 

ϕ = 
MSd - ek NSd

Sj

 

ek = 
zcom,r kcom,r - zten,l kten,l 

kcom,r +  kten,l

 

µ = (1,5 y)
2,7

 but µ ≥ 1 

y = 
MSd + ½ z NSd

MRd + ½ z NSd

 

Stiffness 
 

Sj = 
eS

eS - ek

  
E z2

µ Σ 1/ki

 

ϕ = 
MSd

Sj

 

ek = 
zcom,r kcom,r - zten,l kten,l 

kcom,r +  kten,l

 

µ = (1,5 y)
2,7

 but µ ≥ 1 

y = 

1 + 
½  z
eS

MRd

MSd

 + 
½  z
eS

 

Modelling 
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The procedure is given in two presentations: a presentation for constant normal force and a 

presentation for proportional loading. The difference between both is the loading history. In 

the presentation for constant normal force, in a first step the normal force NSd is applied. 

Then, in a second step, the moment MSd is built up, till the moment resistance MRd has been 

reached. In the presentation for proportional loading, during the load history the ratio eS = MSd 

/ NSd remains constant. The means, in the beginning of the loading history, both MSd and NSd 

are small. The moment MSd and NSd are built up simultaneously until MSd reaches MRd. The 

first presentation is useful for the calibration of the assembly procedure with tests, where it is 

common first to apply a normal force and in a second step the bending moment. The second 

presentation has more practical benefit, because unlike in the case of a constant normal force, 

with proportional loading it is during the whole loading history clear which components act in 

tension or compression. This results finally in advantages for modelling, see Table 3.2.2. 

The assembly procedure for strength is rather straightforward and can be derived from simple 

equilibrium as can be seen from Table 3.2.2. 

The assembly procedure for stiffness is similar to the stiffness model of Eurocode 3 Annex J. 

However, there are some differences. When focusing on the presentation for proportional 

loading the differences are as follows: 

In Eurcode 3 Annex J the stiffness formula is Sj =  
E z2

µ  Σ 
1

ki

 when a joint is loaded with pure 

bending moment. For base plates, an additional factor 
eS

eS - ek

 should be taken into account. 

This factor reflects the fact that due to normal force, the stiffness of a joint is will be higher or 

lower. The factor ek is dependent on the stiffness of the components in the joints. When NSd = 

0, 
eS

eS - ek

 is equal to 1, so the expression becomes equal to the one in Annex J. 

In Annex J the ratio between the initial stiffness and the secant stiffness µ is equal to (1,5 y)
2,7

 

but µ ≥ 1with y = MSd / MRd. However, due to the normal force acting at the joint, certain 

component may be brought in an earlier stage to collapse, which has an effect on the ratio µ. 

This effect is taken into account be adopting y = 

1 + 
½  z
eS

MRd

MSd

 + 
½  z
eS

. The implication is that even if 

MSd is small, the ratio µ may be larger than 1 due to the normal force. 

 

The assembly procedure is very simple and straightforward to apply by practitioners. The 

procedure has no iterative character, which makes it suitable for code implementation. 
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3.3 Tentative assembly model 

3.3.1 Simplified model 

In section 3.2 a description is given of assembly models that describe the moment-rotation 

characteristics of base plate joints. For practical use, these models may be improved by 

further simplification. First simplifications are described in (Steenhuis, 1998). In this COST 

report, a simplified assembly model is given covering all load cases and all situations. 

Due to its simplicity, this model will differ from test results in some respects. However, a 

designer can apply this simplified assembly procedure in a straightforward manner, without 

iterative procedures. 

In section 3.3.2 the assembly procedure with respect to strength is described. Section 3.3.3 

describes the assembly procedure with respect to stiffness. In section 3.3.4 a summary table is 

given for the whole assembly procedure. A comparison with tests is presented in section 

3.3.5. 

 

3.3.2 Strength 

The assembly procedure for strength is described based on an example as shown in Figure 

3.3.1 In Figure 3.3.1 the drawing convention is that the arrow representing the normal force 

indicates compression (NSd ≤ 0). A positive applied moment is represented by a clockwise 

arrow as shown (MSd > 0). The complicated behaviour of the base plate is simplified to a 

system with four springs: two springs acting in compression under the flanges of the column 

and two springs acting in tension representing the anchor bolts. The loading is assumed to act 

proportionally. This accords with the behaviour of structural systems, where an increase of 

normal force in the column is coupled with an increase of the bending moment to be 

transferred. 

