Current Transformer Requirements

The requirements for phase current transformers are usually determined by the overcurrent time protection, particularly by the high-current element settings. Besides, there is a minimum requirement based on experience.

The recommendations are given according to the standard IEC 60044-1.

The standards IEC 60044-6, BS 3938 and ANSI/IEEE C 57.13 are referred to for converting the requirement into the knee-point voltage and other transformer classes.

Accuracy limiting factors

Effective and Rated Accuracy Limiting Factor

	$K_{ALF'} = \frac{50 - 2_{PU}}{I_{pNom}}$	
Required minimum effective accuracy limiting factor	but at least 20	
	with	
	K _{ALF} Minimum operating overcurrent factor	
	50-2 _{PU} Primary pickup value of the high-current element	
	I _{pNom} Primary nominal transformer current	
Resulting rated accuracy limiting factor	$K_{ALF} = \frac{R_{BC} + R_{Ct}}{R_{BN} + R_{Ct}} \cdot K_{ALF}$	
	with	
	K _{ALF} Rated accuracy limiting factor	
	R _{BC} Connected burden resistance (device and cables)	

R _{BN}	Nominal burden resistance
R _{Ct}	Transformer internal burden resistance

Calculation example according to IEC 60044-1

$\begin{split} &I_{\text{sNom}} = 1 \text{ A} \\ &K_{\text{ALF}'} = 20 \\ &R_{\text{BC}} = 0.6 \ \Omega \text{ (device and cables)} \\ &R_{\text{Ct}} = 3 \ \Omega \\ &R_{\text{BN}} = 5 \ \Omega \text{ (5 VA)} \end{split}$	$K_{ALF} = \frac{0.6+3}{5+3} \cdot 20 = 9$ $K_{ALF} \text{ set to 10,}$ so that: 5P10, 5 VA
with $I_{\text{sNom}} = \text{secondary transformer nominal current}$	

Class conversion

Conversion into other classes

British Standard BS 3938	$V_{k} = \frac{(R_{Ct} + R_{BN}) \cdot I_{sNom}}{1.3} \cdot K_{ALF}$
ANSI/IEEE C 57.13, class C	$V_{s.t.max} = 20 \cdot I_{sNom} \cdot R_{BN} \cdot \frac{K_{ALF}}{20}$ $I_{sNom} = 5 \text{ A (typical value)}$
IEC 60044-6 (transient response), class TPS Classes TPX, TPY, TPZ	$V_{al} = K \cdot K_{SSC} \cdot (R_{Ct} + R_{BN}) \cdot I_{sN_{DM}}$ $K \approx 1$ $K_{SSC} \approx K_{ALF}$ Calculated as in See Chapter Accuracy limiting factors where: $K_{SSC} \approx K_{ALF}$ T_{p} depending on power system and specified closing sequence

with	
V _k	Knee-point voltage
R _{Ct}	Internal burden resistance
R _{BN}	Nominal burden resistance
I _{sNom}	secondary nominal transformer current
K _{ALF}	Rated accuracy limiting factor
V _{s.t.max}	sec. terminal volt. at 20 I _{pNom}
V _{al}	sec. magnetization limit voltage
К	Dimensioning factor
K _{SSC}	Factor symmetr. Rated fault current
T _P	Primary time constant

Cable core balance current transformer

General

The requirements to the cable core balance current transformer are determined by the function "sensitive ground fault detection".

The recommendations are given according to the standard IEC 60044-1.

Requirements

Transformation ratio, typical It may be necessary to select a different transformation ratio to suit the specific power system and thus the amount of the maximum ground fault current.	60 / 1
Accuracy limiting factor	FS = 10
Power	2.5 VA

Class accuracy

Minimum required class accuracy depending on neutral grounding and function operating principle

Starpoint	isolated	compensated	high-resistance grounded
Function directional	Class 1	Class 1	Class 1
Function non-directional	Class 3	Class 1	Class 3

For extremely small ground fault currents it may become necessary to correct the angle at the device (see function description of "sensitive ground fault detection").