In this model, the contribution of the resistance of the concrete under the column web is 

neglected. This may lead to some conservatism in case of slender column sections, especially 

with respect to strength properties. However, taking into account the contribution of the 

concrete portion under the column web will lead to onerous iterative procedures. In this 

simplified assembly procedure it is proposed to neglect this influence. For the simple case of a 

compressive normal force without bending moment it is of course possible to include this 

contribution as done in (Eurocode 3 Annex L, 1992). 
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Figure 3.3.1 Base plate joint used as example in assembly procedure 

The symbols in Figure 3.3.1 are as follows: 

Ften,l,Rd = the capacity of the left side of the joint in tension determined by the components 

"base plate in bending" and "anchor bolts in tension" see chapter 2; 

Ften,r,Rd = the capacity of the right side of the joint in tension determined by the 

components "base plate in bending" and "anchor bolts in tension" see chapter 2; 

Fcom,l,Rd = the capacity of the left side of the joint in compression determined by the 

components "base plate in bending", "concrete in compression" and "column 

web and flange in compression", see chapter 2; 

Fcom,r,Rd = the capacity of the right side of the joint in compression determined by the 

components "base plate in bending", "concrete in compression" and "column 

web and flange in compression", see chapter 2; 

zten,l = the distance between the center of the column and the tensile reaction force on 

the left side of the joint, zten,l = ½ (hc - tf,c.) 
zten,r = the distance between the center of the column and the tensile reaction force on 

the right side of the joint, zten,r =.½ hc - tf,c - m 

zcom,l = the distance between the center of the column and the compressive reaction 

force on the left side of the joint, zcom,l = ½ (hc - tf,c). 

zcom,r = the distance between the center of the column and the compressive reaction 

force on the right side of the joint, zcom,r = ½ (hc - tf,c). 

 

As a simplification, the compressive reaction forces are, in accordance with Revised Annex J, 

assumed to act at the center of the column flanges. For the case of non-extending base plates, 

this simplification is not fully in line with the real behaviour of the components "concrete in 

compression" and "base plate in bending", but this simplification is felt to be accurate enough 
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for practical situations. 

A designer needs to decide which springs will be activated to resist the loading on the joint 

(normal force NSd and moment MSd). This decision can be made as follows. Since the joint is 

loaded with a normal compressive force and it is loaded with a moment in clockwise 

direction, the right side of the joint will be activated in compression and not in tension. 

Whether the left side of the joint is activated in tension or compression can be determined 

with the following procedure: 

Define eS = Msd / NSd as the eccentricity of actions 

If eS < -zcom,r then the anchor bolts on the left hand side of the joint will be activated. 

In the other case, the concrete will be activated. 

For this example it is assumed that eS < -zcom,r, so the left anchor bolts will be activated. The 

resistance for bending moment MRd under a constant normal force NSd can now be determined 

based on simple equilibrium as follows: 
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Figure 3.3.2 Resulting system of forces 

Consider Figure 3.3.2: 

MSd

zcom,r + zten,l

 + 
NSd zcom,r

zcom,r + zten,l

 < Ften,l,Rd  (3.3.1) 

MSd

zcom,r + zten,l

 - 
NSd zten,l

zcom,r + zten,l

 < Fcom,r,Rd (3.3.2) 

If during the loading history of a column base joint the ratio eS remains constant (proportional 

loading), the equilibrium equations can be presented as follows: 
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MSd < 
Ften,l,Rd z

1 + 
zcom,r

eS

 (3.3.3) 

MSd < 
Fcom,r,Rd z

1 - 
zten,l

eS

 (3.3.4) 

The maximum value for Msd under a normal force NSd is defined as MRd, hence: 

MRd = the minimum of: 
Ften,l,Rd z
zcom,r

eS

 + 1

 and 
-Fcom,r,Rd z

zten,l

eS

 - 1

 (3.3.5) 

NRd = MRd / eS (3.3.6) 

where: 

z = zcom,r + zten,l (3.3.7) 

A similar procedure can be used to derive formulae for all other load cases (tensile normal 

force and anti-clockwise moments). The resulting formulae are given in section 3.3.4. 

 

3.3.3 Stiffness 

The stiffness model is described based on the example of Figure 3.3.1. For the components 

"anchor bolts in tension" and "base plate in bending" and "concrete in compression" and "base 

plate in bending", elastic stiffness factors are defined in accordance with chapter 2 of this 

report. The component "column web and flange in compression" is not considered to 

contribute to the flexibility of the joint. The elastic stiffness factor for the left bolt group is 

equal to kten,l. and the elastic stiffness factor for the right concrete portion is equal to kcom,r. 

The model of the equivalent springs is shown in Figure 3.3.3. 
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Figure 3.3.3 Spring model 

It is assumed that the springs act at locations as described in section 3.3.2. 

The elastic deformation of the joint can be calculated as follows: 

δten,l  =  

MSd

zcom,r + zten,l

 + 
NSd zcom,r

zcom,r + zten,l

E kten,l

 = 
MSd + NSdzcom,r

z E kten,l
 (3.3.8) 

δcom,r  =  

MSd

zcom,r + zten,l

 - 
NSd zten,l

zcom,r + zten,l

E kcom,r

 = 
MSd - NSd zten,l

z E kcom,r
 (3.3.9) 

The rotation of the joints is as defined as follows: 

ϕ  =  µ (δten,l + δcom,r) / z (3.3.10) 

Where: 

µ is a factor equal to 1 or more. In Revised Annex J (Eurocode 3 , 1998) the factor µ 

varies between 1 and 3 for end plated joints. For instance, µ = 1 when MSd is 

smaller than 2/3 MRd and µ = 3 when MSd is MRd. The value of µ  for MSd is 

between 2/3 MRd and MRd is equal to: 

 µ = (1,5 
MSd

MRd

)
2,7

 

 It is proposed to adopt a similar model for base plate joints. 

Hence: 
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ϕ  =  µ (δten,l + δcom,r) / z = µ (
MSd + NSd zcom,r

z E kten,l

 + 
MSd - NSd zten,l

z E kcom,r

 ) / z (3.3.11) 

ϕ  =..
µ

z2
 E(

MSd + NSd zcom,r

kten,l

 + 
MSd - NSd zten,l

kcom,r

 ) (3.3.12) 

If the moment NSd ek  is defined as the moment MSd required if ϕ  = 0 under a constant normal 

force NSd, see Figure 3.3.4, then: 

ϕ   =  
µ

z2
 E(

NSd ek + NSd zcom,r

kten,l

 + 
NSd ek - NSd zten,l

kcom,r

 ) = 0 (3.3.13) 

Hence: 

ek + zcom,r

kten,l

 + 
ek - zten,l

kcom,r

 = 0 (3.3.14) 

kcom,r (ek + zcom,r) +kten,l ( ek -zten,l) = 0 (3.3.15) 

ek  =  
zten,l kten,l  zcom,r kcom,r

kcom,r +  kten,l
 (3.3.16) 
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Figure 3.3.4 Definition of ek under zero rotation 

Hence, ek is defined as the centroid of the springs with stiffness coefficients kten;l and kcom;r It 

has to be noted that ek is a purely theoretical definition. This can be seen in Figure 3.3.4 

where the left tensile spring (anchor bolts), acts in compression. 

By defining Sj = MSd / ϕ, Sj can be written: 
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Sj  =  
MSd

MSd + ek NSd

  
E z2

µ Σ 
1

ki

 (3.3.17) 

hence: 

Sj  =  
eS

eS + ek

  
E z2

µ Σ 
1

ki

 (3.3.18) 

where: 

Σ 
1

ki

  =  
1

kten,l

 + 
1

kcom,r
 (3.3.19) 

Thus, when calculating the stiffness of a base plate joint, a modification factor equal to 
eS

eS + ek

 

is used, which reflects the contribution of the normal force in the proportional loading. 

 

3.3.4 Overview of resistance and stiffness formula for all loadcases 

In section 3.3.2 and 3.3.3 a description of the moment rotation relationship was given for the 

case when the left side of the joint was in tension and the right side in compression. In Table 

3.3.1 an overview is given for all situations. For all loadcases, i.e. normal force NSd > 0 or NSd 

≤ 0 and moment MSd > 0 or MSd ≤ 0, formula are given. 
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3.3.5 Comparison with test data 

The assembly procedure described in this chapter together with the models the strength and 

stiffness of the components as given in chapter 2 have been implemented in a spreadsheet. 

Using the model of this report, predictions have been made of moment rotation curves of 

three series of tests carried out by Wald et al, 1995 and Vandegans, 1997. The predicted 

moment rotation curves have been compared with the test curves. In the prediction, the real 

measured properties of the materials have been adopted with partial safety factors equal to 

1,0. 

Also work has been done to compare the model test carried out by others. This work has not 

been concluded yet. Since in this report comparison are only made for two series of tests, 

without further confirmation, the model cannot be recommended for use in practice. 

The tests show that the behaviour of a base plate joint is very sensitive to the quality of the 

concrete or grout immediately under the base plate. In the model presented in this document it 

is assumed that the concrete and the grout are of good quality. 

The results of the comparison of the model with the other test series by Wald et al, 1995 and 

Vandegans, 1997 are reported in Figure 3.3.5 to Figure 3.3.20. In the case of non-proportional 

loading, first the design moment MRd and the design normal force NRd have been calculated 

based on the methods given in this chapter. Then, the non-proportional loading in the model is 

simulated by first applying the design normal force NRd to the model. Then the moment MSd is 

applied in steps from 0 to MRd. The value of NRd is in general somewhat lower then the 

normal force actually applied in the test. 

In general, despite all simplifications, the model design model shows good agreement with 

the test data. Only in case of very high normal force, e.g. test S220-190, see Figure 3.3.15, the 

model is conservative. This could be expected because the contribution of the web to the load 

carrying capacity of the base plate is neglected in the assembly model. 

Also, it should be noted that the model works equally well in cases where only one bolt row is 

located in between the column flanges and in cases where two bolt rows are applied outside 

the column flanges. 
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Figure 3.2.14 Experimental and predicted moment - rotational diagrams for shown normal 

force history, experiment W7-4.20-prop, (Wald et al, 1995) 
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Figure 3.2.15 Experimental and predicted moment - rotational diagrams for shown normal 

force history, experiment W8-4.20-const0, (Wald et al, 1995) 
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Figure 3.2.16 Experimental and predicted moment - rotational diagrams for shown normal 

force history, experiment  W9-4.20-0, (Wald et al, 1995) 
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Figure 3.2.17 Experimental and predicted moment - rotational diagrams for shown normal 

force history, experiment W10-4.20-prop70, (Wald et al, 1995) 
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Figure 3.2.18 Experimental and predicted moment - rotational diagrams for shown normal 

force history, experiment W11-4.20-1000, (Wald et al, 1995) 
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Figure 3.2.19 Experimental and predicted moment - rotational diagrams for shown normal 

force history, experiment W12-4.20-prop120, (Wald et al, 1995) 
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Figure 3.2.20 Experimental and predicted moment - rotational diagrams for shown normal 

force history, experiment S220-010, (Vandegans, 1997) 

 

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100 120 140

Rotation, mrad

Moment, kNm

Analytical Non Proportional

Experiment

S220-040
HE 220 B - 900
2 M 20 - 10.9 - 320

P 20 - 280 x 280

1200 x 600 x 600
30 x 250 x 250

0
10
20
30
40
50
60
70
80
90

100

0 100 200 300 400 500

Normal Force, kN

Moment, kNm

S220-040

 

Figure 3.2.21 Experimental and predicted moment - rotational diagrams for shown normal 

force history, experiment S220-040, (Vandegans, 1997) 
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Figure 3.2.22 Experimental and predicted moment - rotational diagrams for shown normal 

force history, experiment S220-080, (Vandegans, 1997) 
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Figure 3.2.23 Experimental and predicted moment - rotational diagrams for shown normal 

force history, experiment S220-150, (Vandegans, 1997) 
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Figure 3.2.24 Experimental and predicted moment - rotational diagrams for shown normal 

force history, experiment S220-190, (Vandegans, 1997) 
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Figure 3.2.25 Experimental and predicted moment - rotational diagrams for shown normal 

force history, experiment S140-010, (Vandegans, 1997) 
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Figure 3.2.26 Experimental and predicted moment - rotational diagrams for shown normal 

force history, experiment S140-040, (Vandegans, 1997) 
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Figure 3.2.27 Experimental and predicted moment - rotational diagrams for shown normal 

force history, experiment S140-075(1) , (Vandegans, 1997) 
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Figure 3.2.28 Experimental and predicted moment - rotational diagrams for shown normal 

force history, experiment S140-075(2) , (Vandegans, 1997) 
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Figure 3.2.29 Experimental and predicted moment - rotational diagrams for shown normal 

force history, experiment S140-100, (Vandegans, 1997) 
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4.1 

Chapter 4:  Modelling and idealisation for frame analysis 

4.1 Introduction 

Analysis of steel frames is commonly carried out assuming the column bases to be either rigid or entirely free to 

rotate (pinned). However, introducing a rotational stiffness in the analysis model at the column bases produces a 

more realistic prediction of the frame behaviour. Compared to analysis with pinned bases, lateral (sway) 

deflections are reduced. Compared to analysis with fixed bases, lateral (sway) deflections are increased, which is 

particularly important in the design of unbraced frames. 

Some national design standards give recommendations for the modelling of column bases which attempt to 

reflect the real column base behaviour rather that the extremes of fixed or pinned bases. For example, these 

recommendation relate the column base stiffness to the stiffness of the supported column, and do not necessarily 

reflect the actual column base details. 

The proposal contained in this publication allow to calculate the rotational stiffness and the moment resistance of 

column bases. This chapter briefly describes the procedure for incorporating these calculated characteristics in 

the frame analysis. 

 

4.2 Modelling 

Careful examination of both the test results and the proposed models demonstrates that the stiffness and the 

resistance of column bases are influenced by the relationship between the applied moment and the applied 

normal force, see Figure 4.1.  

 

M

high normal forces

low normal forces

 

Figure 4.1 Influence of the normal force on the moment-rotation behaviour 

Hence, the determination of the joint properties needs some consideration of the global frame response. On the 

other side the frame response depends on the joint behaviour if the joint may not be assumed be rigid. This leads 

to an iterative procedure. This section is aimed in providing some guidance how to model a column base joint in 

the frame in order to take into account this interaction in a practical way.  

In general, the joint behaviour needs to be considered in the frame analysis. However, in certain cases, it is 



 

 

 

4.2 

possible to neglect the joint behaviour by making simplified assumption, i.e. to assume that the joints may be 

modelled either as continuous or as pinned. This approach is used in daily design in most cases. The tool to 

justify this approach is the classification system which is discussed more in detail in chapter 5. With the help of 

the classification system, it is possible to classify a joint as rigid (in this case, the deformation of the joint are 

small compared to the deformation of the frame and hence, the rotation of the joint may be neglected) or as 

nominally pinned (in this case, the joint will not transmit significant moments and it is able to rotate like an ideal 

hinge). Dependent on the classification the column bases may be modelled as shown in Figure 4.2. 

Method of 

global analysis 
Classification of the column base 

elastic nominally pinned rigid semi-rigid 

rigid-plastic nominally pinned full-strength partial-strength 

elastic-plastic  nominally pinned rigid and full-strength semi-rigid partial strength  

semi-rigid full-strength 

rigid partial strength 

Type of joint 
model 

simple 

 

continuous 

 

semi-continuous 

 

Figure 4.2 Joint modelling dependent on the classification and on the method of global analysis 

As above-mentioned actual behaviour of a column base joint depends on its actual loading. This may be 

expressed by means of the actual MSd/NSd ratio, where MSd is the applied moment and NSd is the applied normal 

force. This aspect is discussed more in detail in chapter 3.1. 

In order to determine the column base properties, a ‘good guess’ of the acting forces (i.e. the ratio M Sd/NSd) is 

required. The following iterative procedure is recommended to take the interaction between frame behaviour on 

one side and the column base behaviour on the other side into account. This general procedure is illustrated in 

Figure 4.3 

If a joint is modelled either as continuous, it is obvious that there is no interaction between the joint behaviour 

and the frame response. Therefore it is recommended to start the procedure with the assumption of rigid and full-

strength joints which are modelled in the frame as continuous, see Figure 4.2, as a first guess. (Note that the 

design model presented in the previous chapters assumes that the column bases may transfer typically some 

moments, this is for example due the presence of normal forces. Therefore the ‘simple’ modelling is of minor 

interest in this case and it is recommended to use the ‘continuous’ modelling as a starting point.)  

With the assumption of rigid column bases, the frame analysis can be performed without any knowledge of the 

column base properties. In practice, this step is made anyway in the pre-design stage in order to get an idea about 
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the section sizes. As a result, the forces acting on the column bases are known. Based in the M/N ratio obtained 

in this analysis the resistance and the stiffness of the joints may be determined according to the models described 

in chapters 2 and 3. 

 

Frame modelling
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Global frame analysis

START

STOP
not O.K. O.K.

 

Figure 4.3 Iterative procedure 

Of course one have to check now if the assumptions made in the beginning are valid. This is easy because a 

classification of the joint will give the answer: If the actual stiffness is higher than a certain classification 

boundary, the assumption of rigid column was valid. If this is not the case, a further frame analysis is necessary. 

However, the actual joint stiffness should now be taken into account and the column bases are modelled as semi-

continuous. Because the joint behaviour influences the frame response, the resulting data for M and N acting on 

the joints will differ from the previous calculation and new values for the stiffness and resistance should be 

derived. The iteration can be continued by repeating the two previous steps. The procedure can be escaped if the 

difference between the column base stiffness of the last step and the previous step is less than an An approach to 

find such an ”acceptable value” is proposed by Steenhuis et al (1994).  

 

4.3 Idealisation 

Generally the column base behaviour may be represented in the frame by using a non-linear rotational spring. 

However, the spring should be linear for a simple elastic global analysis. As the general behaviour of a column 

base joint is non-linear a so-called ‘idealisation’ of the moment-rotation curve is necessary to derive a linearised 

curve as shown in figure 4.4. Here, a linear stiffness Sj (secant stiffness) at the level of the applied moment is 

taken as a lower bound value. If the applied moment is not know, the secant stiffness should be determines at the 

rotation when the moment -rotation curve reaches the plastic moment resistance (dashed line).  
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Figure 4.4 Linearised moment-rotation curve  

Based on the requirement, that a simplified curve should lead to safe results on one side but should give on the 

other side most economic solutions, the revised Annex J of Eurocode 3 uses an empirical approach to determine 

a more economical value model for an idealised stiffness of beam-to-column joints. Parameter studies were 

carried out in order to compare the frame behaviour when on one side the more accurate model (i.e. the non-

linear moment rotation curve) is used as a reference and one the other side the proposed simplified curve is used 

to represent the joint behaviour. However such studies are not yet available for column bases and the only safe 

approach is to take a secant stiffness to the non-linear curve  



 

 

 

5.1 

Chapter 5:  Classification of column base joints 

5.1 Scope 

In Eurocode 3 Chapter 6 and revised Annex J, the stiffness classification of beam-to-column 

joints into rigid, semi-rigid and pinned joints is seen to be dependent on the structural system, 

according its “braced” or “unbraced” character. In fact, this criterion should not be the single 

one to determine the class of the joints; it is obvious that the “sway” or “non sway” character 

of the structure is a significant parameter as well. So in order to clarify the point, without 

entering in long explanations, it can be stated that the recommendations provided in Eurocode 

3 for the stiffness classification of beam-to-column joints are limited to joints belonging to 

“braced - non sway” and “unbraced - sway” structures; the other cases, respectively “braced - 

sway” and “unbraced - non sway” being not presently covered. 

Similar conclusions apply to the proposals made in the present chapter for the stiffness 

classification of column bases.  

For what regards the strength classif ication, the same boundaries than those proposed in 

Eurocode 3 revised Annex J for beam-to-column joints may be referred to for column bases 

so as to distinguish between full-strength, partial strength and pinned joints.   

 

5.2 Column bases in “braced - non-sway” frames  

A modification of the actual moment-rotation characteristic of column bases is likely to affect 

the whole response of “braced - non-sway” frames, and in particular the lateral displacements 

of the beams and the buckling resistance of the column. This second aspect - the buckling 

resistance of the columns - is the one for which the influence is rather important, as seen in 

Figure 5.1 (Wald and Seifert, 1991) , which shows how the buckling length coefficient of a 

column pinned at the upper extremity is affected by the variation of the column base 

rotational stiffness. The buckling length coefficient K is reported on the vertical axis and is 

expressed as the ratio between the elastic critical load (Fcr,pin ) of the column pinned at both 

extremities and that of the same column but restrained by the column base at the lower 

extremity (Fcr,res ); it is shown to vary from 1,0 (pinned - pinned support conditions) to 0,7 

(pinned - fixed support conditions).  
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Figure 5.1 Elastic critical buckling load versus column base initial stiffness 

where E is the modulus of elasticity of steel; Lc and Ic  are respectively the system length and 

the moment of inertia of the column. In Figure 5.1, the non-dimensional stiffness S  of the 

column base is reported in a logarithmic scale on the horizontal axis. 

S
S L

E

j ini c

c

=
.

I
 (5.3) 

Sj,ini is the initial elastic stiffness in rotation of the column base. The numerical values 

indicated in Figure 5.1 have been obtained by considering the particular case of a 4 m length 

column with a HE 200 B cross-section. 

The actual initial stiffness of two typical column bases is reported in Figure 5.1:  

• column base with a base plate and two anchor bolts inside the H cross-section; this 

configuration is traditionally considered as pinned, but possesses an initial stiffness 

Sj,ini,pin  equal to 7 100 kNm / rad; 

• column base with a base plate and four bolts outside the column cross-section; such a 

column base is usually considered as rigid even if its initial stiffness 

Sj,ini,stif = 74 800 kNm / rad is not infinite. 



 

 

 

5.3 

As for beam-to-column joints, it may be concluded that stiff column bases always deforms 

slightly in rotation while presumably pinned ones exhibit a non-zero rotational stiffness. 

Some column bases are however so flexible or so rigid that the structural frame response 

obtained by considering the actual column base characteristics in rotation is not significantly 

different from that obtained by modelling respectively the column bases as perfectly pinned 

or rigid. For beam-to-column joints, this has led to the concept of stiffness classification into 

pinned, semi-rigid and rigid joints, see Eurocode 3.  

The stiffness classification in Eurocode 3 revised Annex J is achieved by comparing the initial 

stiffness of the beam-to-column joints to boundary values. For instance, rigid beam-to-column 

joints are characterised by a stiffness higher than 8 E Ib / Lb where Ib and Lb are respectively 

the moment of inertia and the length of the beam. This rigidity check is based on a so-called 

"5% criterion" which says that a joint may be considered as rigid if the ultimate resistance of 

the frame in which it is incorporated is not affected by more than 5% in comparison with the 

situation where fully rigid joints are considered. 

A rigid classification boundary for column bases may be derived by adopting the same basic 

principle. To achieve it, the single storey - single bay “braced - non-sway” frame shown in 

Figure 5.2.a is considered. The study of the sensitivity of the frame to a variation of the 

column base stiffness properties is influenced by the beam and column characteristics in 

bending, E Ib / Lb and E Ic / Lc respectively. Two limit cases are however obtained when: 

• the beam is rather stiff as shown in Figure 5.2.b (E Ib / Lb = ∞); 

• the beam is rather flexible (or when a pinned joint connect the beam to the column); this 

situation is illustrated in Figure 5.2.c (E Ib / Lb = 0). 

 

a) Portal frame (non-sway) c) Isolated column (top-pinned) b) Isolated column (top-fixed)
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Figure 5.2 Portal frame and isolated columns for classification study 

The application of the "5% criterion" to the first limit case (column fixed at top extremity) 

writes as follows: 

N N 
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For sake of simplicity, it is first applied to the critical elastic buckling loads and not to the 

ultimate ones (integrating the effects of plasticity, imperfections, ...); it may be demonstrated 

that by doing so a safe value of the rigid stiffness boundary is obtained.  

From Equation (5.4), the minimum value of the buckling length coefficient may be derived: 

K ≤ 0 513,  (5.5) 

According to Eurocode 3 Annex E on the «effective buckling length of members in 

compression », the K coefficient is expressed as a function of restraint coefficients (kl, ku) at 

both column ends and writes in this specific case: 

K
k k k k

k k k k

l u l u

l u l u
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with: 

inijcc

cc
l SLIE

LIE
k

,/4

/4

+
=  at lower extremity             (5.7.a) 

k u = 0  at upper extremity             (5.7.b) 

From Equations (5.5) to (5.7), the minimum value of the elastic initial stiffness Sj,ini that 

presumably rigid column bases have to exhibit may be derived as follows (rounded value) : 

ccinij LIES /48, ≥  (5.8) 

A similar approach may be followed for the second limit case (Figure 5.2.c) and the following 

boundary is extracted: 

ccinij LIES /40, ≥  (5.9) 

This limit is less restrictive than the first one; this shows that: 

• the stiffness requirement is system dependent; 

• the stronger requirement on joint stiffness is obtained in structure where the flexibility at 

the extremities of the column is strictly resulting from that of the column base. 
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This is physically understandable and, as a consequence, the following simple stiffness 

classification boundary to distinguish between rigid and semi-rigid column bases is 

suggested: 

Rigid column bases:  ccinij LIES /48, ≥  (5.10.a) 

Semi-rigid column bases:  ccinij LIES /48, <  (5.10.b) 

As a further step, a less conservative boundary may be derived by applying the "5 % 

criterion" to the ultimate resistance Fu of the column. This one may be approximately 

expressed as (Massonnet and Save, 1976) : 

crpu NNN

111
+=  (5.11) 

where Np and Ncr designate respectively the squash load and the critical elastic buckling load 

of the column. 

As λλ ,/
2

pcr NN =  being the reduced slenderness of the column, Equation (5.11) writes 

also: 

2

1

1

λ+
= pu NN  (5.12) 

With reference to Figure 5.2.b, the reduced slenderness of the column with a fully stiff 

column base at lower end equals : 

obasecolumn  rigid 5,0 λλ =  (5.13.a) 

while that of the column with a semi-rigid column base writes : 

obasecolumn  rigid-semi Kλλ =  (5.13.b) 

where oλ  is the reduced slenderness of the column assumed as pinned at both extremities (K 

= 1). 

The application of the "5 % criterion" to the ultimate column resistance therefore gives, Np 

being considered as constant : 
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or : 
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1
1513,0K

λ
+≤  (5.14.b) 

Expression (5.14.b) may be compared to the (5.5) one. For high oλ  values, both expressions 

are similar. In such cases, the ultimate resistance Nu equals Ncr and a high boundary value of 

Sj,ini (see Formula 5.8) is required. 

For low values of oλ , the condition (5.14.b) relaxes and, as a consequence, less severe 

boundary values of Sj,ini are required, the influence of the cross-section yielding becoming 

then more predominant than the instability. 

For oλ  = 0,48, Equation (5.14.b) writes K ≤ 0,7, what means that any column base, even a 

perfectly pinned none, will be considered as rigid. 

By integrating Formulae (5.14.b) in Formulae (5.6) to (5.7.b), the following stiffness 

boundaries are obtained : 

If oλ  ≤ 0,48 0S
ini,j

≥  (5.15.a) 

If oλ  > 0,48 
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 (5.15.b) 

with : 

2

o5

1
1

λ
µ +=  (5.16) 

For practical applications, simpler expressions are proposed which fit rather well, as seen in 

Figure 5.3, with the exact ones (Formulae 5.15) in the usual range of application ( oλ  ≤ 2 to 

3). These are: 

If oλ  ≤ 0,5 Sj,ini ≥ 0 (5.17.a) 

If 0,5 < oλ  < 3,93 Sj,ini ≥ 7 (2 oλ  - 1)EIc/Lc (5.17.b) 

If oλ  ≥ 3,93 Sj,ini ≥ 48 EIc/Lc (5.17.c) 

As a safe approximation, Formula (5.8) may obviously be applied for any column 

slenderness. 
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Figure 5.3 Exact and simple stiffness boundaries 

Such an approach allows to classify the column bases according to the column properties 

only. A more precise boundary dependent on the ku coefficient (Formulae 5.6) could 

obviously be derived but its application would be far more complicated, and this seems not to 

be in line with the expected simplicity.  

A similar stiffness boundary could be defined, on the same basis, for pinned joints. The value 

obtained is however so low that few actual column bases are likely to exhibit such a lower 

initial stiffness. On the other hand, in the present case, the boundary is an upper value, and 

even if the actual joint stiffness is higher, nothing may prevent the designer to consider still 

the joint as pinned, as it is presently done in design. As a consequence, no pinned 

classification boundary is derived and proposed here.    

 

5.3 Column bases in “unbraced – sway” frames 

The “unbraced – sway” frames are more sensitive than “braced – non-sway” ones to the 

variation of the rotational properties of column bases, mainly because of their high sensitivity 

to lateral deflections as well as to changes of the overall stability conditions when the lateral 

flexibility increases.  

To illustrate this statement, a single-bay single-storey “unbraced – sway” frame is considered 

in Figure 5.4. The diagram indicates the evolution with increasing values of S  of the ratio 

βs = yS / yP  between the lateral deflection yS of the frame with actual column base stiffness 

and the deflection yP  of the frame with assumed ideally pinned column bases. The non-

dimensional stiffness S  defined by Equation (5.3) is again reported in a logarithmic scale. 

First order elastic theory is used to compute the y values. 
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Figure 5.4 Sensitivity of the sway deflection to a variation of the column base stiffness in 

a portal frame 

A stiffness classification boundary similar to that expressed in the case of “braced – non-

sway” frames may again be derived here on the basis of a "5% resistance criterion". For 

“unbraced – sway” frames also it may be demonstrated that the more restrictive situation 

corresponds to the limit case where the beam flexural stiffness is rather high in comparison 

with that of the columns. The derivation of the classification boundary is therefore carried out 

by referring to the isolated column represented in Figure 5.5.b.  
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Figure 5.5 “Unbraced – sway” portal frame and isolated columns for classification study 

According to the well-known Merchant-Rankine formula, the elasto-plastic second order 

resistance load factor λu of the whole frame may be expressed as: 

pcru λλλ
9.011

+=  (5.18) 

where λcr and λp  designate respectively the elastic critical load factor (resulting from an 

elastic linear instability analysis) and the plastic load factor (resulting from a rigid plastic first 

order analysis). 

N N 
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The range of application of the formula is defined as follows: 

104 ≤≤
p

cr

λ
λ

  (5.19) 

From Equations (5.18) and (5.19), it may be easily demonstrated – by keeping λp constant –  

that the application of the "5% resistance criterion" to the load-factor λu results in a possible 

variation of  20% of the value of λcr. As a consequence, the following criteria may be written: 
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As a result: 

118,1≤K  (5.21) 

For “unbraced – sway” frames, the K - k relationship given by Equation (5.6) has to be 

replaced by the following one: 

K
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while Equations (5.7.a) and (5.7.b) remain unchanged. The combination of these equations 

leads to the following expression of the stiffness classification boundary: 

ccinij LIES /9, ≥  (5.23) 

However the "5% resistance criterion" fully disregards the aspects of lateral frame deflections 

which have been pointed out as important. It may be shown (Wald and Sokol, 1997) that the 

lateral deflection ys of the portal frame illustrated in Figure 5.5.a writes: 
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For S ⇒ ∞  , the deflection for the frame with rigid column bases may be derived from (5.24): 
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In comparison with the case where rigid column bases are used (Formula 5.27), the actual 

frame - where the column bases possesses some degree of flexibility - will experience a larger 

deflection (Formula 5.24); this increase of the lateral displacement may be expressed in terms 

of percentage w as follows: 

y

y

S

R

= +1 ω  (5.28) 

As far as classification is concerned, an "ω % resistance criterion" may be suggested with the 

objective to limit the increase of the lateral displacement of the actual frame to ω %  of the 

deflection evaluated in the case of rigid column bases. In Formula (5.28), this means that the 

sign "=" should be replaced by "≤". By combining expressions (5.24), (5.27) and (5.28), the 

value of the minimum rotational stiffness that the column bases should exhibit to be 

considered as rigid from a displacement point of view is derived: 
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S ≥
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ς ω( )
 (5.29) 

This condition is illustrated in Figure 5.6 (Wald and Sokol, 1997). The required stiffness is 

seen to be rather insensitive to the values of ς for significant values of w. Conservatively the 

values obtained for ς = 0 may be selected, i.e.: 

• for ω = 20% , the following stiffness boundary is obtained 20S ≥  

• for ω = 10%  30S ≥  

• for ω = 5%  60S ≥ . 
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Figure 5.6 Displacement classification criteria for column bases 

As a consequence, the displacement classification criterion is seen to be much more restrictive 

than the resistance one given by Equation (5.23). The selection of the value for the boundary 

is obviously strongly related to the level of accuracy which is thought to be necessary for the 

evaluation of the lateral frame deflection. A value of 10% appears to be quite realistic and the 

following stiffness classification boundary for presumably rigid column bases may be 

therefore proposed: 

Rigid column bases: S E I Lj in i c c, /≥ 3 0  (5.30.a) 

Semi-rigid column bases:  S E I Lj ini c c, /< 3 0  (5.30.b) 

For similar reasons than those given for “braced – non-sway” frames no classification 

boundary for presumably pinned column bases is suggested. 

 

5.4 Proposed classification 

The proposed stiffness classification for column bases is based on the sensitivity of the frame 

response to the flexural characteristic of the column. The classification boundaries may be 

easily evaluated for two structural systems, respectively the “braced – non-sway” and 

“unbraced – sway” ones. No recommendation is available for the other cases.  

The stiffness boundaries are shown in Figure 5.7. They are as follows: 
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• “braced – non-sway” frames 

 Rigid column bases:  

  If oλ  ≤ 0,5 Sj,ini ≥ 0 (5.31.a) 

  If 0,5 < oλ  < 3,93 Sj,ini ≥ 7 (2 oλ  - 1)EIc/Lc (5.31.b) 

  If oλ  ≥ 3,93 Sj,ini ≥ 48 EIc/Lc (5.31.c) 

 Semi-rigid column bases:  

  If oλ  ≤ 0,5 all joints rigid (5.31.d) 

  If 0,5 < oλ  < 3,93 Sj,ini < 7 (2 oλ  - 1)EIc/Lc (5.31.e) 

  If oλ  ≥ 3,93 Sj,ini < 48 EIc/Lc (5.31.f) 

• “unbraced – sway” frames 

 Rigid column bases:  S E I Lj ini c c, /≥ 3 0  (5.32.a) 

 Semi-rigid column bases:  S E I Lj ini c c, /< 3 0  (5.32.b) 

 

In Figure 5.7, the value of the stiffness boundary for the “braced - non sway” frames is shown 

in a particular case where the reduced slenderness of the columns is equal to 36.1=oλ , what 

leads to a stiffness boundary value of 12 EIc/Lc.  
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Figure 5.7 Proposed classification system according to the initial stiffness 
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